Investigation of the efficiency of a beet pulp filtration drying process

dc.citation.epage274
dc.citation.issue4
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage268
dc.citation.volume9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationUniversity of Zagreb Faculty of Mechanical Engineering and Naval Architecture
dc.contributor.authorIvashchuk, Oleksandr
dc.contributor.authorAtamanyuk, Volodymyr
dc.contributor.authorChyzhovych, Roman
dc.contributor.authorBacho, Stepan
dc.contributor.authorBoldyryev, Stanislav
dc.coverage.placenameЛьвів
dc.date.accessioned2025-10-20T08:47:26Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThis article presents the results of experimental studies investigating the energy consumption per 1 kg H2O required for the filtration drying of beet pulp. The optimal process parameters for the removal of 1 kg of moisture from the dried beet pulp were determined, which included the height of the layer of dried material H=120 mm, the thermal agent temperature T = 90 °C and the thermal agent velocity v0 = 1.76 m/s. Regarding these parameters, the total energy consumption for drying by the filtration method from the initial moisture content of 88.12 % wt. to the final moisture level of 14 % wt. is 3,515 kW·h/kg H2O. Based on the experimental data, a calculation was made for an industrial filtration drying unit, for which the cost of removing 1 kg of moisture from beet pulp was determined: 3,28 kW·h/kg H2O. To evaluate the efficiency of the filtration drying process, we conducted a comparative analysis of the drying of beet pulp at a comparable capacity in a drum dryer. According to the calculations, the energy costs for removing 1 kg of moisture from beet pulp in a drum dryer are 3.11 kW·h/kg H2O. Considering the estimation of calculations and a significant reduction in the drying time with the filtration method (~10 times), it is possible to conclude that filtration drying is a beneficial and efficacious technique for beet pulp drying.
dc.format.extent268-274
dc.format.pages7
dc.identifier.citationInvestigation of the efficiency of a beet pulp filtration drying process / Ivashchuk Oleksandr, Atamanyuk Volodymyr, Chyzhovych Roman, Bacho Stepan, Boldyryev Stanislav // Environmental Problems. — Lviv Politechnic Publishing House, 2024. — Vol 9. — No 4. — P. 268–274.
dc.identifier.citationenInvestigation of the efficiency of a beet pulp filtration drying process / Ivashchuk Oleksandr, Atamanyuk Volodymyr, Chyzhovych Roman, Bacho Stepan, Boldyryev Stanislav // Environmental Problems. — Lviv Politechnic Publishing House, 2024. — Vol 9. — No 4. — P. 268–274.
dc.identifier.doidoi.org/10.23939/ep2024.04.268
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113833
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 4 (9), 2024
dc.relation.ispartofEnvironmental Problems, 4 (9), 2024
dc.relation.referencesCheremisina, S. (2021). Grain market in Ukraine: analysis of the current state and development prospects. Ekonomika APK, 316(2), 48–58. doi: https://doi.org/10.32317/2221-1055.202102048
dc.relation.referencesDygas, D., Kręgiel, D., & Berłowska, J. (2023). Sugar Beet Pulp as a Biorefinery Substrate for Designing Feed. Molecules, 28(5), 2064. doi: https://doi.org/10.3390/molecules28052064
dc.relation.referencesDziubenko, V. H., Mileikovskyi, V. O., & Sachenko, I. A. (2018). Expansion of the range of wet air I-d diagram for environmental safe heat production. Environmental safety and natural resources, 26(2), 15–22. doi: https://doi.org/10.32347/2411-4049.2018.2.15-22
dc.relation.referencesIvashchenko, N. V., & Bulyandra, O. F. (2014). Effective heat capacity of beet pulp. New ideas in food science - new products for the food industry: International scientific conference dedicated to the 130th anniversary of the National University of Food Technologies, 13-17 October 2014.
dc.relation.referencesIvashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., & Sobechko, I. B. (2023). Using coffee production waste as a raw material for solid fuel. Journal of Chemistry and Technologies, 30(4), 588–594. doi: https://doi.org/10.15421/jchemtech.v30i4.265116
dc.relation.referencesIvashchuk, O., Atamanyuk, V., Chyzhovych, R., & Boldyryev, S. (2024). Investigation of the beet pulp filtration drying kinetics. Environmental Problems, 9(3), 179–186. doi: https://doi.org/10.23939/ep2024.03.179
dc.relation.referencesIvashchuk, O., Atamanyuk, V., & Chyzhovych, R. (2024). Research on hydrodynamics of the thermal agent flow for the beet pulp filtration drying. Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving, 3, 9–18. doi: https://doi.org/10.20535/2617-9741.3.2024.312415
dc.relation.referencesIvashchuk, O., Atamanyuk, V., Chyzhovych, R., Manastyrska, V., Barabakh, S., & Hnativ, Z. (2024). Kinetic regularities of the filtration drying of barley brewer’s spent grain. Chemistry & Chemical Technology, 18(1), 66–75. doi: https://doi.org/10.23939/chcht18.01.066
dc.relation.referencesIvashchuk, O. S., Atamanyuk, V. M., & Chyzhovych, R. A. (2024). Valourization of using efficiency of filtration drying for alcohol distillery stillage. Case Studies in Chemical and Environmental Engineering, 10, 100820. doi: https://doi.org/10.1016/j.cscee.2024.100820
dc.relation.referencesJoanna, B., Michal, B., Piotr, D., Agnieszka, W., Dorota, K., & Izabela, W. (2018). Sugar Beet Pulp as a Source of Valuable Biotechnological Products. Advances in Biotechnology for Food Industry, 2018, 359–392. doi: https://doi.org/10.1016/B978-0-12-811443-8.00013-X
dc.relation.referencesJewiarz, M., Wróbel, M., Mudryk, K., & Szufa, S. (2020). Impact of the Drying Temperature and Grinding Technique on Biomass Grindability. Energies, 13(13), 3392. doi: https://doi.org/10.3390/en13133392
dc.relation.referencesMisra, V., & Shrivastava, A. K. (2022). It is understanding the Sugar Beet Crop and Its Physiology. Sugar Beet Cultivation, Management and Processing, 2022, 11–25). doi: https://doi.org/10.1007/978-981-19-2730-0_2
dc.relation.referencesMuir, B. M., & Anderson, A. R. (2022). Development and Diversification of Sugar Beet in Europe. Sugar Tech, 24(4), 992–1009. doi: https://doi.org/10.1007/s12355-021-01036-9
dc.relation.referencesMujumdar, A. S. (Ed.). (2014). Handbook of Industrial Drying. CRC Press. Retrieved from https://doi.org/10.1201/b17208
dc.relation.referencesNovikova, I. V., Muravev, A. S., Agafonov, G. V., Korotkih, E. A., Malceva, O. Y., & Zueva, N. V. (2022). Technological measures to improve the environmental friendliness of alcohol industry enterprises. IOP Conference Series: Earth and Environmental Science, 1052(1), 012092. doi: https://doi.org/10.1088/1755-1315/1052/1/012092
dc.relation.referencesRezaei, H., Lim, C. J., & Sokhansanj, S. (2022). A computational approach to determine the residence time distribution of biomass particles in rotary drum dryers. Chemical Engineering Science, 247, 116932. doi: https://doi.org/10.1016/j.ces.2021.116932
dc.relation.referencesSai, P. S. T. (2013). Drying of Solids in a Rotary Dryer. Drying Technology, 31(2), 213–223. doi: https://doi.org/10.1080/07373937.2012.711406
dc.relation.referencesSemenova, O. I., Bubliienko, N. O. & Vitiuk, O. I. (2013). Modern trends in the use and utilisation of beet pulp. Efektivni Nastroje Modernich Ved – 2013: Proceedings of the IX International Scientific and Practical Conference. Praha. Retrieved from
dc.relation.referenceshttps://dspace.nuft.edu.ua/server/api/core/bitstreams/180c2d96-4ec7-4bfd-ad13-19349fc8aaaa/content
dc.relation.referencesThibault, J., Alvarez, P. I., Blasco, R., & Vega, R. (2010). Modeling the Mean Residence Time in a Rotary Dryer for Various Types of Solids. Drying Technology, 28(10), 1136–1141. doi: https://doi.org/10.1080/07373937.2010.483045
dc.relation.referencesTuchkova, L. E., Verkhovets, I. A., Tikhoykina, I. M., & Chuvasheva, E. S. (2022). Evaluation of Impact Beetroot Pulp Obtained as a By-Product of Sugar Production Has on Quality of Grey Forest Soil. IOP Conference Series: Earth and Environmental Science, 988(2), 022039. doi: https://doi.org/10.1088/1755-1315/988/2/022039
dc.relation.referencesenCheremisina, S. (2021). Grain market in Ukraine: analysis of the current state and development prospects. Ekonomika APK, 316(2), 48–58. doi: https://doi.org/10.32317/2221-1055.202102048
dc.relation.referencesenDygas, D., Kręgiel, D., & Berłowska, J. (2023). Sugar Beet Pulp as a Biorefinery Substrate for Designing Feed. Molecules, 28(5), 2064. doi: https://doi.org/10.3390/molecules28052064
dc.relation.referencesenDziubenko, V. H., Mileikovskyi, V. O., & Sachenko, I. A. (2018). Expansion of the range of wet air I-d diagram for environmental safe heat production. Environmental safety and natural resources, 26(2), 15–22. doi: https://doi.org/10.32347/2411-4049.2018.2.15-22
dc.relation.referencesenIvashchenko, N. V., & Bulyandra, O. F. (2014). Effective heat capacity of beet pulp. New ideas in food science - new products for the food industry: International scientific conference dedicated to the 130th anniversary of the National University of Food Technologies, 13-17 October 2014.
dc.relation.referencesenIvashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., & Sobechko, I. B. (2023). Using coffee production waste as a raw material for solid fuel. Journal of Chemistry and Technologies, 30(4), 588–594. doi: https://doi.org/10.15421/jchemtech.v30i4.265116
dc.relation.referencesenIvashchuk, O., Atamanyuk, V., Chyzhovych, R., & Boldyryev, S. (2024). Investigation of the beet pulp filtration drying kinetics. Environmental Problems, 9(3), 179–186. doi: https://doi.org/10.23939/ep2024.03.179
dc.relation.referencesenIvashchuk, O., Atamanyuk, V., & Chyzhovych, R. (2024). Research on hydrodynamics of the thermal agent flow for the beet pulp filtration drying. Proceedings of the NTUU "Igor Sikorsky KPI". Series: Chemical engineering, ecology and resource saving, 3, 9–18. doi: https://doi.org/10.20535/2617-9741.3.2024.312415
dc.relation.referencesenIvashchuk, O., Atamanyuk, V., Chyzhovych, R., Manastyrska, V., Barabakh, S., & Hnativ, Z. (2024). Kinetic regularities of the filtration drying of barley brewer’s spent grain. Chemistry & Chemical Technology, 18(1), 66–75. doi: https://doi.org/10.23939/chcht18.01.066
dc.relation.referencesenIvashchuk, O. S., Atamanyuk, V. M., & Chyzhovych, R. A. (2024). Valourization of using efficiency of filtration drying for alcohol distillery stillage. Case Studies in Chemical and Environmental Engineering, 10, 100820. doi: https://doi.org/10.1016/j.cscee.2024.100820
dc.relation.referencesenJoanna, B., Michal, B., Piotr, D., Agnieszka, W., Dorota, K., & Izabela, W. (2018). Sugar Beet Pulp as a Source of Valuable Biotechnological Products. Advances in Biotechnology for Food Industry, 2018, 359–392. doi: https://doi.org/10.1016/B978-0-12-811443-8.00013-X
dc.relation.referencesenJewiarz, M., Wróbel, M., Mudryk, K., & Szufa, S. (2020). Impact of the Drying Temperature and Grinding Technique on Biomass Grindability. Energies, 13(13), 3392. doi: https://doi.org/10.3390/en13133392
dc.relation.referencesenMisra, V., & Shrivastava, A. K. (2022). It is understanding the Sugar Beet Crop and Its Physiology. Sugar Beet Cultivation, Management and Processing, 2022, 11–25). doi: https://doi.org/10.1007/978-981-19-2730-0_2
dc.relation.referencesenMuir, B. M., & Anderson, A. R. (2022). Development and Diversification of Sugar Beet in Europe. Sugar Tech, 24(4), 992–1009. doi: https://doi.org/10.1007/s12355-021-01036-9
dc.relation.referencesenMujumdar, A. S. (Ed.). (2014). Handbook of Industrial Drying. CRC Press. Retrieved from https://doi.org/10.1201/b17208
dc.relation.referencesenNovikova, I. V., Muravev, A. S., Agafonov, G. V., Korotkih, E. A., Malceva, O. Y., & Zueva, N. V. (2022). Technological measures to improve the environmental friendliness of alcohol industry enterprises. IOP Conference Series: Earth and Environmental Science, 1052(1), 012092. doi: https://doi.org/10.1088/1755-1315/1052/1/012092
dc.relation.referencesenRezaei, H., Lim, C. J., & Sokhansanj, S. (2022). A computational approach to determine the residence time distribution of biomass particles in rotary drum dryers. Chemical Engineering Science, 247, 116932. doi: https://doi.org/10.1016/j.ces.2021.116932
dc.relation.referencesenSai, P. S. T. (2013). Drying of Solids in a Rotary Dryer. Drying Technology, 31(2), 213–223. doi: https://doi.org/10.1080/07373937.2012.711406
dc.relation.referencesenSemenova, O. I., Bubliienko, N. O. & Vitiuk, O. I. (2013). Modern trends in the use and utilisation of beet pulp. Efektivni Nastroje Modernich Ved – 2013: Proceedings of the IX International Scientific and Practical Conference. Praha. Retrieved from
dc.relation.referencesenhttps://dspace.nuft.edu.ua/server/api/core/bitstreams/180c2d96-4ec7-4bfd-ad13-19349fc8aaaa/content
dc.relation.referencesenThibault, J., Alvarez, P. I., Blasco, R., & Vega, R. (2010). Modeling the Mean Residence Time in a Rotary Dryer for Various Types of Solids. Drying Technology, 28(10), 1136–1141. doi: https://doi.org/10.1080/07373937.2010.483045
dc.relation.referencesenTuchkova, L. E., Verkhovets, I. A., Tikhoykina, I. M., & Chuvasheva, E. S. (2022). Evaluation of Impact Beetroot Pulp Obtained as a By-Product of Sugar Production Has on Quality of Grey Forest Soil. IOP Conference Series: Earth and Environmental Science, 988(2), 022039. doi: https://doi.org/10.1088/1755-1315/988/2/022039
dc.relation.urihttps://doi.org/10.32317/2221-1055.202102048
dc.relation.urihttps://doi.org/10.3390/molecules28052064
dc.relation.urihttps://doi.org/10.32347/2411-4049.2018.2.15-22
dc.relation.urihttps://doi.org/10.15421/jchemtech.v30i4.265116
dc.relation.urihttps://doi.org/10.23939/ep2024.03.179
dc.relation.urihttps://doi.org/10.20535/2617-9741.3.2024.312415
dc.relation.urihttps://doi.org/10.23939/chcht18.01.066
dc.relation.urihttps://doi.org/10.1016/j.cscee.2024.100820
dc.relation.urihttps://doi.org/10.1016/B978-0-12-811443-8.00013-X
dc.relation.urihttps://doi.org/10.3390/en13133392
dc.relation.urihttps://doi.org/10.1007/978-981-19-2730-0_2
dc.relation.urihttps://doi.org/10.1007/s12355-021-01036-9
dc.relation.urihttps://doi.org/10.1201/b17208
dc.relation.urihttps://doi.org/10.1088/1755-1315/1052/1/012092
dc.relation.urihttps://doi.org/10.1016/j.ces.2021.116932
dc.relation.urihttps://doi.org/10.1080/07373937.2012.711406
dc.relation.urihttps://dspace.nuft.edu.ua/server/api/core/bitstreams/180c2d96-4ec7-4bfd-ad13-19349fc8aaaa/content
dc.relation.urihttps://doi.org/10.1080/07373937.2010.483045
dc.relation.urihttps://doi.org/10.1088/1755-1315/988/2/022039
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Ivashchuk O., Atamanyuk V., Chyzhovych R., Bacho S., Boldyryev S., 2024
dc.subjectfiltration drying
dc.subjectbeet pulp
dc.subjectbiomass
dc.subjectcalculation
dc.subjectwaste management
dc.subjectrecycling
dc.titleInvestigation of the efficiency of a beet pulp filtration drying process
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n4_Ivashchuk_O-Investigation_of_the_268-274.pdf
Size:
337.28 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n4_Ivashchuk_O-Investigation_of_the_268-274__COVER.png
Size:
1.08 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: