Study of Pathfinding Approach Based on A* with Adaptive Occupancy Grid

dc.citation.epage100
dc.citation.issue2
dc.citation.journalTitleДосягнення у кіберфізичних системах
dc.citation.spage95
dc.citation.volume9
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorSinkevych, Oleh
dc.contributor.authorBoyko, Yaroslav
dc.contributor.authorSokolovskyy, Bohdan
dc.contributor.authorRechynskyi, Oleksandr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-06T08:48:10Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThis paper presents the results of a study on the A* search algorithm applied to a two-dimensional map with obstacles. Since, in typical cases, A* is implemented on a map divided into cells of equal size, a scientific interest has lies in investigating the efficiency of this algorithm on a map with dynamically variable cell size. Such a map representation increases the “resolution” of constructing a better trajectory near obstacles. For this purpose, the paper proposes an approach to representing the search space as a dynamic adaptive grid using a QuadTree structure. Additionally, a modification of the A* algorithm has been proposed and investigated, which involves selecting the best cell in the neighborhood of the agent’s current position and performing pathfinding from a starting point to a goal. The paper considers maps of various sizes and complexities for numerical experiments and compares the classical and modified A* algorithms. It has been shown that the proposed modification of the A* algorithm demonstrates better computational properties than the classical version of the algorithm on an adaptive grid.
dc.format.extent95-100
dc.format.pages6
dc.identifier.citationStudy of Pathfinding Approach Based on A* with Adaptive Occupancy Grid / Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Oleksandr Rechynskyi // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 95–100.
dc.identifier.citationenStudy of Pathfinding Approach Based on A* with Adaptive Occupancy Grid / Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Oleksandr Rechynskyi // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 95–100.
dc.identifier.doidoi.org/10.23939/acps2024.02.095
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117381
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кіберфізичних системах, 2 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 2 (9), 2024
dc.relation.references[1] X. Sun, S. Deng, B. Tong, S. Wang, C. Zhang, & Y. Jiang. “Hierarchical framework for mobile robots to effectively and autonomously explore unknown environments”. ISA Trans., vol. 134, pp. 1–15, Sep. 2023. DOI: https://doi.org/10.1016/j.isatra.2022.09.005.
dc.relation.references[2] H. Ryu. Hierarchical Path-Planning for Mobile Robots Using a Skeletonization-Informed Rapidly Exploring Random Tree*. Appl. Sci., vol. 10, no. 21, p. 7846, Nov. 2020. DOI: https://doi.org/10.3390/app10217846.
dc.relation.references[3] Z. An, X. Rui, and C. Gao. Improved A* Navigation Path- Planning Algorithm Based on Hexagonal Grid. ISPRS Int. J. Geo-Inf., vol. 13, no. 5, p. 166, May 2024. DOI: https://doi.org/10.3390/ijgi13050166
dc.relation.references[4] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, & E. Gunawan. A Systematic Literature Review of A* Pathfinding. Procedia Comput. Sci., vol. 179, pp. 507–514. DOI: https://doi.org/10.1016/j.procs.2021.01.034.
dc.relation.references[5] Y. D. Setiawan, P. S. Pratama, S. K. Jeong, V. H. Duy, & S. B. Kim. Experimental Comparison of A* and D* Lite Path Planning Algorithms for Differential Drive Automated Guided Vehicle. AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Berlin, Heidelberg: Springer Berl. Heidelb., 2014, pp. 555-564. DOI: https://doi.org/10.1007/978-3-642-41968-3_55
dc.relation.references[6] F. Duchoň et al. Path Planning with Modified a Star Algorithm for a Mobile Robot. Procedia Eng., vol. 96, pp. 59–69, 2014. DOI: https://doi.org/10.1016/j.proeng.2014.12.098.
dc.relation.references[7] A. Le, V. Prabakaran, V. Sivanantham, & R. Mohan. Modified A-Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor. Sensors, vol. 18, no. 8, p. 2585, Aug. 2018. DOI: https://doi.org/10.3390/s18082585.
dc.relation.references[8] Muhtadin, R. M. Zanuar, I. K. E. Purnama, & M. H. Purnomo. Autonomous Navigation and Obstacle Avoidance for Service Robot. 2019 Int. Conf. Comput. Eng., Netw., Intell. Multimedia (CENIM), Surabaya, Indonesia, Nov. 19-20, 2019. IEEE, 2019. DOI: https://doi.org/10.1109/CENIM48368.2019.8973360
dc.relation.references[9] S. Sahni and D. P. Mehta. Handbook of Data Structures and Applications. Taylor Francis Group, 2018.
dc.relation.references[10] R. Wang, Z. Lu, Y. Jin, and C. Liang. Application of A* algorithm in intelligent vehicle path planning. Math. Models Eng., Aug. 2022. DOI: https://doi.org/10.21595/mme.2022.22828.
dc.relation.referencesen[1] X. Sun, S. Deng, B. Tong, S. Wang, C. Zhang, & Y. Jiang. "Hierarchical framework for mobile robots to effectively and autonomously explore unknown environments". ISA Trans., vol. 134, pp. 1–15, Sep. 2023. DOI: https://doi.org/10.1016/j.isatra.2022.09.005.
dc.relation.referencesen[2] H. Ryu. Hierarchical Path-Planning for Mobile Robots Using a Skeletonization-Informed Rapidly Exploring Random Tree*. Appl. Sci., vol. 10, no. 21, p. 7846, Nov. 2020. DOI: https://doi.org/10.3390/app10217846.
dc.relation.referencesen[3] Z. An, X. Rui, and C. Gao. Improved A* Navigation Path- Planning Algorithm Based on Hexagonal Grid. ISPRS Int. J. Geo-Inf., vol. 13, no. 5, p. 166, May 2024. DOI: https://doi.org/10.3390/ijgi13050166
dc.relation.referencesen[4] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, & E. Gunawan. A Systematic Literature Review of A* Pathfinding. Procedia Comput. Sci., vol. 179, pp. 507–514. DOI: https://doi.org/10.1016/j.procs.2021.01.034.
dc.relation.referencesen[5] Y. D. Setiawan, P. S. Pratama, S. K. Jeong, V. H. Duy, & S. B. Kim. Experimental Comparison of A* and D* Lite Path Planning Algorithms for Differential Drive Automated Guided Vehicle. AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Berlin, Heidelberg: Springer Berl. Heidelb., 2014, pp. 555-564. DOI: https://doi.org/10.1007/978-3-642-41968-3_55
dc.relation.referencesen[6] F. Duchoň et al. Path Planning with Modified a Star Algorithm for a Mobile Robot. Procedia Eng., vol. 96, pp. 59–69, 2014. DOI: https://doi.org/10.1016/j.proeng.2014.12.098.
dc.relation.referencesen[7] A. Le, V. Prabakaran, V. Sivanantham, & R. Mohan. Modified A-Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor. Sensors, vol. 18, no. 8, p. 2585, Aug. 2018. DOI: https://doi.org/10.3390/s18082585.
dc.relation.referencesen[8] Muhtadin, R. M. Zanuar, I. K. E. Purnama, & M. H. Purnomo. Autonomous Navigation and Obstacle Avoidance for Service Robot. 2019 Int. Conf. Comput. Eng., Netw., Intell. Multimedia (CENIM), Surabaya, Indonesia, Nov. 19-20, 2019. IEEE, 2019. DOI: https://doi.org/10.1109/CENIM48368.2019.8973360
dc.relation.referencesen[9] S. Sahni and D. P. Mehta. Handbook of Data Structures and Applications. Taylor Francis Group, 2018.
dc.relation.referencesen[10] R. Wang, Z. Lu, Y. Jin, and C. Liang. Application of A* algorithm in intelligent vehicle path planning. Math. Models Eng., Aug. 2022. DOI: https://doi.org/10.21595/mme.2022.22828.
dc.relation.urihttps://doi.org/10.1016/j.isatra.2022.09.005
dc.relation.urihttps://doi.org/10.3390/app10217846
dc.relation.urihttps://doi.org/10.3390/ijgi13050166
dc.relation.urihttps://doi.org/10.1016/j.procs.2021.01.034
dc.relation.urihttps://doi.org/10.1007/978-3-642-41968-3_55
dc.relation.urihttps://doi.org/10.1016/j.proeng.2014.12.098
dc.relation.urihttps://doi.org/10.3390/s18082585
dc.relation.urihttps://doi.org/10.1109/CENIM48368.2019.8973360
dc.relation.urihttps://doi.org/10.21595/mme.2022.22828
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Sinkevych O., Boyko Ya., Sokolovskyy B., Rechynskyi O., 2024
dc.subjectA*
dc.subjectPathfinding
dc.subjectGrid map
dc.subjectGraph algorithms
dc.subjectAdaptive occupancy grid
dc.titleStudy of Pathfinding Approach Based on A* with Adaptive Occupancy Grid
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n2_Sinkevych_O-Study_of_Pathfinding_Approach_95-100.pdf
Size:
953.3 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n2_Sinkevych_O-Study_of_Pathfinding_Approach_95-100__COVER.png
Size:
600.67 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: