Ways to improve the efficiency of wastewater treatment of a cardboard and paper mill

dc.citation.epage216
dc.citation.issue4
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage210
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.affiliationGdansk University of Technology
dc.contributor.authorSablii, Larysa
dc.contributor.authorZhukova, Veronika
dc.contributor.authorDrewnowski, Jakub
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T08:00:44Z
dc.date.available2024-04-03T08:00:44Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThe results of research on physical and chemical methods for the preliminary treatment of wastewater of a cardboard and paper factory in Khmelnytskyi region of Ukraine are presented. At the cardboard and paper factory, wastewater is treated at a sewage treatment plant, which includes sand traps, primary radial sedimentation tanks, aeration tanks with activated sludge regenerators, secondary radial sedimentation tanks, and bioponds. The use of coagulation and chlorination methods before biological treatment in aeration tanks was proposed. Alumoflock 18% was used as a coagulant, polyacrylamide was used as a flocculant, and sodium hydroxide was used as an alkalizing reagent. The study was conducted on a mixture of industrial and domestic wastewater with COD and BOD5 – 3200 and 1575 mg/dm3, respectively, and on industrial wastewater with COD and BOD5 – 4480 and 1960 mg/dm3, respectively. The effects of reducing COD and BOD5 indicators in the first case after coagulation were 30 and 40%, after chlorination - 37.81 and 43.17%, respectively, in the second after coagulation - 28.57 and 47.24%, respectively. It was established that a significant proportion of organic substances according to the COD indicator is in a dissolved state - 60-70%. It has been proven that as a result of chlorination, the maximum reduction of "pure" COD is achieved, therefore, the possibility and expediency of chlorination of water after the secondary settling tank with increased doses should be considered in the wastewater treatment technology of the cardboard and paper factory.
dc.format.extent210-216
dc.format.pages7
dc.identifier.citationSablii L. Ways to improve the efficiency of wastewater treatment of a cardboard and paper mill / Larysa Sablii, Veronika Zhukova, Jakub Drewnowski // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 210–216.
dc.identifier.citationenSablii L. Ways to improve the efficiency of wastewater treatment of a cardboard and paper mill / Larysa Sablii, Veronika Zhukova, Jakub Drewnowski // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 210–216.
dc.identifier.doidoi.org/10.23939/ep2023.04.210
dc.identifier.issn2414-5950
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61649
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 4 (8), 2023
dc.relation.ispartofEnvironmental Problems, 4 (8), 2023
dc.relation.referencesAshrafi, O., Yerushalmi, L., & Haghighat, F. (2015). Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. Journal of Environmental Management, 158, 146-157. doi: https://doi.org/10.1016/j.jenvman.2015.05.010
dc.relation.referencesBirjandi, N., Younesi, H., & Bahramifar, N. (2016) Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology. Applied Water Science, 6, 339-348.
dc.relation.referencesCabrera, M., & Ahmad, Z. (2017). Biological Wastewater Treatment and Resource Recovery. Pulp Mill Wastewater: Characteristics and Treatment. In Z. Ahmad (Ed.), Biological Wastewater Treatment and Resource Recovery (Chapter 7). doi: https://doi.org/ 10.5772/62795
dc.relation.referencesCurtis, W. (2010). Updating a model of pulp and paper wastewater treatment in a partial-mix aerated stabilization basin system. Water Science and Technology, 62(6), 1248-1255. doi: https://doi.org/10.2166/wst.2010.934
dc.relation.referencesDubeski, C. V., & Branion, R. (2001). Biological treatment of pulp mill wastewater using sequencing batch reactors. Journal of Environmental Science and Health, 36, 1245-1255. doi: https://doi.org/10.1081/ESE-100104875
dc.relation.referencesEskelinen, K., Särkkä, H., Kurniawan, T. A., & Sillanpää, M. (2010). Removal of recalcitrant contaminants from bleaching effluents in pulp and paper mills using ultrasonic irradiation and Fenton-like oxidation, electrochemical treatment, and/or chemical precipitation: A comparative study. Desalination, 255(1-3), 179-187. doi: https://doi.org/10.1016/j.desal.2009.12.024
dc.relation.referencesHabets, L., & Driessen, W. (2007). Anaerobic treatment of pulp and paper mill effluents – status quo and new developments. Water Science and Technology, 55(6), 223-230. doi: http://dx.doi.org/10.2166/wst.2007.232
dc.relation.referencesHarif, S., Aboulhassan, M. A., & Bammou, L. (2021). Overview of wastewater characteristics of the cardboard industry. Scientific Study and Research: Chemistry and Chemical Engineering, 22, 1-11. Retrieved from https://pubs.ub.ro/dwnl.php?id=CSCC6202101V01S01A0001
dc.relation.referencesHubbe, M. A., Metts, J. R., Hermosilla, D., Blanco, M. A., Yerushalmi, L., Haghighat, F., & Elliott, A. (2016). Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. BioResources, 11(3), 7953-8091. doi: http://dx.doi.org/10.15376/biores.11.3.Hubbe
dc.relation.referencesNaoyuki, K., Takahiro, N., Hirokazu, O., & Hiroshi, M. (2010). Treatment of Paper and Pulp Mill Wastewater by Ozonation Combined with Electrolysis. Journal of Water and Environment Technology, 8(2), 99-109. doi: http://dx.doi.org/10.2965/jwet.2010.99
dc.relation.referencesRam, C., Rani, P., & Gebru (2020). Pulp and paper industry wastewater treatment: use of microbes and their enzymes. Physical Sciences Reviews, 5, 8-10. doi: https://doi.org/10.1515/psr-2019-0050
dc.relation.referencesRamosa, S., T. Poznyak, I. Chairez, & I. Córdova (2009). Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. Journal of Hazardous Materials, 169(1-3), 428-434. doi: https://doi.org/10.1016/j.jhazmat.2009.03.152
dc.relation.referencesSchnell, A., Hodson, P. V., Steel, P., Melcer, H., & Carey, J. H. (2000). Enhanced biological treatment of bleached kraft mill effluents – II. Reduction of mixed function oxygenase (MFO) induction in fish. Water Research, 34(2), 501-509. doi: https://doi.org/10.1016/S0043-1354(99)00161-X
dc.relation.referencesShaveta, K., Anju, M., & Sanjeev, G. (2018). Treatment of pulp and paper mill effluent using low-cost adsorbents: An overview. Journal of Applied and Natural Science, 10(2), 695-704. doi: http://dx.doi.org/10.31018/jans.v10i2.1769
dc.relation.referencesSingh, P., & Srivastava, A. (2014). Enzymatic color removal of pulp and paper mill effluent by different fungal strains. International Journal of Pharmaceutical and Biological Sciences, 5(3), 773-783.
dc.relation.referencesTielbaard, M., Wilson, T., Feldbaumer, E., & Driessen, W. (2002). Full-scale anaerobic treatment experiences with pulp mill evaporator condensates. In Proceedings of the TAPPI Environmental Conference. TAPPI Press, Atlanta, 621-634.
dc.relation.referencesenAshrafi, O., Yerushalmi, L., & Haghighat, F. (2015). Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. Journal of Environmental Management, 158, 146-157. doi: https://doi.org/10.1016/j.jenvman.2015.05.010
dc.relation.referencesenBirjandi, N., Younesi, H., & Bahramifar, N. (2016) Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology. Applied Water Science, 6, 339-348.
dc.relation.referencesenCabrera, M., & Ahmad, Z. (2017). Biological Wastewater Treatment and Resource Recovery. Pulp Mill Wastewater: Characteristics and Treatment. In Z. Ahmad (Ed.), Biological Wastewater Treatment and Resource Recovery (Chapter 7). doi: https://doi.org/ 10.5772/62795
dc.relation.referencesenCurtis, W. (2010). Updating a model of pulp and paper wastewater treatment in a partial-mix aerated stabilization basin system. Water Science and Technology, 62(6), 1248-1255. doi: https://doi.org/10.2166/wst.2010.934
dc.relation.referencesenDubeski, C. V., & Branion, R. (2001). Biological treatment of pulp mill wastewater using sequencing batch reactors. Journal of Environmental Science and Health, 36, 1245-1255. doi: https://doi.org/10.1081/ESE-100104875
dc.relation.referencesenEskelinen, K., Särkkä, H., Kurniawan, T. A., & Sillanpää, M. (2010). Removal of recalcitrant contaminants from bleaching effluents in pulp and paper mills using ultrasonic irradiation and Fenton-like oxidation, electrochemical treatment, and/or chemical precipitation: A comparative study. Desalination, 255(1-3), 179-187. doi: https://doi.org/10.1016/j.desal.2009.12.024
dc.relation.referencesenHabets, L., & Driessen, W. (2007). Anaerobic treatment of pulp and paper mill effluents – status quo and new developments. Water Science and Technology, 55(6), 223-230. doi: http://dx.doi.org/10.2166/wst.2007.232
dc.relation.referencesenHarif, S., Aboulhassan, M. A., & Bammou, L. (2021). Overview of wastewater characteristics of the cardboard industry. Scientific Study and Research: Chemistry and Chemical Engineering, 22, 1-11. Retrieved from https://pubs.ub.ro/dwnl.php?id=CSCC6202101V01S01A0001
dc.relation.referencesenHubbe, M. A., Metts, J. R., Hermosilla, D., Blanco, M. A., Yerushalmi, L., Haghighat, F., & Elliott, A. (2016). Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. BioResources, 11(3), 7953-8091. doi: http://dx.doi.org/10.15376/biores.11.3.Hubbe
dc.relation.referencesenNaoyuki, K., Takahiro, N., Hirokazu, O., & Hiroshi, M. (2010). Treatment of Paper and Pulp Mill Wastewater by Ozonation Combined with Electrolysis. Journal of Water and Environment Technology, 8(2), 99-109. doi: http://dx.doi.org/10.2965/jwet.2010.99
dc.relation.referencesenRam, C., Rani, P., & Gebru (2020). Pulp and paper industry wastewater treatment: use of microbes and their enzymes. Physical Sciences Reviews, 5, 8-10. doi: https://doi.org/10.1515/psr-2019-0050
dc.relation.referencesenRamosa, S., T. Poznyak, I. Chairez, & I. Córdova (2009). Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. Journal of Hazardous Materials, 169(1-3), 428-434. doi: https://doi.org/10.1016/j.jhazmat.2009.03.152
dc.relation.referencesenSchnell, A., Hodson, P. V., Steel, P., Melcer, H., & Carey, J. H. (2000). Enhanced biological treatment of bleached kraft mill effluents – II. Reduction of mixed function oxygenase (MFO) induction in fish. Water Research, 34(2), 501-509. doi: https://doi.org/10.1016/S0043-1354(99)00161-X
dc.relation.referencesenShaveta, K., Anju, M., & Sanjeev, G. (2018). Treatment of pulp and paper mill effluent using low-cost adsorbents: An overview. Journal of Applied and Natural Science, 10(2), 695-704. doi: http://dx.doi.org/10.31018/jans.v10i2.1769
dc.relation.referencesenSingh, P., & Srivastava, A. (2014). Enzymatic color removal of pulp and paper mill effluent by different fungal strains. International Journal of Pharmaceutical and Biological Sciences, 5(3), 773-783.
dc.relation.referencesenTielbaard, M., Wilson, T., Feldbaumer, E., & Driessen, W. (2002). Full-scale anaerobic treatment experiences with pulp mill evaporator condensates. In Proceedings of the TAPPI Environmental Conference. TAPPI Press, Atlanta, 621-634.
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2015.05.010
dc.relation.urihttps://doi.org/
dc.relation.urihttps://doi.org/10.2166/wst.2010.934
dc.relation.urihttps://doi.org/10.1081/ESE-100104875
dc.relation.urihttps://doi.org/10.1016/j.desal.2009.12.024
dc.relation.urihttp://dx.doi.org/10.2166/wst.2007.232
dc.relation.urihttps://pubs.ub.ro/dwnl.php?id=CSCC6202101V01S01A0001
dc.relation.urihttp://dx.doi.org/10.15376/biores.11.3.Hubbe
dc.relation.urihttp://dx.doi.org/10.2965/jwet.2010.99
dc.relation.urihttps://doi.org/10.1515/psr-2019-0050
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2009.03.152
dc.relation.urihttps://doi.org/10.1016/S0043-1354(99)00161-X
dc.relation.urihttp://dx.doi.org/10.31018/jans.v10i2.1769
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Sablii L., Zhukova V., Drewnowski J., 2023
dc.subjectindustrial wastewater
dc.subjectcardboard and paper factory
dc.subjectcoagulation
dc.subjectalumoflock
dc.subjectchlorination
dc.titleWays to improve the efficiency of wastewater treatment of a cardboard and paper mill
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n4_Sablii_L-Ways_to_improve_the_efficiency_210-216.pdf
Size:
369.93 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n4_Sablii_L-Ways_to_improve_the_efficiency_210-216__COVER.png
Size:
1.07 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: