Research of the influence of vibroactivated lime on the hydration of portland cement and its hardening

dc.citation.epage37
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage32
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБоровець, З. І.
dc.contributor.authorЛуцюк, І. В.
dc.contributor.authorЗаграй, А. І.
dc.contributor.authorBorovets, Z. I.
dc.contributor.authorLutsyuk, I. V.
dc.contributor.authorZahrai, A. I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:50Z
dc.date.available2024-02-09T09:24:50Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено вплив добавки віброактивованого вапна на процеси гідратації портландцементу та тип зміни міцності цементного каменю на різних етапах його тверднення. Встановлено, що тривале зберігання віброактивованого вапна у вологому стані не призводить до послаблення його властивостей як модифікуючої добавки. Методами визначення тепловиділення цементного тіста під час тверднення та рентгенофазового аналізу показано, що добавка віброактивованого вапна на початкових стадіях тверднення прискорює фізико-хімічні процеси гідратації силікатів кальцію клінкерних мінералів.
dc.description.abstractThe influence of vibro-activated lime additive on the hydration processes of Portland cement and the nature of changes in the strength of cement stone at different stages of its hardening were studied. It was established that long-term storage of vibro-activated lime in a wet state does not weaken its properties as a modifying additive. The methods of determining the heat release of cement dough during hardening and X-ray phase analysis show that the addition of vibroactivated lime at the initial stages of hardening accelerates the physicochemical processes of hydration of calcium silicates of clinker minerals.
dc.format.extent32-37
dc.format.pages6
dc.identifier.citationBorovets Z. I. Research of the influence of vibroactivated lime on the hydration of portland cement and its hardening / Z. I. Borovets, I. V. Lutsyuk, A. I. Zahrai // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 32–37.
dc.identifier.citationenBorovets Z. I. Research of the influence of vibroactivated lime on the hydration of portland cement and its hardening / Z. I. Borovets, I. V. Lutsyuk, A. I. Zahrai // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 32–37.
dc.identifier.doidoi.org/10.23939/ctas2023.01.032
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61192
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Hewlett, P. C., Liska, M. (2019). Leas chemistry of cement and concrete. Oxford: Butterworth-Heinemann.
dc.relation.references2. Kurdowski, W. (2014). Cement and concrete chemistry. Springer Netherlands.
dc.relation.references3. Kurdowski, W. (1991). Chemia cementu. Warsaw: PWN.
dc.relation.references4. Shtark, Y., Vykht, B. (2008). Tsement y yzvest. Kyiv.
dc.relation.references5. Runova, R. F., Dvorkin, L. Y., Dvorkin, O. L., Nosovskyi, Yu. L. (2012). Viazhuchi materialy. Kyiv: Osnova.
dc.relation.references6. Qin, C., Yin, J., An, H., Liu, W., Feng, B. (2012). Performance of extruded particles from calcium hydroxide and cement for CO2 capture. Energy Fuels, 26, 154–161. https://doi.org/10.1021/ef201141z.
dc.relation.references7. Lanzón, M., Madrid, J. A., Martínez-Arredondo, A., Mónaco, S. (2017). Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone). Appl. Surf. Sci., 424, 20–27. https://doi.org/10.1016/j.apsusc.2017.02.248.
dc.relation.references8. Yakymechko, Ya., Jaskulski, R., Lutsyuk, I. (2019). New ways of utilizing lime in modern building technology. Mater. Struct. Technol., 2, 61–69. https://doi.org/10.31448/mstj.02.01.2019.61-69 DOI: 10.31448/mstj.02.01.2019.61-69.
dc.relation.references9. Sakellariou, K. G., Criado, Y. A., Tsongidis, N. I., Karagiannakis, G., Konstandopoulos, A. G. (2017). Multicyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme. Sol. Energy, 146, 65–78. http://dx.doi.org/10.1016%2Fj.solener.2017.02.013.
dc.relation.references10. Samanta, A., Chanda, D. K., Das, P. S., Ghosh, J., Mukhopadhyay, A. K., Dey, A. (2016). Synthesis of nano calcium hydroxide in aqueous medium. J. Am. Ceram. Soc., 99, 787–795. https://doi.org/10.1111/jace.14023.
dc.relation.references11. López-Arce, P., Gomez-Villalba, L. S., Pinho, L., Fernández-Valle, M. E., de Buergo, M. Á., Fort, R. (2010). Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques. Mater. Character., 61, 168–184. https://doi.org/10.1016/j.matchar.2009.11.007.
dc.relation.references12. Taglieri, G., Mondelli, C., Daniele, V., Pusceddu, E., Scoccia, G. (2014). Synthesis, textural and structural properties of calcium hydroxide nanoparticles in hydroalcoholic suspension. Adv. Mater. Phys. Chem., 4, 50–59. http://dx.doi.org/10.4236/ampc.2014.43008.
dc.relation.references13. Liu, T., Zhu, Y., Zhang, X., Zhang, T., Zhang, T., Li, X. (2010). Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett., 64, 2575–2577. http://dx.doi.org/10.1016%2Fj.matlet.2010.08.050.
dc.relation.references14. Madrid, J. A., Lanzón, M. (2017). Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces. Appl. Surf. Sci., 424, 2–8. https://doi.org/10.1016/j.apsusc.2017.03.210.
dc.relation.references15. Asikin-Mijan, N. Taufiq-Yap, Y. H., Lee, H. V. (2015). Synthesis of clamshell derived Ca(OH)2 nanoparticles via simple surfactant-hydration treatment. Chem. Eng. J., 262, 1043–1051. http://dx.doi.org/10.1016%2Fj.cej.2014.10.069.
dc.relation.references16. Roy, A., Bhattacharya, J. (2010). Synthesis of Ca(OH)2 nanoparticles by wet chemical method. Micro Nano Lett., 5, 131. https://doi:10.1049/mnl.2010.0020.
dc.relation.references17. Zahrai, A. I., Borovets, Z. I., Novitskyi, Ya. M., Chekailo, M. V., Yakymechko, Ya. B. (2019). The effect of dispersed lime on the hardening of cement stone. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 2 (2), 55–61. https://doi.org/10.23939/ctas2019.02.055.
dc.relation.references18. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2020). Kryterii doslidzhennia protsesu dysperhuvannia systemy hidratne vapno-voda. Chemistry, Technology and Application of Substances, 3 (2), 23–27. https://doi.org/10.23939/ctas2020.02.023.
dc.relation.references19. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2021). Vstanovlennia optymalnykh parametriv vibroaktyvuvannia hidratnoho vapna. Pytannia khimii ta khimichnoi tekhnolohii, 6 (139), 25–31. http://dx.doi.org/10.32434/0321-4095-2021-139-6-25-31.
dc.relation.references20. Yakymechko, Ya., Lutsyuk, I., Jaskulski, R., Dulnik, J., Kropyvnytska, T. (2020). The Effect of Vibro-Activation Time on the Properties of Highly Active Calcium Hydroxide. Buildings, 10 (111), 1–8. https://doi.org/10.3390/buildings10060111.
dc.relation.referencesen1. Hewlett, P. C., Liska, M. (2019). Leas chemistry of cement and concrete. Oxford: Butterworth-Heinemann.
dc.relation.referencesen2. Kurdowski, W. (2014). Cement and concrete chemistry. Springer Netherlands.
dc.relation.referencesen3. Kurdowski, W. (1991). Chemia cementu. Warsaw: PWN.
dc.relation.referencesen4. Shtark, Y., Vykht, B. (2008). Tsement y yzvest. Kyiv.
dc.relation.referencesen5. Runova, R. F., Dvorkin, L. Y., Dvorkin, O. L., Nosovskyi, Yu. L. (2012). Viazhuchi materialy. Kyiv: Osnova.
dc.relation.referencesen6. Qin, C., Yin, J., An, H., Liu, W., Feng, B. (2012). Performance of extruded particles from calcium hydroxide and cement for CO2 capture. Energy Fuels, 26, 154–161. https://doi.org/10.1021/ef201141z.
dc.relation.referencesen7. Lanzón, M., Madrid, J. A., Martínez-Arredondo, A., Mónaco, S. (2017). Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone). Appl. Surf. Sci., 424, 20–27. https://doi.org/10.1016/j.apsusc.2017.02.248.
dc.relation.referencesen8. Yakymechko, Ya., Jaskulski, R., Lutsyuk, I. (2019). New ways of utilizing lime in modern building technology. Mater. Struct. Technol., 2, 61–69. https://doi.org/10.31448/mstj.02.01.2019.61-69 DOI: 10.31448/mstj.02.01.2019.61-69.
dc.relation.referencesen9. Sakellariou, K. G., Criado, Y. A., Tsongidis, N. I., Karagiannakis, G., Konstandopoulos, A. G. (2017). Multicyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme. Sol. Energy, 146, 65–78. http://dx.doi.org/10.1016%2Fj.solener.2017.02.013.
dc.relation.referencesen10. Samanta, A., Chanda, D. K., Das, P. S., Ghosh, J., Mukhopadhyay, A. K., Dey, A. (2016). Synthesis of nano calcium hydroxide in aqueous medium. J. Am. Ceram. Soc., 99, 787–795. https://doi.org/10.1111/jace.14023.
dc.relation.referencesen11. López-Arce, P., Gomez-Villalba, L. S., Pinho, L., Fernández-Valle, M. E., de Buergo, M. Á., Fort, R. (2010). Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques. Mater. Character., 61, 168–184. https://doi.org/10.1016/j.matchar.2009.11.007.
dc.relation.referencesen12. Taglieri, G., Mondelli, C., Daniele, V., Pusceddu, E., Scoccia, G. (2014). Synthesis, textural and structural properties of calcium hydroxide nanoparticles in hydroalcoholic suspension. Adv. Mater. Phys. Chem., 4, 50–59. http://dx.doi.org/10.4236/ampc.2014.43008.
dc.relation.referencesen13. Liu, T., Zhu, Y., Zhang, X., Zhang, T., Zhang, T., Li, X. (2010). Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett., 64, 2575–2577. http://dx.doi.org/10.1016%2Fj.matlet.2010.08.050.
dc.relation.referencesen14. Madrid, J. A., Lanzón, M. (2017). Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces. Appl. Surf. Sci., 424, 2–8. https://doi.org/10.1016/j.apsusc.2017.03.210.
dc.relation.referencesen15. Asikin-Mijan, N. Taufiq-Yap, Y. H., Lee, H. V. (2015). Synthesis of clamshell derived Ca(OH)2 nanoparticles via simple surfactant-hydration treatment. Chem. Eng. J., 262, 1043–1051. http://dx.doi.org/10.1016%2Fj.cej.2014.10.069.
dc.relation.referencesen16. Roy, A., Bhattacharya, J. (2010). Synthesis of Ca(OH)2 nanoparticles by wet chemical method. Micro Nano Lett., 5, 131. https://doi:10.1049/mnl.2010.0020.
dc.relation.referencesen17. Zahrai, A. I., Borovets, Z. I., Novitskyi, Ya. M., Chekailo, M. V., Yakymechko, Ya. B. (2019). The effect of dispersed lime on the hardening of cement stone. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 2 (2), 55–61. https://doi.org/10.23939/ctas2019.02.055.
dc.relation.referencesen18. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2020). Kryterii doslidzhennia protsesu dysperhuvannia systemy hidratne vapno-voda. Chemistry, Technology and Application of Substances, 3 (2), 23–27. https://doi.org/10.23939/ctas2020.02.023.
dc.relation.referencesen19. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2021). Vstanovlennia optymalnykh parametriv vibroaktyvuvannia hidratnoho vapna. Pytannia khimii ta khimichnoi tekhnolohii, 6 (139), 25–31. http://dx.doi.org/10.32434/0321-4095-2021-139-6-25-31.
dc.relation.referencesen20. Yakymechko, Ya., Lutsyuk, I., Jaskulski, R., Dulnik, J., Kropyvnytska, T. (2020). The Effect of Vibro-Activation Time on the Properties of Highly Active Calcium Hydroxide. Buildings, 10 (111), 1–8. https://doi.org/10.3390/buildings10060111.
dc.relation.urihttps://doi.org/10.1021/ef201141z
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2017.02.248
dc.relation.urihttps://doi.org/10.31448/mstj.02.01.2019.61-69
dc.relation.urihttp://dx.doi.org/10.1016%2Fj.solener.2017.02.013
dc.relation.urihttps://doi.org/10.1111/jace.14023
dc.relation.urihttps://doi.org/10.1016/j.matchar.2009.11.007
dc.relation.urihttp://dx.doi.org/10.4236/ampc.2014.43008
dc.relation.urihttp://dx.doi.org/10.1016%2Fj.matlet.2010.08.050
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2017.03.210
dc.relation.urihttp://dx.doi.org/10.1016%2Fj.cej.2014.10.069
dc.relation.urihttps://doi:10.1049/mnl.2010.0020
dc.relation.urihttps://doi.org/10.23939/ctas2019.02.055
dc.relation.urihttps://doi.org/10.23939/ctas2020.02.023
dc.relation.urihttp://dx.doi.org/10.32434/0321-4095-2021-139-6-25-31
dc.relation.urihttps://doi.org/10.3390/buildings10060111
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectвіброактивоване гашене вапно
dc.subjectпортландцемент
dc.subjectрання міцність цементного каменю
dc.subjectтемпература гідратації цементу
dc.subjectvibro-activated slaked lime
dc.subjectPortland cement
dc.subjectearly strength of cement stone
dc.subjectcement hydration temperature
dc.titleResearch of the influence of vibroactivated lime on the hydration of portland cement and its hardening
dc.title.alternativeДослідження впливу віброактивованого вапна на гідратацію портландцементу та його тверднення
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v6n1_Borovets_Z_I-Research_of_the_influence_32-37.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v6n1_Borovets_Z_I-Research_of_the_influence_32-37__COVER.png
Size:
474.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: