Research of the influence of vibroactivated lime on the hydration of portland cement and its hardening
dc.citation.epage | 37 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
dc.citation.spage | 32 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Боровець, З. І. | |
dc.contributor.author | Луцюк, І. В. | |
dc.contributor.author | Заграй, А. І. | |
dc.contributor.author | Borovets, Z. I. | |
dc.contributor.author | Lutsyuk, I. V. | |
dc.contributor.author | Zahrai, A. I. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T09:24:50Z | |
dc.date.available | 2024-02-09T09:24:50Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено вплив добавки віброактивованого вапна на процеси гідратації портландцементу та тип зміни міцності цементного каменю на різних етапах його тверднення. Встановлено, що тривале зберігання віброактивованого вапна у вологому стані не призводить до послаблення його властивостей як модифікуючої добавки. Методами визначення тепловиділення цементного тіста під час тверднення та рентгенофазового аналізу показано, що добавка віброактивованого вапна на початкових стадіях тверднення прискорює фізико-хімічні процеси гідратації силікатів кальцію клінкерних мінералів. | |
dc.description.abstract | The influence of vibro-activated lime additive on the hydration processes of Portland cement and the nature of changes in the strength of cement stone at different stages of its hardening were studied. It was established that long-term storage of vibro-activated lime in a wet state does not weaken its properties as a modifying additive. The methods of determining the heat release of cement dough during hardening and X-ray phase analysis show that the addition of vibroactivated lime at the initial stages of hardening accelerates the physicochemical processes of hydration of calcium silicates of clinker minerals. | |
dc.format.extent | 32-37 | |
dc.format.pages | 6 | |
dc.identifier.citation | Borovets Z. I. Research of the influence of vibroactivated lime on the hydration of portland cement and its hardening / Z. I. Borovets, I. V. Lutsyuk, A. I. Zahrai // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 32–37. | |
dc.identifier.citationen | Borovets Z. I. Research of the influence of vibroactivated lime on the hydration of portland cement and its hardening / Z. I. Borovets, I. V. Lutsyuk, A. I. Zahrai // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 32–37. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.01.032 | |
dc.identifier.issn | 2617-7307 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61192 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 1 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (6), 2023 | |
dc.relation.references | 1. Hewlett, P. C., Liska, M. (2019). Leas chemistry of cement and concrete. Oxford: Butterworth-Heinemann. | |
dc.relation.references | 2. Kurdowski, W. (2014). Cement and concrete chemistry. Springer Netherlands. | |
dc.relation.references | 3. Kurdowski, W. (1991). Chemia cementu. Warsaw: PWN. | |
dc.relation.references | 4. Shtark, Y., Vykht, B. (2008). Tsement y yzvest. Kyiv. | |
dc.relation.references | 5. Runova, R. F., Dvorkin, L. Y., Dvorkin, O. L., Nosovskyi, Yu. L. (2012). Viazhuchi materialy. Kyiv: Osnova. | |
dc.relation.references | 6. Qin, C., Yin, J., An, H., Liu, W., Feng, B. (2012). Performance of extruded particles from calcium hydroxide and cement for CO2 capture. Energy Fuels, 26, 154–161. https://doi.org/10.1021/ef201141z. | |
dc.relation.references | 7. Lanzón, M., Madrid, J. A., Martínez-Arredondo, A., Mónaco, S. (2017). Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone). Appl. Surf. Sci., 424, 20–27. https://doi.org/10.1016/j.apsusc.2017.02.248. | |
dc.relation.references | 8. Yakymechko, Ya., Jaskulski, R., Lutsyuk, I. (2019). New ways of utilizing lime in modern building technology. Mater. Struct. Technol., 2, 61–69. https://doi.org/10.31448/mstj.02.01.2019.61-69 DOI: 10.31448/mstj.02.01.2019.61-69. | |
dc.relation.references | 9. Sakellariou, K. G., Criado, Y. A., Tsongidis, N. I., Karagiannakis, G., Konstandopoulos, A. G. (2017). Multicyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme. Sol. Energy, 146, 65–78. http://dx.doi.org/10.1016%2Fj.solener.2017.02.013. | |
dc.relation.references | 10. Samanta, A., Chanda, D. K., Das, P. S., Ghosh, J., Mukhopadhyay, A. K., Dey, A. (2016). Synthesis of nano calcium hydroxide in aqueous medium. J. Am. Ceram. Soc., 99, 787–795. https://doi.org/10.1111/jace.14023. | |
dc.relation.references | 11. López-Arce, P., Gomez-Villalba, L. S., Pinho, L., Fernández-Valle, M. E., de Buergo, M. Á., Fort, R. (2010). Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques. Mater. Character., 61, 168–184. https://doi.org/10.1016/j.matchar.2009.11.007. | |
dc.relation.references | 12. Taglieri, G., Mondelli, C., Daniele, V., Pusceddu, E., Scoccia, G. (2014). Synthesis, textural and structural properties of calcium hydroxide nanoparticles in hydroalcoholic suspension. Adv. Mater. Phys. Chem., 4, 50–59. http://dx.doi.org/10.4236/ampc.2014.43008. | |
dc.relation.references | 13. Liu, T., Zhu, Y., Zhang, X., Zhang, T., Zhang, T., Li, X. (2010). Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett., 64, 2575–2577. http://dx.doi.org/10.1016%2Fj.matlet.2010.08.050. | |
dc.relation.references | 14. Madrid, J. A., Lanzón, M. (2017). Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces. Appl. Surf. Sci., 424, 2–8. https://doi.org/10.1016/j.apsusc.2017.03.210. | |
dc.relation.references | 15. Asikin-Mijan, N. Taufiq-Yap, Y. H., Lee, H. V. (2015). Synthesis of clamshell derived Ca(OH)2 nanoparticles via simple surfactant-hydration treatment. Chem. Eng. J., 262, 1043–1051. http://dx.doi.org/10.1016%2Fj.cej.2014.10.069. | |
dc.relation.references | 16. Roy, A., Bhattacharya, J. (2010). Synthesis of Ca(OH)2 nanoparticles by wet chemical method. Micro Nano Lett., 5, 131. https://doi:10.1049/mnl.2010.0020. | |
dc.relation.references | 17. Zahrai, A. I., Borovets, Z. I., Novitskyi, Ya. M., Chekailo, M. V., Yakymechko, Ya. B. (2019). The effect of dispersed lime on the hardening of cement stone. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 2 (2), 55–61. https://doi.org/10.23939/ctas2019.02.055. | |
dc.relation.references | 18. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2020). Kryterii doslidzhennia protsesu dysperhuvannia systemy hidratne vapno-voda. Chemistry, Technology and Application of Substances, 3 (2), 23–27. https://doi.org/10.23939/ctas2020.02.023. | |
dc.relation.references | 19. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2021). Vstanovlennia optymalnykh parametriv vibroaktyvuvannia hidratnoho vapna. Pytannia khimii ta khimichnoi tekhnolohii, 6 (139), 25–31. http://dx.doi.org/10.32434/0321-4095-2021-139-6-25-31. | |
dc.relation.references | 20. Yakymechko, Ya., Lutsyuk, I., Jaskulski, R., Dulnik, J., Kropyvnytska, T. (2020). The Effect of Vibro-Activation Time on the Properties of Highly Active Calcium Hydroxide. Buildings, 10 (111), 1–8. https://doi.org/10.3390/buildings10060111. | |
dc.relation.referencesen | 1. Hewlett, P. C., Liska, M. (2019). Leas chemistry of cement and concrete. Oxford: Butterworth-Heinemann. | |
dc.relation.referencesen | 2. Kurdowski, W. (2014). Cement and concrete chemistry. Springer Netherlands. | |
dc.relation.referencesen | 3. Kurdowski, W. (1991). Chemia cementu. Warsaw: PWN. | |
dc.relation.referencesen | 4. Shtark, Y., Vykht, B. (2008). Tsement y yzvest. Kyiv. | |
dc.relation.referencesen | 5. Runova, R. F., Dvorkin, L. Y., Dvorkin, O. L., Nosovskyi, Yu. L. (2012). Viazhuchi materialy. Kyiv: Osnova. | |
dc.relation.referencesen | 6. Qin, C., Yin, J., An, H., Liu, W., Feng, B. (2012). Performance of extruded particles from calcium hydroxide and cement for CO2 capture. Energy Fuels, 26, 154–161. https://doi.org/10.1021/ef201141z. | |
dc.relation.referencesen | 7. Lanzón, M., Madrid, J. A., Martínez-Arredondo, A., Mónaco, S. (2017). Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone). Appl. Surf. Sci., 424, 20–27. https://doi.org/10.1016/j.apsusc.2017.02.248. | |
dc.relation.referencesen | 8. Yakymechko, Ya., Jaskulski, R., Lutsyuk, I. (2019). New ways of utilizing lime in modern building technology. Mater. Struct. Technol., 2, 61–69. https://doi.org/10.31448/mstj.02.01.2019.61-69 DOI: 10.31448/mstj.02.01.2019.61-69. | |
dc.relation.referencesen | 9. Sakellariou, K. G., Criado, Y. A., Tsongidis, N. I., Karagiannakis, G., Konstandopoulos, A. G. (2017). Multicyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme. Sol. Energy, 146, 65–78. http://dx.doi.org/10.1016%2Fj.solener.2017.02.013. | |
dc.relation.referencesen | 10. Samanta, A., Chanda, D. K., Das, P. S., Ghosh, J., Mukhopadhyay, A. K., Dey, A. (2016). Synthesis of nano calcium hydroxide in aqueous medium. J. Am. Ceram. Soc., 99, 787–795. https://doi.org/10.1111/jace.14023. | |
dc.relation.referencesen | 11. López-Arce, P., Gomez-Villalba, L. S., Pinho, L., Fernández-Valle, M. E., de Buergo, M. Á., Fort, R. (2010). Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques. Mater. Character., 61, 168–184. https://doi.org/10.1016/j.matchar.2009.11.007. | |
dc.relation.referencesen | 12. Taglieri, G., Mondelli, C., Daniele, V., Pusceddu, E., Scoccia, G. (2014). Synthesis, textural and structural properties of calcium hydroxide nanoparticles in hydroalcoholic suspension. Adv. Mater. Phys. Chem., 4, 50–59. http://dx.doi.org/10.4236/ampc.2014.43008. | |
dc.relation.referencesen | 13. Liu, T., Zhu, Y., Zhang, X., Zhang, T., Zhang, T., Li, X. (2010). Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett., 64, 2575–2577. http://dx.doi.org/10.1016%2Fj.matlet.2010.08.050. | |
dc.relation.referencesen | 14. Madrid, J. A., Lanzón, M. (2017). Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces. Appl. Surf. Sci., 424, 2–8. https://doi.org/10.1016/j.apsusc.2017.03.210. | |
dc.relation.referencesen | 15. Asikin-Mijan, N. Taufiq-Yap, Y. H., Lee, H. V. (2015). Synthesis of clamshell derived Ca(OH)2 nanoparticles via simple surfactant-hydration treatment. Chem. Eng. J., 262, 1043–1051. http://dx.doi.org/10.1016%2Fj.cej.2014.10.069. | |
dc.relation.referencesen | 16. Roy, A., Bhattacharya, J. (2010). Synthesis of Ca(OH)2 nanoparticles by wet chemical method. Micro Nano Lett., 5, 131. https://doi:10.1049/mnl.2010.0020. | |
dc.relation.referencesen | 17. Zahrai, A. I., Borovets, Z. I., Novitskyi, Ya. M., Chekailo, M. V., Yakymechko, Ya. B. (2019). The effect of dispersed lime on the hardening of cement stone. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 2 (2), 55–61. https://doi.org/10.23939/ctas2019.02.055. | |
dc.relation.referencesen | 18. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2020). Kryterii doslidzhennia protsesu dysperhuvannia systemy hidratne vapno-voda. Chemistry, Technology and Application of Substances, 3 (2), 23–27. https://doi.org/10.23939/ctas2020.02.023. | |
dc.relation.referencesen | 19. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2021). Vstanovlennia optymalnykh parametriv vibroaktyvuvannia hidratnoho vapna. Pytannia khimii ta khimichnoi tekhnolohii, 6 (139), 25–31. http://dx.doi.org/10.32434/0321-4095-2021-139-6-25-31. | |
dc.relation.referencesen | 20. Yakymechko, Ya., Lutsyuk, I., Jaskulski, R., Dulnik, J., Kropyvnytska, T. (2020). The Effect of Vibro-Activation Time on the Properties of Highly Active Calcium Hydroxide. Buildings, 10 (111), 1–8. https://doi.org/10.3390/buildings10060111. | |
dc.relation.uri | https://doi.org/10.1021/ef201141z | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2017.02.248 | |
dc.relation.uri | https://doi.org/10.31448/mstj.02.01.2019.61-69 | |
dc.relation.uri | http://dx.doi.org/10.1016%2Fj.solener.2017.02.013 | |
dc.relation.uri | https://doi.org/10.1111/jace.14023 | |
dc.relation.uri | https://doi.org/10.1016/j.matchar.2009.11.007 | |
dc.relation.uri | http://dx.doi.org/10.4236/ampc.2014.43008 | |
dc.relation.uri | http://dx.doi.org/10.1016%2Fj.matlet.2010.08.050 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2017.03.210 | |
dc.relation.uri | http://dx.doi.org/10.1016%2Fj.cej.2014.10.069 | |
dc.relation.uri | https://doi:10.1049/mnl.2010.0020 | |
dc.relation.uri | https://doi.org/10.23939/ctas2019.02.055 | |
dc.relation.uri | https://doi.org/10.23939/ctas2020.02.023 | |
dc.relation.uri | http://dx.doi.org/10.32434/0321-4095-2021-139-6-25-31 | |
dc.relation.uri | https://doi.org/10.3390/buildings10060111 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | віброактивоване гашене вапно | |
dc.subject | портландцемент | |
dc.subject | рання міцність цементного каменю | |
dc.subject | температура гідратації цементу | |
dc.subject | vibro-activated slaked lime | |
dc.subject | Portland cement | |
dc.subject | early strength of cement stone | |
dc.subject | cement hydration temperature | |
dc.title | Research of the influence of vibroactivated lime on the hydration of portland cement and its hardening | |
dc.title.alternative | Дослідження впливу віброактивованого вапна на гідратацію портландцементу та його тверднення | |
dc.type | Article |
Files
License bundle
1 - 1 of 1