Properties Of Monolithic Cement Concrete, Hardening At Temperatures Close To Zero
| dc.citation.epage | 110 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 102 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Харківський національний автомобільно-дорожній університет | |
| dc.contributor.affiliation | Харківський національний університет міського господарства | |
| dc.contributor.affiliation | Kharkiv National Automobile and Highway University | |
| dc.contributor.affiliation | Kharkiv National University of Urban Economy | |
| dc.contributor.author | Толмачов, С. М. | |
| dc.contributor.author | Толмачов, Д. С. | |
| dc.contributor.author | Tolmachov, Sergiy | |
| dc.contributor.author | Tolmachov, Dmytro | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-04T09:42:46Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Однією з основних проблем твердіння монолітного цементобетону, особливо в умовах реставрації та реконструкції різних об'єктів, є твердіння бетону в умовах негативних температур. Зимові технології бетонування поділяються на два основні методи: термос-метод, за якого температура середовища, в якому твердне бетон, повинна бути вище нуля градусів Цельсія, або використання антиморозних добавок. В останньому випадку доцільно вводити до складу бетону антиморозні хімічні добавки, які знижують температуру замерзання води в бетоні. Однак відомі раніше проведені дослідження, які показують, що навіть у разі раннього замерзання бетону його якість залишається високою. У цьому випадку необхідно, щоб початок тужавлення цементного тіста відбувся до того, як бетон зможе замерзнути. Крім того, було висловлено припущення, що твердіння бетону за низьких температур може відбуватися без використання термос-методу. У статті представлені результати впливу температури твердіння на терміни тужавлення цементного тіста. Показано, як умови твердіння впливають на міцність та морозостійкість бетону. | |
| dc.description.abstract | One of the main problems of hardening monolithic cement concrete, especially in the conditions of restoration and reconstruction of various objects, is the hardening of concrete in conditions of negative temperatures. Winter concreting technologies are divided into two main methods: the thermos method, in which the temperature of the environment in which the concrete hardens, must be above zero degrees Celsius, or the use of antifreeze additives. In the last case, it is advisable to introduce antifreeze chemical additives into the concrete composition, which lower the freezing temperature of water in concrete. However, previously conducted studies are known that show that even in the case of early freezing of concrete, its quality remains high. In this case, it is necessary that the beginning of setting of the cement paste occurs before the concrete can freeze. In addition, it has been suggested that concrete hardening at low temperatures can occur without using the thermos method. The article presents the results of the influence of hardening temperature on the setting time of cement paste. It is shown how hardening conditions affect on the strength and frost resistance of concrete. | |
| dc.format.extent | 102-110 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Tolmachov S. Properties Of Monolithic Cement Concrete, Hardening At Temperatures Close To Zero / Sergiy Tolmachov, Dmytro Tolmachov // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 102–110. | |
| dc.identifier.citationen | Tolmachov S. Properties Of Monolithic Cement Concrete, Hardening At Temperatures Close To Zero / Sergiy Tolmachov, Dmytro Tolmachov // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 102–110. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2024.02.102 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/117193 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 2 (6), 2024 | |
| dc.relation.ispartof | Theory and Building Practice, 2 (6), 2024 | |
| dc.relation.references | Gnatov, A., Argun, S., & Rudenko, N. (2017, May). Smart road as a complex system of electric power generation. In 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON) (pp. 457-461). IEEE. https://doi.org/10.1109/UKRCON.2017.8100531 | |
| dc.relation.references | Shpynova, G. & dr. (1985). Betony dly stroitelnyh rabot v zimnih usloviah. Lvov: LGU. (in Russian). Retrieved from Скачать Шпынова Л.Г. (ред.). Бетоны для строительных работ в зимних условиях [DJVU] - Все для студента | |
| dc.relation.references | Usherov-Marshak, A., Zlatkovski, O., & Sopov, V. (2002). Calorimetric study of frost attack during cement hardening. Journal of thermal analysis and calorimetry, 68, 223-230. https://doi.org/10.1023/A:1014917601533 | |
| dc.relation.references | Rixom, M. R. (1978). Chemical Admixtures for Concrete, London: E. & FN Spon Ltd. https://doi.org/10.4324/9780203017241 | |
| dc.relation.references | Brzozowski, P., Horszczaruk, E., & Hrabiuk, K. (2017). The influence of natural and nano-additives on early strength of cement mortars. Procedia Engineering, 172, 127-134. https://doi.org/10.1016/j.proeng.2017.02.034 | |
| dc.relation.references | Müller, H. S., Djuric, Z., & Haist, M. (2018). Modelling freeze-thaw damage of concrete based on spatially resolved measurements of frost-induced moisture transport. 20. Internationale Baustofftagung-ibausil, Weimar, 1-47. Retrieved from H.S. Müller, Z. Djuric, M. Haist, Modelling freeze-thaw... - Google Академія | |
| dc.relation.references | Oguchi, C. T., & Yu, S. (2021). A review of theoretical salt weathering studies for stone heritage. Progress in Earth and Planetary Science, 8(1), 32. https://doi.org/10.1186/s40645-021-00414-x | |
| dc.relation.references | Ioannidou, K., Del Gado, E., Ulm, F. J., & Pellenq, R. (2017, March). Failure of cement hydrates: freeze-thaw and fracture. In APS March Meeting Abstracts (Vol. 2017, pp. P18-008). Retrieved from Failure of cement hydrates: freeze-thaw and fracture - Astrophysics Data System | |
| dc.relation.references | Kind, V. M., Werneck, C., Müller, M., Unbehau, S., Ludwig, H. M., & Dehn, F. (2023). Spatially resolved analysis of the progression of freeze‐thaw damage in concrete. ce/papers, 6(6), 1214-1222. https://doi.org/10.1002/cepa.2971 | |
| dc.relation.references | Kireenko, I. (1919) Betonnye raboty na morose. Кiiv: Ukr. nar. Komisariata zemledelia (in Russian). Retrieved from И.А. Кириенко. Бетонные работы на морозе. С 37 рисунками и 42 таблицами в тексте. Киев, Нар. комиссариат земледелия, 1919 г. 124 с., илл. Мягкий переплет, немного увелич. формат. Загрязнение обложки. | Аделанта | |
| dc.relation.references | Zhang, R., Liu, P., Ma, L., Yang, Z., Chen, H., Zhu, H. X., & Li, J. (2020). Research on the corrosion/permeability/frost resistance of concrete by experimental and microscopic mechanisms under different water-binder ratios. International Journal of Concrete Structures and Materials, 14, 1-11. https://doi.org/10.1186/s40069-019-0382-8 | |
| dc.relation.references | Collepardi, M. (2005). Admixtures: Enhancing concrete performance. In Admixtures-Enhancing Concrete Performance: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 6 July 2005 (pp. 217-230). Retrieved from Thomas Telford Publishing. ADMIXTURES: ENHANCING CONCRETE PERFORMANCE | Admixtures - Enhancing Concrete Performance | |
| dc.relation.references | Łaźniewska-Piekarczyk, B., Miera, P., & Szwabowski, J. (2017, October). Plasticizer and superplasticizer compatibility with cement with synthetic and natural air-entraining admixtures. In IOP conference series: materials science and engineering (Vol. 245, No. 3, p. 032094). IOP Publishing. https://doi.org/10.1088/1757-899X/245/3/032094 | |
| dc.relation.references | Trofimov, B. Y., Kramar, L. Y., & Schuldyakov, K. V. (2017, November). On deterioration mechanism of concrete exposed to freeze-thaw cycles. In IOP Conference Series: Materials Science and Engineering (Vol. 262, No. 1, p. 012019). IOP Publishing. https://doi.org/10.1088/1757-899X/262/1/012019 | |
| dc.relation.references | Tolmachov, S. (2020). Research of the reasons of frost destruction of road concrete. Key Engineering Materials, 864, 175-179. https://doi.org/10.4028/www.scientific.net/KEM.864.175 | |
| dc.relation.references | Powers, T. C. (1965). The mechanism of frost action in concrete. Retrieved from THE MECHANISM OF FROST ACTION IN CONCRETE - TRID | |
| dc.relation.references | Moukwa, M. (1990). Deterioration of concrete in cold sea waters. Cement and Concrete Research, 20(3), 439-446. https://doi.org/10.1016/0008-8846(90)90034-U | |
| dc.relation.references | Zhang, M., Yang, L. M., Guo, J. J., Liu, W. L., & Chen, H. L. (2018). Mechanical properties and service life prediction of modified concrete attacked by sulfate corrosion. Advances in Civil Engineering, 2018(1), 8907363. Retrieved from Mechanical Properties and Service Life Prediction of Modified Concrete Attacked by Sulfate Corrosion - Zhang - 2018 - Advances in Civil Engineering - Wiley Online Library | |
| dc.relation.references | Tolmachov, S. (2020). Research of the reasons of frost destruction of road concrete. Key Engineering Materials, 864, 175-179. https://doi.org/10.4028/www.scientific.net/KEM.864.175 | |
| dc.relation.references | DSTU 8858:2019 Sumishi tsementobetonni dorozhniye ta tsementobeton dorozhniy. Tehnichni umovi. Kyiv, DP «UkrNDNC» (2020). Retrieved from ДСТУ 8858:2019 Суміші цементобетонні дорожні та цементобетон дорожній. Технічні умови | |
| dc.relation.referencesen | Gnatov, A., Argun, S., & Rudenko, N. (2017, May). Smart road as a complex system of electric power generation. In 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON) (pp. 457-461). IEEE. https://doi.org/10.1109/UKRCON.2017.8100531 | |
| dc.relation.referencesen | Shpynova, G. & dr. (1985). Betony dly stroitelnyh rabot v zimnih usloviah. Lvov: LGU. (in Russian). Retrieved from Skachat Shpynova L.H. (red.). Betony dlia stroitelnykh rabot v zimnikh usloviiakh [DJVU] - Vse dlia studenta | |
| dc.relation.referencesen | Usherov-Marshak, A., Zlatkovski, O., & Sopov, V. (2002). Calorimetric study of frost attack during cement hardening. Journal of thermal analysis and calorimetry, 68, 223-230. https://doi.org/10.1023/A:1014917601533 | |
| dc.relation.referencesen | Rixom, M. R. (1978). Chemical Admixtures for Concrete, London: E. & FN Spon Ltd. https://doi.org/10.4324/9780203017241 | |
| dc.relation.referencesen | Brzozowski, P., Horszczaruk, E., & Hrabiuk, K. (2017). The influence of natural and nano-additives on early strength of cement mortars. Procedia Engineering, 172, 127-134. https://doi.org/10.1016/j.proeng.2017.02.034 | |
| dc.relation.referencesen | Müller, H. S., Djuric, Z., & Haist, M. (2018). Modelling freeze-thaw damage of concrete based on spatially resolved measurements of frost-induced moisture transport. 20. Internationale Baustofftagung-ibausil, Weimar, 1-47. Retrieved from H.S. Müller, Z. Djuric, M. Haist, Modelling freeze-thaw.., Google Akademiia | |
| dc.relation.referencesen | Oguchi, C. T., & Yu, S. (2021). A review of theoretical salt weathering studies for stone heritage. Progress in Earth and Planetary Science, 8(1), 32. https://doi.org/10.1186/s40645-021-00414-x | |
| dc.relation.referencesen | Ioannidou, K., Del Gado, E., Ulm, F. J., & Pellenq, R. (2017, March). Failure of cement hydrates: freeze-thaw and fracture. In APS March Meeting Abstracts (Vol. 2017, pp. P18-008). Retrieved from Failure of cement hydrates: freeze-thaw and fracture - Astrophysics Data System | |
| dc.relation.referencesen | Kind, V. M., Werneck, C., Müller, M., Unbehau, S., Ludwig, H. M., & Dehn, F. (2023). Spatially resolved analysis of the progression of freeze‐thaw damage in concrete. ce/papers, 6(6), 1214-1222. https://doi.org/10.1002/cepa.2971 | |
| dc.relation.referencesen | Kireenko, I. (1919) Betonnye raboty na morose. Kiiv: Ukr. nar. Komisariata zemledelia (in Russian). Retrieved from I.A. Kirienko. Betonnye raboty na moroze. P. 37 risunkami i 42 tablitsami v tekste. Kiev, Nar. komissariat zemledeliia, 1919 y. 124 p., ill. Miahkii pereplet, nemnoho uvelich. format. Zahriaznenie oblozhki. | Adelanta | |
| dc.relation.referencesen | Zhang, R., Liu, P., Ma, L., Yang, Z., Chen, H., Zhu, H. X., & Li, J. (2020). Research on the corrosion/permeability/frost resistance of concrete by experimental and microscopic mechanisms under different water-binder ratios. International Journal of Concrete Structures and Materials, 14, 1-11. https://doi.org/10.1186/s40069-019-0382-8 | |
| dc.relation.referencesen | Collepardi, M. (2005). Admixtures: Enhancing concrete performance. In Admixtures-Enhancing Concrete Performance: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 6 July 2005 (pp. 217-230). Retrieved from Thomas Telford Publishing. ADMIXTURES: ENHANCING CONCRETE PERFORMANCE | Admixtures - Enhancing Concrete Performance | |
| dc.relation.referencesen | Łaźniewska-Piekarczyk, B., Miera, P., & Szwabowski, J. (2017, October). Plasticizer and superplasticizer compatibility with cement with synthetic and natural air-entraining admixtures. In IOP conference series: materials science and engineering (Vol. 245, No. 3, p. 032094). IOP Publishing. https://doi.org/10.1088/1757-899X/245/3/032094 | |
| dc.relation.referencesen | Trofimov, B. Y., Kramar, L. Y., & Schuldyakov, K. V. (2017, November). On deterioration mechanism of concrete exposed to freeze-thaw cycles. In IOP Conference Series: Materials Science and Engineering (Vol. 262, No. 1, p. 012019). IOP Publishing. https://doi.org/10.1088/1757-899X/262/1/012019 | |
| dc.relation.referencesen | Tolmachov, S. (2020). Research of the reasons of frost destruction of road concrete. Key Engineering Materials, 864, 175-179. https://doi.org/10.4028/www.scientific.net/KEM.864.175 | |
| dc.relation.referencesen | Powers, T. C. (1965). The mechanism of frost action in concrete. Retrieved from THE MECHANISM OF FROST ACTION IN CONCRETE - TRID | |
| dc.relation.referencesen | Moukwa, M. (1990). Deterioration of concrete in cold sea waters. Cement and Concrete Research, 20(3), 439-446. https://doi.org/10.1016/0008-8846(90)90034-U | |
| dc.relation.referencesen | Zhang, M., Yang, L. M., Guo, J. J., Liu, W. L., & Chen, H. L. (2018). Mechanical properties and service life prediction of modified concrete attacked by sulfate corrosion. Advances in Civil Engineering, 2018(1), 8907363. Retrieved from Mechanical Properties and Service Life Prediction of Modified Concrete Attacked by Sulfate Corrosion - Zhang - 2018 - Advances in Civil Engineering - Wiley Online Library | |
| dc.relation.referencesen | Tolmachov, S. (2020). Research of the reasons of frost destruction of road concrete. Key Engineering Materials, 864, 175-179. https://doi.org/10.4028/www.scientific.net/KEM.864.175 | |
| dc.relation.referencesen | DSTU 8858:2019 Sumishi tsementobetonni dorozhniye ta tsementobeton dorozhniy. Tehnichni umovi. Kyiv, DP "UkrNDNC" (2020). Retrieved from DSTU 8858:2019 Sumishi tsementobetonni dorozhni ta tsementobeton dorozhnii. Tekhnichni umovy | |
| dc.relation.uri | https://doi.org/10.1109/UKRCON.2017.8100531 | |
| dc.relation.uri | https://doi.org/10.1023/A:1014917601533 | |
| dc.relation.uri | https://doi.org/10.4324/9780203017241 | |
| dc.relation.uri | https://doi.org/10.1016/j.proeng.2017.02.034 | |
| dc.relation.uri | https://doi.org/10.1186/s40645-021-00414-x | |
| dc.relation.uri | https://doi.org/10.1002/cepa.2971 | |
| dc.relation.uri | https://doi.org/10.1186/s40069-019-0382-8 | |
| dc.relation.uri | https://doi.org/10.1088/1757-899X/245/3/032094 | |
| dc.relation.uri | https://doi.org/10.1088/1757-899X/262/1/012019 | |
| dc.relation.uri | https://doi.org/10.4028/www.scientific.net/KEM.864.175 | |
| dc.relation.uri | https://doi.org/10.1016/0008-8846(90)90034-U | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Tolmachov S., Tolmachov D., 2024 | |
| dc.subject | початок схоплювання (ПС) | |
| dc.subject | кінець схоплювання (КС) | |
| dc.subject | час схоплювання (ЧС) | |
| dc.subject | міцність | |
| dc.subject | протиморозна хімічна добавка | |
| dc.subject | морозостійкість | |
| dc.subject | beginning of setting (BS) | |
| dc.subject | end of setting (ES) | |
| dc.subject | setting time (ST) | |
| dc.subject | strength | |
| dc.subject | antifreeze chemical admixture | |
| dc.subject | frost resistance | |
| dc.title | Properties Of Monolithic Cement Concrete, Hardening At Temperatures Close To Zero | |
| dc.title.alternative | Властивості монолітного цементобетону, що твердне за температур, близьких до нуля | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1