Інформаційна технологія для прогнозування часових рядів методом синтезу прогнозної схеми

dc.citation.epage86
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал інформаційних технологій
dc.citation.spage81
dc.citation.volume3
dc.contributor.affiliationУжгородський національний університет
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationUzhhorod National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМулеса, О. Ю.
dc.contributor.authorГече, Ф. Е.
dc.contributor.authorБатюк, А. Є.
dc.contributor.authorМельник, О. О.
dc.contributor.authorMulesa, O. Yu.
dc.contributor.authorGeche, F. E.
dc.contributor.authorBatyuk, A. Ye.
dc.contributor.authorMelnyk, O. O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-03-27T07:28:26Z
dc.date.available2024-03-27T07:28:26Z
dc.date.created2021-02-28
dc.date.issued2021-02-28
dc.description.abstractРозроблено інформаційну технологію прогнозування на підставі часових рядів. З'ясовано, що актуальною є розробка нових моделей і методів прогнозування для покращення якості прогнозу. В основу інформаційної технології покладено еволюційний метод синтезу прогнозної схеми на підставі базових прогнозних моделей. Обраний метод дає змогу вносити в розгляд будь-яку кількість прогнозних моделей, які можуть належати до різних класів. Для заданого часового ряду, шляхом знаходження розв'язку оптимізаційної задачі, обчислено вагові коефіцієнти, з якими моделі входять в результуючу прогнозну схему. Показано спосіб побудови цільової функції для задачі оптимізації у вигляді лінійної комбінації результатів прогнозування базовими прогнозними моделями. Запропоновано розв'язок оптимізаційної задачі знаходити за допомогою генетичного алгоритму. Результатом роботи методу є прогнозна схема, яка є лінійною комбінацією базових прогнозних моделей. Для оцінювання якості прогнозу запропоновано застосовувати похибки прогнозування або волатильність прогнозу, яка обчислено у вигляді середньоквадратичного відхилення. Критерії якості прогнозу обрано залежно від контексту задачі. Використання волатильності прогнозу як критерію якості, після багаторазового використання технології, дасть змогу зменшити відхилення прогнозних значень від реальних даних. Розроблено структурну схему інформаційної технології. Структурно інформаційна технологія складається з двох блоків: оброблення даних, інтерпретації отриманих значень. Результатом застосування розробленої інформаційної технології є продукційні правила для визначення прогнозного значення досліджуваної величини. Виконано експериментальну верифікацію отриманих результатів. Розв'язано задачу прогнозування кількості релігійних організацій в Україні на підставі статистичних даних з 1997 по 2000 роки. Як базові прогнозні моделі було обрано метод авторегресії та лінійну регресійну модель. За результатами використання розробленої інформаційної технології було обчислено вагові коефіцієнти базових моделей. Показано, що отримана прогнозна схема дала змогу покращити середню абсолютну відсоткову похибку та волатильність прогнозу, порівняно з обраними моделями.
dc.description.abstractThe study is devoted to the development of information technology for forecasting based on time series. It has been found that it is important to develop new models and forecasting methods to improve the quality of the forecast. Information technology is based on the evolutionary method of synthesis of the forecast scheme grounded on basic forecast models. The selected method allows you to consider any number of predictive models that may belong to different classes. For a given time series, the weight coefficients with which the models are included in the resulting forecast scheme are calculated by finding the solution to the optimization problem. The method of constructing the objective function for the optimization problem in the form of a linear combination of forecasting results by basic forecasting models is shown. It is proposed to find the solution to the optimization problem using a genetic algorithm. The result of the method is the forecast scheme, which is a linear combination of basic forecast models. To assess the quality of the forecast, it is suggested to use forecasting errors or forecast volatility calculated as the standard deviation. Forecast quality criteria are selected depending on the context of the task. The use of forecast volatility as a quality criterion, with repeated use of technology, will reduce the deviation of forecast values from real data. The structural scheme of information technology is developed. Structurally, information technology consists of two blocks: data processing and interpretation of the obtained values. The result of the application of the developed information technology is the production rules for determining the predicted value of the studied quantity. Experimental verification of the obtained results was performed. The problem of forecasting the number of religious organizations in Ukraine based on statistical data from 1997 to 2000 has been solved. The autoregression method and the linear regression model were chosen as the basic forecast models. Based on the results of using the developed information technology, the weights of the basic models were calculated. It is demonstrated that the obtained forecast scheme allowed to improve the average absolute percentage error and forecast volatility in comparison with the selected models
dc.format.extent81-86
dc.format.pages6
dc.identifier.citationІнформаційна технологія для прогнозування часових рядів методом синтезу прогнозної схеми / О. Ю. Мулеса, Ф. Е. Гече, А. Є. Батюк, О. О. Мельник // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2021. — Том 3. — № 2. — С. 81–86.
dc.identifier.citationenInformation technology for time series forecasting by the method of the forecast scheme synthesis / O. Yu. Mulesa, F. E. Geche, A. Ye. Batyuk, O. O. Melnyk // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 2. — P. 81–86.
dc.identifier.issn2707-1898
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61533
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал інформаційних технологій, 2 (3), 2021
dc.relation.ispartofUkrainian Journal of Information Technology, 2 (3), 2021
dc.relation.references[1] Biloshchytskyi, A., Biloshchytska, S., Kuchansky, A., Bielova, O., & Andrashko, Y. (2018, February). Infocommunication system of scientific activity management on the basis of project-vector methodology. In 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), 200–203. IEEE. https://doi.org/10.1109/TCSET.2018.8336186
dc.relation.references[2] Brockwell, P. J., Brockwell, P. J., Davis, R. A., & Davis, R. A. (2016). Introduction to time series and forecasting, Springer, 434. https://doi.org/10.1007/978-3-319-29854-2
dc.relation.references[3] Cai, Q., Zhang, D., Zheng, W., & Leung, S. C. (2015). A new fuzzy time series forecasting model combined withant colony optimization and auto-regression. Knowledge-Based Systems, 74, 61–68. https://doi.org/10.1016/j.knosys.2014.11.003
dc.relation.references[4] Daradkeh, Y. I., Kirichenko, L., & Radivilova, T. (2018). Development of QoS methods in the information networks with fractal traffic. International Journal of Electronics and Telecommunications, 64, 27–32.
dc.relation.references[5] Dolgikh, S. (2019). Categorized representations and general learning. In International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions, August 2019, Springer, Cham, 93–100. https://doi.org/10.1007/978-3-030-35249-3_11
dc.relation.references[6] Dolgikh, S., & Mulesa, O. (2021) Covid-19 epidemiological factor analysis: Identifying principal factors with machine learning. CEUR Workshop Proceedings, 2833, 114–123. https://doi.org/10.1101/2020.06.01.20119560
dc.relation.references[7] Ethnopolitics. (2020). State Service of Ukraine for Ethnopolitics and Freedom of Conscience. Retrieved from: https://dess.gov.ua/statistics-2020/
dc.relation.references[8] Geche, F., Batyuk, A., Mulesa, O., & Voloshchuk, V. (2020, August). The Combined Time Series Forecasting Model. In 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 272–275, IEEE. https://doi.org/10.1109/DSMP47368.2020.9204311
dc.relation.references[9] Geche, F., Mulesa, O., & Buchok, V. (2017). Synthesis of generalized neural elements by means of the tolerance matrices. Eastern-European Journal of Enterprise Technologies, 4(4), 50–62. https://doi.org/10.15587/1729-4061.2017.108404
dc.relation.references[10] Gulyanitsky, L. F., & Bondar, T. G. (2018). Research of efficiency of adaptive forecasting methods. Computer Mathematics, (1), 53–60.
dc.relation.references[11] Hnatiienko, H., Kudin, V., Onyshchenko, A., Snytyuk, V., & Kruhlov, A. (2020, October). Greenhouse Gas Emission Determination Based on the Pseudo-Base Matrix Method for Environmental Pollution Quotas Between Countries Allocation Problem. In 2020 IEEE 2nd International Conference on System Analysis & Intelligent Computing (SAIC), 1–8. IEEE. https://doi.org/10.1109/SAIC51296.2020.9239125
dc.relation.references[12] Hnatiienko, H., Tmienova, N., & Kruglov, A. (2021) Methods for Determining the Group Ranking of Alternatives for Incomplete Expert Rankings. In: Shkarlet S., Morozov A., Palagin A. (eds) Mathematical Modeling and Simulation of Systems (MODS2020). MODS 2020. Advances in Intelligent Systems and Computing, 1265, 217–226, Springer, Cham. https://doi.org/10.1007/978-3-030-58124-4_21
dc.relation.references[13] Hunk, D., Rights, A. D., & Dean, W. (2003). Business forecasting, Williams.
dc.relation.references[14] Khomytska, I., Teslyuk, V., Kryvinska, N., & Bazylevych, I. (2020). Software-based approach towards automated authorship acknowledgement – Chi-square test on one consonant group. Electronics, 9(7). https://doi.org/10.3390/electronics9071138
dc.relation.references[15] Kirichenko, L., Radivilova, T., Bulakh, V., Zinchenko, P., & Alghawli, A. S. (2020, August). Two Approaches to Machine Learning Classification of Time Series Based on Recurrence Plots. In 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), August 2020, IEEE, 84–89. https://doi.org/10.1109/DSMP47368.2020.9204021
dc.relation.references[16] Kuchansky, A., Biloshchytskyi, A., Bronin, S., Biloshchytska, S., & Andrashko, Y. (2019, October). Use of the Fractal Analysis of Non-stationary Time Series in Mobile Foreign Exchange Trading for M-Learning. In Interactive Mobile Communication, Technologies and Learning (pp. 950–961). Springer, Cham. https://doi.org/10.1007/978-3-030-49932-7_88
dc.relation.references[17] Lupei, M., Mitsa, A., Povkhan, I., & Sharkan, V. (2020). Determining the Eligibility of Candidates for a Vacancy Using Artificial Neural Networks. In 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), August 2020. IEEE, 18–22. https://doi.org/10.1109/DSMP47368.2020.9204020.
dc.relation.references[18] Mulesa, O. Yu. (2015). Design features of the information technology for the labor migrants group structure determination. Eastern-European Journal of Enterprise Technologies, 4(2), 4–8. https://doi.org/10.15587/1729-4061.2015.47204
dc.relation.references[19] Mulesa, O. Yu., & Snityuk, V. Ye. (2020). Development of the evolutive method for forecasting hourly rows. Automation of technological and business processes, 12(3), 4–9. https://doi.org/10.15673/atbp.v12i3.1854
dc.relation.references[20] Mulesa, O., Geche, F., Voloshchuk, V., Buchok, V., & Batyuk, A. (2017). Information technology for time series forecasting with considering fuzzy expert evaluations. In 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), 1, 105–108, IEEE, September 2017. https://doi.org/10.1109/STC-CSIT.2017.8098747
dc.relation.references[21] Pole, A., West, M., & Harrison, J. (2018). Applied Bayesian forecasting and time series analysis. Chapman and Hall/CRC. https://doi.org/10.1201/9781315274775
dc.relation.references[22] Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080
dc.relation.references[23] Tsyganok, V. V., Kadenko, S. V., & Andriichuk, O. V. (2011). Simulation of expert judgements for testing the methods of information processing in decision-making support systems. Journal of Automation and Information Sciences, 43(12). https://doi.org/10.1615/JAutomatInfScien.v43.i12.30
dc.relation.references[24] Tsyganok, V., Kadenko, S., Andriichuk, O., & Roik, P. (2018, October). Combinatorial method for aggregation of incomplete group judgments. In 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC), 1–6. IEEE. https://doi.org/10.1109/SAIC.2018.8516768
dc.relation.references[25] Wan, R., Mei, S., Wang, J., Liu, M., & Yang, F. (2019). Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting. Electronics, 8(8), 876. https://doi.org/10.3390/electronics8080876
dc.relation.references[26] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65–85. https://doi.org/10.1007/BF00175354
dc.relation.references[27] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893
dc.relation.references[28] Yan, W. (2012). Toward automatic time-series forecasting using neural networks. IEEE transactions on neural networks and learning systems, 23(7), 1028–1039. https://doi.org/10.1109/TNNLS.2012.2198074t
dc.relation.referencesen[1] Biloshchytskyi, A., Biloshchytska, S., Kuchansky, A., Bielova, O., & Andrashko, Y. (2018, February). Infocommunication system of scientific activity management on the basis of project-vector methodology. In 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), 200–203. IEEE. https://doi.org/10.1109/TCSET.2018.8336186
dc.relation.referencesen[2] Brockwell, P. J., Brockwell, P. J., Davis, R. A., & Davis, R. A. (2016). Introduction to time series and forecasting, Springer, 434. https://doi.org/10.1007/978-3-319-29854-2
dc.relation.referencesen[3] Cai, Q., Zhang, D., Zheng, W., & Leung, S. C. (2015). A new fuzzy time series forecasting model combined withant colony optimization and auto-regression. Knowledge-Based Systems, 74, 61–68. https://doi.org/10.1016/j.knosys.2014.11.003
dc.relation.referencesen[4] Daradkeh, Y. I., Kirichenko, L., & Radivilova, T. (2018). Development of QoS methods in the information networks with fractal traffic. International Journal of Electronics and Telecommunications, 64, 27–32.
dc.relation.referencesen[5] Dolgikh, S. (2019). Categorized representations and general learning. In International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions, August 2019, Springer, Cham, 93–100. https://doi.org/10.1007/978-3-030-35249-3_11
dc.relation.referencesen[6] Dolgikh, S., & Mulesa, O. (2021) Covid-19 epidemiological factor analysis: Identifying principal factors with machine learning. CEUR Workshop Proceedings, 2833, 114–123. https://doi.org/10.1101/2020.06.01.20119560
dc.relation.referencesen[7] Ethnopolitics. (2020). State Service of Ukraine for Ethnopolitics and Freedom of Conscience. Retrieved from: https://dess.gov.ua/statistics-2020/
dc.relation.referencesen[8] Geche, F., Batyuk, A., Mulesa, O., & Voloshchuk, V. (2020, August). The Combined Time Series Forecasting Model. In 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 272–275, IEEE. https://doi.org/10.1109/DSMP47368.2020.9204311
dc.relation.referencesen[9] Geche, F., Mulesa, O., & Buchok, V. (2017). Synthesis of generalized neural elements by means of the tolerance matrices. Eastern-European Journal of Enterprise Technologies, 4(4), 50–62. https://doi.org/10.15587/1729-4061.2017.108404
dc.relation.referencesen[10] Gulyanitsky, L. F., & Bondar, T. G. (2018). Research of efficiency of adaptive forecasting methods. Computer Mathematics, (1), 53–60.
dc.relation.referencesen[11] Hnatiienko, H., Kudin, V., Onyshchenko, A., Snytyuk, V., & Kruhlov, A. (2020, October). Greenhouse Gas Emission Determination Based on the Pseudo-Base Matrix Method for Environmental Pollution Quotas Between Countries Allocation Problem. In 2020 IEEE 2nd International Conference on System Analysis & Intelligent Computing (SAIC), 1–8. IEEE. https://doi.org/10.1109/SAIC51296.2020.9239125
dc.relation.referencesen[12] Hnatiienko, H., Tmienova, N., & Kruglov, A. (2021) Methods for Determining the Group Ranking of Alternatives for Incomplete Expert Rankings. In: Shkarlet S., Morozov A., Palagin A. (eds) Mathematical Modeling and Simulation of Systems (MODS2020). MODS 2020. Advances in Intelligent Systems and Computing, 1265, 217–226, Springer, Cham. https://doi.org/10.1007/978-3-030-58124-4_21
dc.relation.referencesen[13] Hunk, D., Rights, A. D., & Dean, W. (2003). Business forecasting, Williams.
dc.relation.referencesen[14] Khomytska, I., Teslyuk, V., Kryvinska, N., & Bazylevych, I. (2020). Software-based approach towards automated authorship acknowledgement – Chi-square test on one consonant group. Electronics, 9(7). https://doi.org/10.3390/electronics9071138
dc.relation.referencesen[15] Kirichenko, L., Radivilova, T., Bulakh, V., Zinchenko, P., & Alghawli, A. S. (2020, August). Two Approaches to Machine Learning Classification of Time Series Based on Recurrence Plots. In 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), August 2020, IEEE, 84–89. https://doi.org/10.1109/DSMP47368.2020.9204021
dc.relation.referencesen[16] Kuchansky, A., Biloshchytskyi, A., Bronin, S., Biloshchytska, S., & Andrashko, Y. (2019, October). Use of the Fractal Analysis of Non-stationary Time Series in Mobile Foreign Exchange Trading for M-Learning. In Interactive Mobile Communication, Technologies and Learning (pp. 950–961). Springer, Cham. https://doi.org/10.1007/978-3-030-49932-7_88
dc.relation.referencesen[17] Lupei, M., Mitsa, A., Povkhan, I., & Sharkan, V. (2020). Determining the Eligibility of Candidates for a Vacancy Using Artificial Neural Networks. In 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), August 2020. IEEE, 18–22. https://doi.org/10.1109/DSMP47368.2020.9204020.
dc.relation.referencesen[18] Mulesa, O. Yu. (2015). Design features of the information technology for the labor migrants group structure determination. Eastern-European Journal of Enterprise Technologies, 4(2), 4–8. https://doi.org/10.15587/1729-4061.2015.47204
dc.relation.referencesen[19] Mulesa, O. Yu., & Snityuk, V. Ye. (2020). Development of the evolutive method for forecasting hourly rows. Automation of technological and business processes, 12(3), 4–9. https://doi.org/10.15673/atbp.v12i3.1854
dc.relation.referencesen[20] Mulesa, O., Geche, F., Voloshchuk, V., Buchok, V., & Batyuk, A. (2017). Information technology for time series forecasting with considering fuzzy expert evaluations. In 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), 1, 105–108, IEEE, September 2017. https://doi.org/10.1109/STC-CSIT.2017.8098747
dc.relation.referencesen[21] Pole, A., West, M., & Harrison, J. (2018). Applied Bayesian forecasting and time series analysis. Chapman and Hall/CRC. https://doi.org/10.1201/9781315274775
dc.relation.referencesen[22] Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080
dc.relation.referencesen[23] Tsyganok, V. V., Kadenko, S. V., & Andriichuk, O. V. (2011). Simulation of expert judgements for testing the methods of information processing in decision-making support systems. Journal of Automation and Information Sciences, 43(12). https://doi.org/10.1615/JAutomatInfScien.v43.i12.30
dc.relation.referencesen[24] Tsyganok, V., Kadenko, S., Andriichuk, O., & Roik, P. (2018, October). Combinatorial method for aggregation of incomplete group judgments. In 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC), 1–6. IEEE. https://doi.org/10.1109/SAIC.2018.8516768
dc.relation.referencesen[25] Wan, R., Mei, S., Wang, J., Liu, M., & Yang, F. (2019). Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting. Electronics, 8(8), 876. https://doi.org/10.3390/electronics8080876
dc.relation.referencesen[26] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65–85. https://doi.org/10.1007/BF00175354
dc.relation.referencesen[27] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893
dc.relation.referencesen[28] Yan, W. (2012). Toward automatic time-series forecasting using neural networks. IEEE transactions on neural networks and learning systems, 23(7), 1028–1039. https://doi.org/10.1109/TNNLS.2012.2198074t
dc.relation.urihttps://doi.org/10.1109/TCSET.2018.8336186
dc.relation.urihttps://doi.org/10.1007/978-3-319-29854-2
dc.relation.urihttps://doi.org/10.1016/j.knosys.2014.11.003
dc.relation.urihttps://doi.org/10.1007/978-3-030-35249-3_11
dc.relation.urihttps://doi.org/10.1101/2020.06.01.20119560
dc.relation.urihttps://dess.gov.ua/statistics-2020/
dc.relation.urihttps://doi.org/10.1109/DSMP47368.2020.9204311
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.108404
dc.relation.urihttps://doi.org/10.1109/SAIC51296.2020.9239125
dc.relation.urihttps://doi.org/10.1007/978-3-030-58124-4_21
dc.relation.urihttps://doi.org/10.3390/electronics9071138
dc.relation.urihttps://doi.org/10.1109/DSMP47368.2020.9204021
dc.relation.urihttps://doi.org/10.1007/978-3-030-49932-7_88
dc.relation.urihttps://doi.org/10.1109/DSMP47368.2020.9204020
dc.relation.urihttps://doi.org/10.15587/1729-4061.2015.47204
dc.relation.urihttps://doi.org/10.15673/atbp.v12i3.1854
dc.relation.urihttps://doi.org/10.1109/STC-CSIT.2017.8098747
dc.relation.urihttps://doi.org/10.1201/9781315274775
dc.relation.urihttps://doi.org/10.1080/00031305.2017.1380080
dc.relation.urihttps://doi.org/10.1615/JAutomatInfScien.v43.i12.30
dc.relation.urihttps://doi.org/10.1109/SAIC.2018.8516768
dc.relation.urihttps://doi.org/10.3390/electronics8080876
dc.relation.urihttps://doi.org/10.1007/BF00175354
dc.relation.urihttps://doi.org/10.1109/4235.585893
dc.relation.urihttps://doi.org/10.1109/TNNLS.2012.2198074t
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectінформаційна технологія
dc.subjectчасовий ряд
dc.subjectпрогнозування
dc.subjectеволюційні технології
dc.subjectволатильність прогнозу
dc.subjectсинтез прогнозної схеми
dc.subjectinformation technology
dc.subjecttime series
dc.subjectforecasting
dc.subjectevolutionary technologies
dc.subjectforecast volatility
dc.subjectsynthesis of the forecast scheme
dc.titleІнформаційна технологія для прогнозування часових рядів методом синтезу прогнозної схеми
dc.title.alternativeInformation technology for time series forecasting by the method of the forecast scheme synthesis
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v3n2_Mulesa_O_Yu-Information_technology_81-86.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v3n2_Mulesa_O_Yu-Information_technology_81-86__COVER.png
Size:
1.84 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: