Study of Pathfinding Approach Based on A* with Adaptive Occupancy Grid
| dc.citation.epage | 100 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Досягнення у кіберфізичних системах | |
| dc.citation.spage | 95 | |
| dc.citation.volume | 9 | |
| dc.contributor.affiliation | Ivan Franko National University of Lviv | |
| dc.contributor.author | Sinkevych, Oleh | |
| dc.contributor.author | Boyko, Yaroslav | |
| dc.contributor.author | Sokolovskyy, Bohdan | |
| dc.contributor.author | Rechynskyi, Oleksandr | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-06T08:48:10Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | This paper presents the results of a study on the A* search algorithm applied to a two-dimensional map with obstacles. Since, in typical cases, A* is implemented on a map divided into cells of equal size, a scientific interest has lies in investigating the efficiency of this algorithm on a map with dynamically variable cell size. Such a map representation increases the “resolution” of constructing a better trajectory near obstacles. For this purpose, the paper proposes an approach to representing the search space as a dynamic adaptive grid using a QuadTree structure. Additionally, a modification of the A* algorithm has been proposed and investigated, which involves selecting the best cell in the neighborhood of the agent’s current position and performing pathfinding from a starting point to a goal. The paper considers maps of various sizes and complexities for numerical experiments and compares the classical and modified A* algorithms. It has been shown that the proposed modification of the A* algorithm demonstrates better computational properties than the classical version of the algorithm on an adaptive grid. | |
| dc.format.extent | 95-100 | |
| dc.format.pages | 6 | |
| dc.identifier.citation | Study of Pathfinding Approach Based on A* with Adaptive Occupancy Grid / Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Oleksandr Rechynskyi // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 95–100. | |
| dc.identifier.citationen | Study of Pathfinding Approach Based on A* with Adaptive Occupancy Grid / Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Oleksandr Rechynskyi // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 95–100. | |
| dc.identifier.doi | doi.org/10.23939/acps2024.02.095 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/117381 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Досягнення у кіберфізичних системах, 2 (9), 2024 | |
| dc.relation.ispartof | Advances in Cyber-Physical Systems, 2 (9), 2024 | |
| dc.relation.references | [1] X. Sun, S. Deng, B. Tong, S. Wang, C. Zhang, & Y. Jiang. “Hierarchical framework for mobile robots to effectively and autonomously explore unknown environments”. ISA Trans., vol. 134, pp. 1–15, Sep. 2023. DOI: https://doi.org/10.1016/j.isatra.2022.09.005. | |
| dc.relation.references | [2] H. Ryu. Hierarchical Path-Planning for Mobile Robots Using a Skeletonization-Informed Rapidly Exploring Random Tree*. Appl. Sci., vol. 10, no. 21, p. 7846, Nov. 2020. DOI: https://doi.org/10.3390/app10217846. | |
| dc.relation.references | [3] Z. An, X. Rui, and C. Gao. Improved A* Navigation Path- Planning Algorithm Based on Hexagonal Grid. ISPRS Int. J. Geo-Inf., vol. 13, no. 5, p. 166, May 2024. DOI: https://doi.org/10.3390/ijgi13050166 | |
| dc.relation.references | [4] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, & E. Gunawan. A Systematic Literature Review of A* Pathfinding. Procedia Comput. Sci., vol. 179, pp. 507–514. DOI: https://doi.org/10.1016/j.procs.2021.01.034. | |
| dc.relation.references | [5] Y. D. Setiawan, P. S. Pratama, S. K. Jeong, V. H. Duy, & S. B. Kim. Experimental Comparison of A* and D* Lite Path Planning Algorithms for Differential Drive Automated Guided Vehicle. AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Berlin, Heidelberg: Springer Berl. Heidelb., 2014, pp. 555-564. DOI: https://doi.org/10.1007/978-3-642-41968-3_55 | |
| dc.relation.references | [6] F. Duchoň et al. Path Planning with Modified a Star Algorithm for a Mobile Robot. Procedia Eng., vol. 96, pp. 59–69, 2014. DOI: https://doi.org/10.1016/j.proeng.2014.12.098. | |
| dc.relation.references | [7] A. Le, V. Prabakaran, V. Sivanantham, & R. Mohan. Modified A-Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor. Sensors, vol. 18, no. 8, p. 2585, Aug. 2018. DOI: https://doi.org/10.3390/s18082585. | |
| dc.relation.references | [8] Muhtadin, R. M. Zanuar, I. K. E. Purnama, & M. H. Purnomo. Autonomous Navigation and Obstacle Avoidance for Service Robot. 2019 Int. Conf. Comput. Eng., Netw., Intell. Multimedia (CENIM), Surabaya, Indonesia, Nov. 19-20, 2019. IEEE, 2019. DOI: https://doi.org/10.1109/CENIM48368.2019.8973360 | |
| dc.relation.references | [9] S. Sahni and D. P. Mehta. Handbook of Data Structures and Applications. Taylor Francis Group, 2018. | |
| dc.relation.references | [10] R. Wang, Z. Lu, Y. Jin, and C. Liang. Application of A* algorithm in intelligent vehicle path planning. Math. Models Eng., Aug. 2022. DOI: https://doi.org/10.21595/mme.2022.22828. | |
| dc.relation.referencesen | [1] X. Sun, S. Deng, B. Tong, S. Wang, C. Zhang, & Y. Jiang. "Hierarchical framework for mobile robots to effectively and autonomously explore unknown environments". ISA Trans., vol. 134, pp. 1–15, Sep. 2023. DOI: https://doi.org/10.1016/j.isatra.2022.09.005. | |
| dc.relation.referencesen | [2] H. Ryu. Hierarchical Path-Planning for Mobile Robots Using a Skeletonization-Informed Rapidly Exploring Random Tree*. Appl. Sci., vol. 10, no. 21, p. 7846, Nov. 2020. DOI: https://doi.org/10.3390/app10217846. | |
| dc.relation.referencesen | [3] Z. An, X. Rui, and C. Gao. Improved A* Navigation Path- Planning Algorithm Based on Hexagonal Grid. ISPRS Int. J. Geo-Inf., vol. 13, no. 5, p. 166, May 2024. DOI: https://doi.org/10.3390/ijgi13050166 | |
| dc.relation.referencesen | [4] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, & E. Gunawan. A Systematic Literature Review of A* Pathfinding. Procedia Comput. Sci., vol. 179, pp. 507–514. DOI: https://doi.org/10.1016/j.procs.2021.01.034. | |
| dc.relation.referencesen | [5] Y. D. Setiawan, P. S. Pratama, S. K. Jeong, V. H. Duy, & S. B. Kim. Experimental Comparison of A* and D* Lite Path Planning Algorithms for Differential Drive Automated Guided Vehicle. AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Berlin, Heidelberg: Springer Berl. Heidelb., 2014, pp. 555-564. DOI: https://doi.org/10.1007/978-3-642-41968-3_55 | |
| dc.relation.referencesen | [6] F. Duchoň et al. Path Planning with Modified a Star Algorithm for a Mobile Robot. Procedia Eng., vol. 96, pp. 59–69, 2014. DOI: https://doi.org/10.1016/j.proeng.2014.12.098. | |
| dc.relation.referencesen | [7] A. Le, V. Prabakaran, V. Sivanantham, & R. Mohan. Modified A-Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor. Sensors, vol. 18, no. 8, p. 2585, Aug. 2018. DOI: https://doi.org/10.3390/s18082585. | |
| dc.relation.referencesen | [8] Muhtadin, R. M. Zanuar, I. K. E. Purnama, & M. H. Purnomo. Autonomous Navigation and Obstacle Avoidance for Service Robot. 2019 Int. Conf. Comput. Eng., Netw., Intell. Multimedia (CENIM), Surabaya, Indonesia, Nov. 19-20, 2019. IEEE, 2019. DOI: https://doi.org/10.1109/CENIM48368.2019.8973360 | |
| dc.relation.referencesen | [9] S. Sahni and D. P. Mehta. Handbook of Data Structures and Applications. Taylor Francis Group, 2018. | |
| dc.relation.referencesen | [10] R. Wang, Z. Lu, Y. Jin, and C. Liang. Application of A* algorithm in intelligent vehicle path planning. Math. Models Eng., Aug. 2022. DOI: https://doi.org/10.21595/mme.2022.22828. | |
| dc.relation.uri | https://doi.org/10.1016/j.isatra.2022.09.005 | |
| dc.relation.uri | https://doi.org/10.3390/app10217846 | |
| dc.relation.uri | https://doi.org/10.3390/ijgi13050166 | |
| dc.relation.uri | https://doi.org/10.1016/j.procs.2021.01.034 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-642-41968-3_55 | |
| dc.relation.uri | https://doi.org/10.1016/j.proeng.2014.12.098 | |
| dc.relation.uri | https://doi.org/10.3390/s18082585 | |
| dc.relation.uri | https://doi.org/10.1109/CENIM48368.2019.8973360 | |
| dc.relation.uri | https://doi.org/10.21595/mme.2022.22828 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Sinkevych O., Boyko Ya., Sokolovskyy B., Rechynskyi O., 2024 | |
| dc.subject | A* | |
| dc.subject | Pathfinding | |
| dc.subject | Grid map | |
| dc.subject | Graph algorithms | |
| dc.subject | Adaptive occupancy grid | |
| dc.title | Study of Pathfinding Approach Based on A* with Adaptive Occupancy Grid | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1