Heat transfer process during filtration drying of match splints

dc.citation.epage78
dc.citation.issue1
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage72
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKuzminchuk, Tetiana
dc.contributor.authorAtamanyuk, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:51:06Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractThe study proposes filtration drying for drying match splints. Experimental methods for investigating heat exchange between the heat agent and the material are presented. Theoretical aspects of heat transfer during filtration drying are analyzed. The effect of the heat agent's velocity on heat exchange efficiency is determined within the Reynolds number range of 200 ≤ Re ≤ 500. The experimentally obtained data are generalized using a dimensionless complex. A dependency for determining the heat transfer coefficient is proposed. A correlation between theoretical and experimental values of the heat transfer coefficient is provided.
dc.format.extent72-78
dc.format.pages7
dc.identifier.citationKuzminchuk T. Heat transfer process during filtration drying of match splints / Tetiana Kuzminchuk, Volodymyr Atamanyuk // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 72–78.
dc.identifier.citationenKuzminchuk T. Heat transfer process during filtration drying of match splints / Tetiana Kuzminchuk, Volodymyr Atamanyuk // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 72–78.
dc.identifier.doidoi.org/10.23939/ep2025.01.072
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120438
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 1 (10), 2025
dc.relation.ispartofEnvironmental Problems, 1 (10), 2025
dc.relation.referencesAtamanyuk, V. M., & Humnytskyi, Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Vydavnytstvo Natsionalnoho universytetu "Lvivska politekhnika", Lviv.
dc.relation.referencesBandura, V., & Yaroshenko, L. (2019). Rationale of parameters of the process of drying sunflower green in the vibro-suspended layer on the basis of infrared risk. Scientific Works, 83(1), 110–116. doi: https://doi.org/10.15673/swonaft.v83i1.1427
dc.relation.referencesCavallaro, F., Ciraolo, L., Mavrotas, G., & Pechak, O. (2013). Assessment and simulation tools for sustainable energy systems. Green Energy and Technology, 129, 333–356.
dc.relation.referencesGnativ, Z. Ya., Ivashchuk, O. S., Hrynchuk, Yu. M., Reutskyi, V. V., Koval, I. Z., & Vashkurak, Yu. Z. (2020). Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing, 7(1), 22–28. doi: https://doi.org/10.23939/mmc2020.01.022
dc.relation.referencesHolubets, V. M., Ozarkiv, I. M., & Atsberher, Y. L. (2003). Heat exchange during the drying of wood-based bulk materials in a fluidized bed. Scientific Bulletin of UNFU, 13(1), 93–100.
dc.relation.referencesIvashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Manastyrska, V. A., Barabakh, S. A., & Hnativ, Z. Ya. (2024). Kinetic regularities of the filtration drying of barley brewer’s spent grain. Chemistry & Chemical Technology, 18(1), 66–75. doi: https://doi.org/10.23939/chcht18.01.066
dc.relation.referencesKindzera, D. P., Atamanyuk, V. M., Hosovskyi, R. R., & Symak, D. (2021). Heat transfer process during filtration drying of grinded sunflower biomass. Chemistry & Chemical Technology, 15(1), 118–124. doi: https://doi.org/10.23939/chcht15.01.118
dc.relation.referencesKumar, A., Kandasamy, P., Chakraborty, I., & Hangshing, L. (2022). Analysis of energy consumption, heat and mass transfer, drying kinetics, and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosystems Engineering, 219, 85–102. doi: https://doi.org/10.1016/j.biosystemseng.2022.04.026
dc.relation.referencesKoukouch, A., Bakhattar, I., Asbik, M., & et al. (2020). Analytical solution of coupled heat and mass transfer equations during convective drying of biomass: Experimental validation. Heat and Mass Transfer, 56, 1971–1983. doi: https://doi.org/10.1007/s00231-020-02817-w
dc.relation.referencesKuzminchuk, T. A., Atamanyuk, V. M., Duleba, V. P., & Janabayev, D. (2023). Kinetics of drying of match splints. Chemistry, Technology and Application of Substances, 2, 119–125.
dc.relation.referencesLawrence, A., Thollander, P., Andrei, M., & Karlsson, M. (2019). Specific Energy Consumption/Use (SEC) in Energy Management for Improving Energy Efficiency in Industry: Meaning, Usage and Differences. Energies, 12(2), 247. doi: https://doi.org/10.3390/en12020247
dc.relation.referencesMessai, S., El Ganaoui, M., Sghaier, J., & Belghith, A. (2014). Experimental study of the convective heat transfer coefficient in a packed bed at low Reynolds numbers. Thermal Science, 18(2), 443–450.
dc.relation.referencesMosyuk, M. I., Psiuk, Yu. Ya., & Rudei, I. A. (2015). Kinetics of filtration drying of crushed wood. Scientific Works Odessa National Academy of Food Technologies, 47(1), 194–198.
dc.relation.referencesMykychak, B., Biley, P., & Kindzera, D. (2013). External heat-and-mass transfer during drying of packed birch peeled veneer. Chemistry & Chemical Technology, 7(2), 191–195.
dc.relation.referencesObleshchenko, A. D., & Hulevskyi, V. B. (2021). Comparison of wood drying technologies: Vacuum and microwave. In Technical support of innovative technologies in the agro-industrial complex: Proceedings of the III International Scientific and Practical Internet Conference (Melitopol, November 1–26, 2021) (pp. 223–227).
dc.relation.referencesPazyuk, V. (2018). Investigation of low-temperature drying modes of plant capillary-porous materials with spherical shape. Ceramics: Science and Life, 4(41), 7–14. doi: https://doi.org/10.26909/csl.4.2018.1
dc.relation.referencesSalah, S. A., & Mustafa, A. (2021). Integration of energy saving with lean production in a food processing company. Journal of Machine Engineering, 21(4), 118–133. doi: https://doi.org/10.36897/jme/142394
dc.relation.referencesSokolovskyi, I. A. (2019). Energy characteristics of drying modes of beech lumber. Scientific Bulletin of UNFU, 29(1), 106–109. doi: https://doi.org/10.15421/40290123
dc.relation.referencesenAtamanyuk, V. M., & Humnytskyi, Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Vydavnytstvo Natsionalnoho universytetu "Lvivska politekhnika", Lviv.
dc.relation.referencesenBandura, V., & Yaroshenko, L. (2019). Rationale of parameters of the process of drying sunflower green in the vibro-suspended layer on the basis of infrared risk. Scientific Works, 83(1), 110–116. doi: https://doi.org/10.15673/swonaft.v83i1.1427
dc.relation.referencesenCavallaro, F., Ciraolo, L., Mavrotas, G., & Pechak, O. (2013). Assessment and simulation tools for sustainable energy systems. Green Energy and Technology, 129, 333–356.
dc.relation.referencesenGnativ, Z. Ya., Ivashchuk, O. S., Hrynchuk, Yu. M., Reutskyi, V. V., Koval, I. Z., & Vashkurak, Yu. Z. (2020). Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing, 7(1), 22–28. doi: https://doi.org/10.23939/mmc2020.01.022
dc.relation.referencesenHolubets, V. M., Ozarkiv, I. M., & Atsberher, Y. L. (2003). Heat exchange during the drying of wood-based bulk materials in a fluidized bed. Scientific Bulletin of UNFU, 13(1), 93–100.
dc.relation.referencesenIvashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Manastyrska, V. A., Barabakh, S. A., & Hnativ, Z. Ya. (2024). Kinetic regularities of the filtration drying of barley brewer’s spent grain. Chemistry & Chemical Technology, 18(1), 66–75. doi: https://doi.org/10.23939/chcht18.01.066
dc.relation.referencesenKindzera, D. P., Atamanyuk, V. M., Hosovskyi, R. R., & Symak, D. (2021). Heat transfer process during filtration drying of grinded sunflower biomass. Chemistry & Chemical Technology, 15(1), 118–124. doi: https://doi.org/10.23939/chcht15.01.118
dc.relation.referencesenKumar, A., Kandasamy, P., Chakraborty, I., & Hangshing, L. (2022). Analysis of energy consumption, heat and mass transfer, drying kinetics, and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosystems Engineering, 219, 85–102. doi: https://doi.org/10.1016/j.biosystemseng.2022.04.026
dc.relation.referencesenKoukouch, A., Bakhattar, I., Asbik, M., & et al. (2020). Analytical solution of coupled heat and mass transfer equations during convective drying of biomass: Experimental validation. Heat and Mass Transfer, 56, 1971–1983. doi: https://doi.org/10.1007/s00231-020-02817-w
dc.relation.referencesenKuzminchuk, T. A., Atamanyuk, V. M., Duleba, V. P., & Janabayev, D. (2023). Kinetics of drying of match splints. Chemistry, Technology and Application of Substances, 2, 119–125.
dc.relation.referencesenLawrence, A., Thollander, P., Andrei, M., & Karlsson, M. (2019). Specific Energy Consumption/Use (SEC) in Energy Management for Improving Energy Efficiency in Industry: Meaning, Usage and Differences. Energies, 12(2), 247. doi: https://doi.org/10.3390/en12020247
dc.relation.referencesenMessai, S., El Ganaoui, M., Sghaier, J., & Belghith, A. (2014). Experimental study of the convective heat transfer coefficient in a packed bed at low Reynolds numbers. Thermal Science, 18(2), 443–450.
dc.relation.referencesenMosyuk, M. I., Psiuk, Yu. Ya., & Rudei, I. A. (2015). Kinetics of filtration drying of crushed wood. Scientific Works Odessa National Academy of Food Technologies, 47(1), 194–198.
dc.relation.referencesenMykychak, B., Biley, P., & Kindzera, D. (2013). External heat-and-mass transfer during drying of packed birch peeled veneer. Chemistry & Chemical Technology, 7(2), 191–195.
dc.relation.referencesenObleshchenko, A. D., & Hulevskyi, V. B. (2021). Comparison of wood drying technologies: Vacuum and microwave. In Technical support of innovative technologies in the agro-industrial complex: Proceedings of the III International Scientific and Practical Internet Conference (Melitopol, November 1–26, 2021) (pp. 223–227).
dc.relation.referencesenPazyuk, V. (2018). Investigation of low-temperature drying modes of plant capillary-porous materials with spherical shape. Ceramics: Science and Life, 4(41), 7–14. doi: https://doi.org/10.26909/csl.4.2018.1
dc.relation.referencesenSalah, S. A., & Mustafa, A. (2021). Integration of energy saving with lean production in a food processing company. Journal of Machine Engineering, 21(4), 118–133. doi: https://doi.org/10.36897/jme/142394
dc.relation.referencesenSokolovskyi, I. A. (2019). Energy characteristics of drying modes of beech lumber. Scientific Bulletin of UNFU, 29(1), 106–109. doi: https://doi.org/10.15421/40290123
dc.relation.urihttps://doi.org/10.15673/swonaft.v83i1.1427
dc.relation.urihttps://doi.org/10.23939/mmc2020.01.022
dc.relation.urihttps://doi.org/10.23939/chcht18.01.066
dc.relation.urihttps://doi.org/10.23939/chcht15.01.118
dc.relation.urihttps://doi.org/10.1016/j.biosystemseng.2022.04.026
dc.relation.urihttps://doi.org/10.1007/s00231-020-02817-w
dc.relation.urihttps://doi.org/10.3390/en12020247
dc.relation.urihttps://doi.org/10.26909/csl.4.2018.1
dc.relation.urihttps://doi.org/10.36897/jme/142394
dc.relation.urihttps://doi.org/10.15421/40290123
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Kuzminchuk T., Atamanyuk V., 2025
dc.subjectfiltration drying
dc.subjectmatch splints
dc.subjectexternal heat transfer
dc.subjectheat transfer coefficient
dc.subjectstationary layer
dc.titleHeat transfer process during filtration drying of match splints
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v10n1_Kuzminchuk_T-Heat_transfer_process_72-78.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v10n1_Kuzminchuk_T-Heat_transfer_process_72-78__COVER.png
Size:
1.12 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: