Інтелектуальна система кластеризації користувачів соціальних мереж на основі аналізу тональності даних
dc.citation.epage | 138 | |
dc.citation.issue | 13 | |
dc.citation.journalTitle | Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі | |
dc.citation.spage | 121 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Батюк, Тарас | |
dc.contributor.author | Досин, Дмитро | |
dc.contributor.author | Batiuk, Taras | |
dc.contributor.author | Dosyn, Dmytro | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-06T09:14:13Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Головна мета статті – аналіз інтелектуальної системи кластеризації користувачів соціальних мереж на основі аналізу тональності даних. Основна мета цієї інтелектуальної системи – формування загального “образу” користувача системи за допомогою аналізу тональності даних соціальних мереж користувача та їх подальшої кластеризації. Спроєктовано інтелектуальну систему, яка з використанням алгоритмів Identity та Access/Refresh JWT токенів забезпечує швидкі та максимально безпечні функції реєстрації, автентифікації та опрацювання різних сеансів користувачів системи. Описано основні підходи до здійснення аналізу тональності користувацьких повідомлень та інших даних різних типів, описано принципи реалізації LSTM рекурентної нейронної мережі, яка є дуже зручною для здійснення аналізу даних, оскільки добре працює і запам’ятовує контекст повідомлень у необхідні проміжки часу, завдяки чому збільшується фактор осмисленості аналізованих даних, відповідно до користувача інтелектуальної системи. Також описано загальні сучасні підходи до кластеризації та найдоцільніший алгоритм кластеризації – k-means, оскільки ми кожен раз працюватимемо з невизначеною кількістю даних, яка може істотно змінюватися залежно від кожного окремого користувача, відповідно через це буде змінюватися кількість кластерів і опрацювання даних. Завдяки цьому описано створення загального “образу” користувача інтелектуальної системи на основі комплексного аналізу, що дало змогу здійснювати дослідження користувачів і відображати відповідні результати. | |
dc.description.abstract | The main objective of this article is the analysis of the intelligent system for clustering users of social networks based on the messages sentiment analysis. The main goal of this intelligent system is to form a general image of the user of the system by analyzing the sentiment of the data of the user's social networks and their subsequent clustering. An intelligent system was designed, which, using the Identity and Access/Refresh JWT token algorithms, provides fast and maximally secure registration, authentication and processing of various system user sessions. The main approaches to the sentiment analysis of user messages and other data of various types are described, the principles of LSTM implementation of a recurrent neural network are described, which is very convenient for data analysis, because it works well and remembers the context of messages in the necessary time intervals, which increases the meaningfulness factor of the data analyzed according to the user of the intelligent system. General modern approaches to clustering and the most suitable clustering algorithm k-means is also described, since we will work with an undetermined amount of data each time, which can change significantly according to each individual user, the number of clusters and data processing will change because of this. Due to this, as a result of the work, the creation of a general image of the system user was described thanks to its comprehensive analysis, which made it possible to analyze users and display the corresponding results. | |
dc.format.extent | 121-138 | |
dc.format.pages | 18 | |
dc.identifier.citation | Батюк Т. Інтелектуальна система кластеризації користувачів соціальних мереж на основі аналізу тональності даних / Тарас Батюк, Дмитро Досин // Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 13. — С. 121–138. | |
dc.identifier.citationen | Batiuk T. Intelligent system for clustering users of social networks based on the message sentiment analysis / Batiuk Taras, Dosyn Dmytro // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 13. — P. 121–138. | |
dc.identifier.doi | doi.org/10.23939/sisn2023.13.121 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63977 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі, 13, 2023 | |
dc.relation.ispartof | Information Systems and Networks, 13, 2023 | |
dc.relation.references | 1. Zhang M., Xu H., Ma N., Pan X. (2022). Intelligent Vehicle Sales Prediction Based on Online Public Opinion and Online Search Index. Sustainability, No. 14 (16), 344–361. DOI: https://doi.org/10.3390/su141610344. | |
dc.relation.references | 2. Vysotska V. (2021). Information Technology for Internet Resources Promotion in Search Systems Based on Content Analysis of Web-Page Keywords. Radio Electronics, Computer Science, Control, No. 3, 133–151. | |
dc.relation.references | 3. Antonowicz P., Podpora M., Rut J. (2022). Digital Stereotypes in HMI – The Influence of Feature Quantity Distribution in Deep Learning Models Training. Sensors, No. 22 (18), 673–689. DOI: https://doi.org/10.3390/s22186739. | |
dc.relation.references | 4. De-Gregorio F., Sung Y. (2010). Understanding attitudes toward and behaviors in response to product placement. Journal of Advertising, No. 39 (1), 83–96. DOI: http://doi.org/10.2753/JOA0091-3367390106. | |
dc.relation.references | 5. Kamath A. N., Shenoy S., Subrahmanya K. N. (2022). An overview of investor sentiment: Identifying themes, trends, and future direction through bibliometric analysis. Investment Management & Financial Innovations, No. 19 (3), 229–242. DOI: https://doi.org/10.21511/imfi.19(3).2022.19. | |
dc.relation.references | 6. Erkan I. (2016).The influence of e-WOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Computers in Human Behavior, No. 4, 47–55. | |
dc.relation.references | 7. Asgari T., Daneshvar A., Chobar A. P., Ebrahimi M., Abrahamyan S. (2022). Identifying key success factors for startups With sentiment analysis using text data mining. International journal of Engineering Business Management, No. 14, 435–453. DOI: https://doi.org/10.1177/18479790221131612. | |
dc.relation.references | 8. Gao L. (2014). Online consumer behavior and its relationship to website atmospheric induced flow: Insights into online travel agencies in China. Journal of Retailing and Consumer Services, No. 21 (4), 653–655. | |
dc.relation.references | 9. Abulhaija S., Hattab S., Abdeen A., Etaiwi W. (2022). Mobile Applications Rating Performance: A Survey. International journal of Interactive Mobile Technologies, No. 16 (19), 133–146. DOI: https://doi.org/10.3991/ijim.v16i19.32051. | |
dc.relation.references | 10. Guidry J. D., Messner M., Jin Y. (2015). From McDonalds fail to Dominos sucks: An analysis of Instagram images about the 10 largest fast food companies. Corporate Communications: An International Journal, No. 20 (3), 344–359. | |
dc.relation.references | 11. Bagate R. A., Suguna R. (2022). Sarcasm Detection with and without #Sarcasm: Data Science Approach. International journal of Information Science and Management, No. 20 (4), 1–15. | |
dc.relation.references | 12. Salganik M. (2019). Social Research in the Digital Age. Journal of Interactive Marketing, No. 2 (9), 345–358. | |
dc.relation.references | 13. Li Q., Li X., Du Y., Fan Y., Chen X. (2022). A New Sentiment-Enhanced Word Embedding Method for Sentiment Analysis. Applied Sciences, No. 12 (20), 712–725. DOI: https://doi.org/10.3390/app122010236. | |
dc.relation.references | 14. Jeff M., Jennifer R., Catherine J., Elke P. (2014). Managing brand presence through social media: The case of UK football clubs. Internet Research, No. 24 (2), 181–204. | |
dc.relation.references | 15. Opiła J. (2022). On Employing of Extended Characteristic Surface Model for Forecasting of Demand in Tourism. Interdisciplinary description of Complex Systems, No. 20 (5), 621–639. DOI: https://doi.org/10.7906/indecs.20.5.8. | |
dc.relation.references | 16. Kudeshia C., Sikdar P., Mittal A. (2016). Spreading love through fan page liking: A perspective on small scale entrepreneurs. Computers in Human Behavior, No. 8 (19), 257–270. DOI: http://doi.org/10.1016/j.chb.2015.08.003. | |
dc.relation.references | 17. Albahli S., Irtaza A., Nazir T., Mehmood A., Ali A., Waleed Albattah W. (2022). A Machine Learning Method for Prediction of Stock Market Using Real-Time Twitter Data. Electronics, No. 11 (20), 341–363. DOI: https://doi.org/10.3390/electronics11203414. | |
dc.relation.references | 18. Mousavijad M. (2017). The effect of socialization factors on decision making of teenagers consumers in schools. Journal of School Administration, No. 5 (1), 217–234. | |
dc.relation.references | 19. Kim D., Kim Y., Jeong Y.-S. (2022). Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis. Applied Sciences, No. 12 (19), 101–134. DOI: https://doi.org/10.3390/app121910134. | |
dc.relation.references | 20. Parry M. E., Kawakami T., Kishiya K. (2012). The effect of personal and virtual word-of-mouth on technology acceptance. Journal of Product Innovation Management, No. 29 (6), 952–966. DOI: http://doi.org/10.1111/j.1540-5885.2012.00972.x. | |
dc.relation.references | 21. Karyukin V., Mutanov G., Mamykova Z., Nassimova G., Torekul S., Sundetova Z., Negri M. (2022). On the development of an information system for monitoring user opinion and its role for the public. Journal of Big Data, No. 9 (1), 119–145. DOI: https://doi.org/10.1186/s40537-022-00660-w. | |
dc.relation.references | 22. Murphy S. T. (2011). Affect, cognition, and awareness: Affective priming with optimal and suboptimal stimulus exposures. Journal of Personality and Social Psychology, No. 8 (3), 723–739. DOI: http://doi.org/10.1037/0022-3514.64.5.723. | |
dc.relation.references | 23. Wang Y., Guo J., Yuan C., Li B. (2022) Sentiment Analysis of Twitter Data. Applied Sciences, No. 12 (8), 157–189. DOI: https://doi.org/10.3390/app122211775 | |
dc.relation.references | 24. Schmäh M., Wilke T., Rossmann A. (2017). Electronic word of mouth: A systematic literature analysis. Digital Enterprise Computing, 147–158. | |
dc.relation.references | 25. Wang Y., Chen Z., Fu C. (2022). Synergy Masks of Domain Attribute Model DaBERT: Emotional Tracking on Time-Varying Virtual Space Communication. Sensors, No. 22 (21), 450–471. DOI: https://doi.org/10.3390/s22218450. | |
dc.relation.references | 26. Park J., Ciampaglia G. L., Ferrara F. (2016). Style in the age of Instagram: Predicting success within the fashion industry using social media. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, No. 22 (8), 64–72. DOI: http://doi.org/10.1145/2818048.2820065. | |
dc.relation.references | 27. Abbas A. F., Jusoh A., Mas’od A., Alsharif A. H., Ali J. (2022). Bibliometrix analysis of information sharing in social media. Cogent Business & Management, No. 9 (1), 521–543. DOI: https://doi.org/10.1080/23311975.2021.2016556. | |
dc.relation.referencesen | 1. Zhang M., Xu H., Ma N., Pan X. (2022). Intelligent Vehicle Sales Prediction Based on Online Public Opinion and Online Search Index. Sustainability, No. 14 (16), 344–361. DOI: https://doi.org/10.3390/su141610344. | |
dc.relation.referencesen | 2. Vysotska V. (2021). Information Technology for Internet Resources Promotion in Search Systems Based on Content Analysis of Web-Page Keywords. Radio Electronics, Computer Science, Control, No. 3, 133–151. | |
dc.relation.referencesen | 3. Antonowicz P., Podpora M., Rut J. (2022). Digital Stereotypes in HMI – The Influence of Feature Quantity Distribution in Deep Learning Models Training. Sensors, No. 22 (18), 673–689. DOI: https://doi.org/10.3390/s22186739. | |
dc.relation.referencesen | 4. De-Gregorio F., Sung Y. (2010). Understanding attitudes toward and behaviors in response to product placement. Journal of Advertising, No. 39 (1), 83–96. DOI: http://doi.org/10.2753/JOA0091-3367390106. | |
dc.relation.referencesen | 5. Kamath A. N., Shenoy S., Subrahmanya K. N. (2022). An overview of investor sentiment: Identifying themes, trends, and future direction through bibliometric analysis. Investment Management & Financial Innovations, No. 19 (3), 229–242. DOI: https://doi.org/10.21511/imfi.19(3).2022.19. | |
dc.relation.referencesen | 6. Erkan I. (2016).The influence of e-WOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Computers in Human Behavior, No. 4, 47–55. | |
dc.relation.referencesen | 7. Asgari T., Daneshvar A., Chobar A. P., Ebrahimi M., Abrahamyan S. (2022). Identifying key success factors for startups With sentiment analysis using text data mining. International journal of Engineering Business Management, No. 14, 435–453. DOI: https://doi.org/10.1177/18479790221131612. | |
dc.relation.referencesen | 8. Gao L. (2014). Online consumer behavior and its relationship to website atmospheric induced flow: Insights into online travel agencies in China. Journal of Retailing and Consumer Services, No. 21 (4), 653–655. | |
dc.relation.referencesen | 9. Abulhaija S., Hattab S., Abdeen A., Etaiwi W. (2022). Mobile Applications Rating Performance: A Survey. International journal of Interactive Mobile Technologies, No. 16 (19), 133–146. DOI: https://doi.org/10.3991/ijim.v16i19.32051. | |
dc.relation.referencesen | 10. Guidry J. D., Messner M., Jin Y. (2015). From McDonalds fail to Dominos sucks: An analysis of Instagram images about the 10 largest fast food companies. Corporate Communications: An International Journal, No. 20 (3), 344–359. | |
dc.relation.referencesen | 11. Bagate R. A., Suguna R. (2022). Sarcasm Detection with and without #Sarcasm: Data Science Approach. International journal of Information Science and Management, No. 20 (4), 1–15. | |
dc.relation.referencesen | 12. Salganik M. (2019). Social Research in the Digital Age. Journal of Interactive Marketing, No. 2 (9), 345–358. | |
dc.relation.referencesen | 13. Li Q., Li X., Du Y., Fan Y., Chen X. (2022). A New Sentiment-Enhanced Word Embedding Method for Sentiment Analysis. Applied Sciences, No. 12 (20), 712–725. DOI: https://doi.org/10.3390/app122010236. | |
dc.relation.referencesen | 14. Jeff M., Jennifer R., Catherine J., Elke P. (2014). Managing brand presence through social media: The case of UK football clubs. Internet Research, No. 24 (2), 181–204. | |
dc.relation.referencesen | 15. Opiła J. (2022). On Employing of Extended Characteristic Surface Model for Forecasting of Demand in Tourism. Interdisciplinary description of Complex Systems, No. 20 (5), 621–639. DOI: https://doi.org/10.7906/indecs.20.5.8. | |
dc.relation.referencesen | 16. Kudeshia C., Sikdar P., Mittal A. (2016). Spreading love through fan page liking: A perspective on small scale entrepreneurs. Computers in Human Behavior, No. 8 (19), 257–270. DOI: http://doi.org/10.1016/j.chb.2015.08.003. | |
dc.relation.referencesen | 17. Albahli S., Irtaza A., Nazir T., Mehmood A., Ali A., Waleed Albattah W. (2022). A Machine Learning Method for Prediction of Stock Market Using Real-Time Twitter Data. Electronics, No. 11 (20), 341–363. DOI: https://doi.org/10.3390/electronics11203414. | |
dc.relation.referencesen | 18. Mousavijad M. (2017). The effect of socialization factors on decision making of teenagers consumers in schools. Journal of School Administration, No. 5 (1), 217–234. | |
dc.relation.referencesen | 19. Kim D., Kim Y., Jeong Y.-S. (2022). Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis. Applied Sciences, No. 12 (19), 101–134. DOI: https://doi.org/10.3390/app121910134. | |
dc.relation.referencesen | 20. Parry M. E., Kawakami T., Kishiya K. (2012). The effect of personal and virtual word-of-mouth on technology acceptance. Journal of Product Innovation Management, No. 29 (6), 952–966. DOI: http://doi.org/10.1111/j.1540-5885.2012.00972.x. | |
dc.relation.referencesen | 21. Karyukin V., Mutanov G., Mamykova Z., Nassimova G., Torekul S., Sundetova Z., Negri M. (2022). On the development of an information system for monitoring user opinion and its role for the public. Journal of Big Data, No. 9 (1), 119–145. DOI: https://doi.org/10.1186/s40537-022-00660-w. | |
dc.relation.referencesen | 22. Murphy S. T. (2011). Affect, cognition, and awareness: Affective priming with optimal and suboptimal stimulus exposures. Journal of Personality and Social Psychology, No. 8 (3), 723–739. DOI: http://doi.org/10.1037/0022-3514.64.5.723. | |
dc.relation.referencesen | 23. Wang Y., Guo J., Yuan C., Li B. (2022) Sentiment Analysis of Twitter Data. Applied Sciences, No. 12 (8), 157–189. DOI: https://doi.org/10.3390/app122211775 | |
dc.relation.referencesen | 24. Schmäh M., Wilke T., Rossmann A. (2017). Electronic word of mouth: A systematic literature analysis. Digital Enterprise Computing, 147–158. | |
dc.relation.referencesen | 25. Wang Y., Chen Z., Fu C. (2022). Synergy Masks of Domain Attribute Model DaBERT: Emotional Tracking on Time-Varying Virtual Space Communication. Sensors, No. 22 (21), 450–471. DOI: https://doi.org/10.3390/s22218450. | |
dc.relation.referencesen | 26. Park J., Ciampaglia G. L., Ferrara F. (2016). Style in the age of Instagram: Predicting success within the fashion industry using social media. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, No. 22 (8), 64–72. DOI: http://doi.org/10.1145/2818048.2820065. | |
dc.relation.referencesen | 27. Abbas A. F., Jusoh A., Mas’od A., Alsharif A. H., Ali J. (2022). Bibliometrix analysis of information sharing in social media. Cogent Business & Management, No. 9 (1), 521–543. DOI: https://doi.org/10.1080/23311975.2021.2016556. | |
dc.relation.uri | https://doi.org/10.3390/su141610344 | |
dc.relation.uri | https://doi.org/10.3390/s22186739 | |
dc.relation.uri | http://doi.org/10.2753/JOA0091-3367390106 | |
dc.relation.uri | https://doi.org/10.21511/imfi.19(3).2022.19 | |
dc.relation.uri | https://doi.org/10.1177/18479790221131612 | |
dc.relation.uri | https://doi.org/10.3991/ijim.v16i19.32051 | |
dc.relation.uri | https://doi.org/10.3390/app122010236 | |
dc.relation.uri | https://doi.org/10.7906/indecs.20.5.8 | |
dc.relation.uri | http://doi.org/10.1016/j.chb.2015.08.003 | |
dc.relation.uri | https://doi.org/10.3390/electronics11203414 | |
dc.relation.uri | https://doi.org/10.3390/app121910134 | |
dc.relation.uri | http://doi.org/10.1111/j.1540-5885.2012.00972.x | |
dc.relation.uri | https://doi.org/10.1186/s40537-022-00660-w | |
dc.relation.uri | http://doi.org/10.1037/0022-3514.64.5.723 | |
dc.relation.uri | https://doi.org/10.3390/app122211775 | |
dc.relation.uri | https://doi.org/10.3390/s22218450 | |
dc.relation.uri | http://doi.org/10.1145/2818048.2820065 | |
dc.relation.uri | https://doi.org/10.1080/23311975.2021.2016556 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Батюк Т. М., Досин Д. Г., 2023 | |
dc.subject | автентифікація | |
dc.subject | аналіз тональності даних | |
dc.subject | кластеризація | |
dc.subject | LSTM рекурентна нейронна мережа | |
dc.subject | алгоритм k-means | |
dc.subject | authentication | |
dc.subject | data sentiment analysis | |
dc.subject | clustering | |
dc.subject | LSTM recurrent neural network | |
dc.subject | k-means algorithm | |
dc.subject.udc | 004.9 | |
dc.title | Інтелектуальна система кластеризації користувачів соціальних мереж на основі аналізу тональності даних | |
dc.title.alternative | Intelligent system for clustering users of social networks based on the message sentiment analysis | |
dc.type | Article |
Files
License bundle
1 - 1 of 1