Структура та властивості модифікованих гліцерином полілактидних плівок

dc.citation.epage206
dc.citation.issue1
dc.citation.spage199
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСеменюк, Н. Б.
dc.contributor.authorДудок, Г. Д.
dc.contributor.authorКисіль, Х. В.
dc.contributor.authorСкорохода, Т. В.
dc.contributor.authorПарфьонов, Ю. О.
dc.contributor.authorSemenyuk, N. B.
dc.contributor.authorDudok, G. D.
dc.contributor.authorKysil, Kh. V.
dc.contributor.authorSkorokhoda, T. V.
dc.contributor.authorParfonov, Yu. O.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T09:22:52Z
dc.date.available2024-01-22T09:22:52Z
dc.date.created2020-02-21
dc.date.issued2020-02-21
dc.description.abstractДосліджено структуру та властивості модифікованих полілактидних плівок, придатних для використання як пакувальні матеріали та для ламінування паперу. Здійснено модифікування полілактидів різного ступеня кристалічності гліцерином. Досліджено вплив умов формування плівок, кількості пластифікатора гліцерину, природи полілактиду на структуру, морфологію поверхні й фізико-механічні властивості модифікованих полілактидних матеріалів. Модифіковані плівкові матеріали можна рекомендувати для застосування у пакувальній індустрії та ламінуванні паперу
dc.description.abstractThe structure and properties of modified poly(lactiс acid) films suitable for use as packaging materials and paper lamination were studied. Modification of poly(lactiс acid) of different degrees of crystallinity with glycerol was performed. The influence of film formation conditions, the amount of glycerin plasticizer, the nature of poly(lactiс acid) on the structure, surface morphology and physical and mechanical properties of modified poly(lactiс acid) materials was studied. Modified film materials can be recommended for use in the packaging industry and paper lamination.
dc.format.extent199-206
dc.format.pages8
dc.identifier.citationСтруктура та властивості модифікованих гліцерином полілактидних плівок / Н. Б. Семенюк, Г. Д. Дудок, Х. В. Кисіль, Т. В. Скорохода, Ю. О. Парфьонов // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 199–206.
dc.identifier.citationenStructure and properties of glycerin modified poly(lactiс acids) films / N. B. Semenyuk, G. D. Dudok, Kh. V. Kysil, T. V. Skorokhoda, Yu. O. Parfonov // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 199–206.
dc.identifier.doidoi.org/10.23939/ctas2022.01.199
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60932
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (5), 2022
dc.relation.references1. Caminero, M. Á., Chacón, J. M., García-Plaza, E., Núñez, P. J., Reverte, J. M., Becar, J. P. (2019). Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers, 11, 799. DOI: 10.3390/polym11050799.
dc.relation.references2. Wei, L., Luo, S., McDonald, A. G., Agarwal, U. P., Hirth, K. C. et al. (2017). Preparation and Characterization of the Nanocomposites from Chemically Modified Nanocellulose and Poly(lactic acid). Journal of Renewable Materials, 5(5), 410–422. DOI: 10.7569/JRM.2017.634144.
dc.relation.references3. Pham, Le T. P., Opaprakasit, P. (2020). Preparation of Polylactide/Modified Clay Bio-composites Employing Quaternized Chitosan-Modified Montmorillonite Clays for Use as Packaging Films. Chemical Engineering Transactions, 78, 115–120. DOI:10.3303/CET2078020.
dc.relation.references4. Pandele, A. M., Constantinescu, A., Radu, I. C., Miculescu, F., Ioan Voicu, S., Ciocan, L. T. (2020). Synthesis and Characterization of PLA-Micro-structured Hydroxyapatite Composite Films. Materials, 13, 274. DOI: 10.3390/ma13020274.
dc.relation.references5. Liu, A., Hong, Z., Zhuang, X., Chen, X., Cui, Y., Liu, Y., Jing, X. (2008). Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Acta Biomater, 4(4), 1005. DOI: 10.1016/j.actbio.2008.02.013.
dc.relation.references6. Li, D., Jiang, Y., Lv, S., Liu, X., Gu, J., Chen, Q., et al. (2018). Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE, 13(3), e0193520. DOI: 10.1371/journal.pone.0193520.
dc.relation.references7. Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W. and Hussein, M. Z. (2013). Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. Journal of Applied Polymer Science, 130(6), 4576–4580. DOI: 10.1002/app.397427.
dc.relation.references8. Maiza, M., Benaniba, M. T., Quintard, G., Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 26(5), 581–590. DOI: 10.1590/0104-1428.1986.
dc.relation.references9. Yu, L., Toikka, G., Dean, K., Bateman, S., Yuan, Q., Filippou, C., et al. (2013). Foaming Behaviour and Cell Structure of Poly(Lactic Acid) after Various Modifications. Polymer International, 62(5), 759–765. DOI: 10.1002/pi.4359.
dc.relation.references10. Liu, J., Zhang, S., Zhang, L., & Yiqing, B. (2014). Preparation and rheological characterization of long chain branching polylactide. Polymer, 55, 2472–2480. DOI:10.1016/J.POLYMER.2014.02.024.
dc.relation.references11. Corre, Y.-M.; Duchet, J.; Reignier, J.; Maazouz, A. (2011). Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheologica Acta, 50 (7-8), 613–629. DOI: 10.1007/s00397-011-0538-1.
dc.relation.references12. Zhong, W., Ge, J., Gu, Z., Li, W., Chen, X., Zang, Y. and Yang, Y. (1999). Study on biodegradable polymer materials based on poly(lactic acid). I. Chain extending of low molecular weight poly(lactic acid) with methylenediphenyl diisocyanate. Journal of Applied Polymer Science, 74, 2546–2551. DOI: 10.1002/(SICI)1097-4628(19991205)74:10<2546::AID-APP24>3.0.CO;2-Z.
dc.relation.references13. Liu, J., Lou, L., Yu, W., Liao, R., Li, R., Zhou, C. (2010). Long chain branching polylactide: Structures and properties. Polymer, 51, 5186–5197. DOI: 10.1016/j.polymer.2010.09.002.
dc.relation.references14. Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. (2019). Chemical Modification and Foam Processing of Polylactide (PLA). Polymers, 11, 306. DOI:10.3390/polym11020306.
dc.relation.references15. Tengfei, Sh., Mangeng, L., Liyan, L. (2013). Modification of the Properties of Polylactide/Polycaprolactone Blends by Incorporation of Blocked Polyisocyanate. Journal of Macromolecular Science, Part A, 50:5, 547–554.
dc.relation.references16. Shakti, Ch., Raghu, N., Anand, R. (2021). Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends. Polymers and Polymer Composites, 29 (9), S400–S410. DOI:10.1177%2F09673911211004194.
dc.relation.references17. Kowalczyk, M., Piorkowska, E. (2012). Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4-cis-isoprene) blends. Journal of Applied Polymer Science, 124, 4579–4589. DOI: 10.1002/app.35489.
dc.relation.references18. Semenyuk, N., Kysil, Kh., Shapoval, K., Dudok, G., Skorokhoda, V. (2021). Investigation of physical modification of poly(lactiс acids). Chemistry, Technology and Application of Substances, 4 (1), 198–205. DOI: 10.23939/ctas2021.01.198.
dc.relation.references19. Rhim, J.-W., Mohanty, A. K., Singh, S. P. and Ng, P. K. W. (2006). Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting. Journal of Applied Polymer Science, 101, 3736–3742. DOI:10.1002/app.23403.
dc.relation.referencesen1. Caminero, M. Á., Chacón, J. M., García-Plaza, E., Núñez, P. J., Reverte, J. M., Becar, J. P. (2019). Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers, 11, 799. DOI: 10.3390/polym11050799.
dc.relation.referencesen2. Wei, L., Luo, S., McDonald, A. G., Agarwal, U. P., Hirth, K. C. et al. (2017). Preparation and Characterization of the Nanocomposites from Chemically Modified Nanocellulose and Poly(lactic acid). Journal of Renewable Materials, 5(5), 410–422. DOI: 10.7569/JRM.2017.634144.
dc.relation.referencesen3. Pham, Le T. P., Opaprakasit, P. (2020). Preparation of Polylactide/Modified Clay Bio-composites Employing Quaternized Chitosan-Modified Montmorillonite Clays for Use as Packaging Films. Chemical Engineering Transactions, 78, 115–120. DOI:10.3303/CET2078020.
dc.relation.referencesen4. Pandele, A. M., Constantinescu, A., Radu, I. C., Miculescu, F., Ioan Voicu, S., Ciocan, L. T. (2020). Synthesis and Characterization of PLA-Micro-structured Hydroxyapatite Composite Films. Materials, 13, 274. DOI: 10.3390/ma13020274.
dc.relation.referencesen5. Liu, A., Hong, Z., Zhuang, X., Chen, X., Cui, Y., Liu, Y., Jing, X. (2008). Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Acta Biomater, 4(4), 1005. DOI: 10.1016/j.actbio.2008.02.013.
dc.relation.referencesen6. Li, D., Jiang, Y., Lv, S., Liu, X., Gu, J., Chen, Q., et al. (2018). Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE, 13(3), e0193520. DOI: 10.1371/journal.pone.0193520.
dc.relation.referencesen7. Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W. and Hussein, M. Z. (2013). Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. Journal of Applied Polymer Science, 130(6), 4576–4580. DOI: 10.1002/app.397427.
dc.relation.referencesen8. Maiza, M., Benaniba, M. T., Quintard, G., Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 26(5), 581–590. DOI: 10.1590/0104-1428.1986.
dc.relation.referencesen9. Yu, L., Toikka, G., Dean, K., Bateman, S., Yuan, Q., Filippou, C., et al. (2013). Foaming Behaviour and Cell Structure of Poly(Lactic Acid) after Various Modifications. Polymer International, 62(5), 759–765. DOI: 10.1002/pi.4359.
dc.relation.referencesen10. Liu, J., Zhang, S., Zhang, L., & Yiqing, B. (2014). Preparation and rheological characterization of long chain branching polylactide. Polymer, 55, 2472–2480. DOI:10.1016/J.POLYMER.2014.02.024.
dc.relation.referencesen11. Corre, Y.-M.; Duchet, J.; Reignier, J.; Maazouz, A. (2011). Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheologica Acta, 50 (7-8), 613–629. DOI: 10.1007/s00397-011-0538-1.
dc.relation.referencesen12. Zhong, W., Ge, J., Gu, Z., Li, W., Chen, X., Zang, Y. and Yang, Y. (1999). Study on biodegradable polymer materials based on poly(lactic acid). I. Chain extending of low molecular weight poly(lactic acid) with methylenediphenyl diisocyanate. Journal of Applied Polymer Science, 74, 2546–2551. DOI: 10.1002/(SICI)1097-4628(19991205)74:10<2546::AID-APP24>3.0.CO;2-Z.
dc.relation.referencesen13. Liu, J., Lou, L., Yu, W., Liao, R., Li, R., Zhou, C. (2010). Long chain branching polylactide: Structures and properties. Polymer, 51, 5186–5197. DOI: 10.1016/j.polymer.2010.09.002.
dc.relation.referencesen14. Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. (2019). Chemical Modification and Foam Processing of Polylactide (PLA). Polymers, 11, 306. DOI:10.3390/polym11020306.
dc.relation.referencesen15. Tengfei, Sh., Mangeng, L., Liyan, L. (2013). Modification of the Properties of Polylactide/Polycaprolactone Blends by Incorporation of Blocked Polyisocyanate. Journal of Macromolecular Science, Part A, 50:5, 547–554.
dc.relation.referencesen16. Shakti, Ch., Raghu, N., Anand, R. (2021). Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends. Polymers and Polymer Composites, 29 (9), S400–S410. DOI:10.1177%2F09673911211004194.
dc.relation.referencesen17. Kowalczyk, M., Piorkowska, E. (2012). Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4-cis-isoprene) blends. Journal of Applied Polymer Science, 124, 4579–4589. DOI: 10.1002/app.35489.
dc.relation.referencesen18. Semenyuk, N., Kysil, Kh., Shapoval, K., Dudok, G., Skorokhoda, V. (2021). Investigation of physical modification of poly(lactis acids). Chemistry, Technology and Application of Substances, 4 (1), 198–205. DOI: 10.23939/ctas2021.01.198.
dc.relation.referencesen19. Rhim, J.-W., Mohanty, A. K., Singh, S. P. and Ng, P. K. W. (2006). Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting. Journal of Applied Polymer Science, 101, 3736–3742. DOI:10.1002/app.23403.
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectполілактид
dc.subjectмодифіковані плівки
dc.subjectгліцерин
dc.subjectхлороформ
dc.subjectкомпозити
dc.subjectpoly(lactiс acid)
dc.subjectmodified films
dc.subjectglycerol
dc.subjectchloroform
dc.subjectcomposites
dc.titleСтруктура та властивості модифікованих гліцерином полілактидних плівок
dc.title.alternativeStructure and properties of glycerin modified poly(lactiс acids) films
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v5n1_Semenyuk_N_B-Structure_and_properties_199-206.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v5n1_Semenyuk_N_B-Structure_and_properties_199-206__COVER.png
Size:
484.37 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: