Monte Carlo methods: a features review in terms of use for assessing the reliability of RC structures

dc.citation.epage54
dc.citation.issue2
dc.citation.spage48
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТитаренко, Р. Ю.
dc.contributor.authorХміль, Р. Є.
dc.contributor.authorTytarenko, R.
dc.contributor.authorKhmil, R.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-05-29T11:44:07Z
dc.date.available2024-05-29T11:44:07Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОстаннім часом істотно зросла актуальність проблеми оптимізації проєктних рішень залізобетонних елементів за рахунок максимального використання ресурсу їх несучої здатності. Вирішення цієї проблеми залежить від фундаментального розуміння таких понять, як “надійність” та “довговічність”, а оскільки параметри будь-яких навантажень, впливів або резерву несучої здатності є випадковими величинами, побудова максимально достовірних стохастичних моделей роботи конструкцій незабаром має стати основою широкої концепції “надійнісного проєктування”. Разом із тим найпростішим (за незначної мінливості даних) є імовірнісний аналіз конструкцій, роботу яких можна наближено описати за допомогою лінійної функції; однак насправді жодна функція випадкових величин не є строго лінійною. І навіть більше, зі зростанням значень коефіцієнтів варіації вхідних змінних підвищується і ймовірність відмови елементів, що унеможливлює застосування більшості методів її оцінювання; отже, виникає необхідність використання універсальних методів розрахунку нелінійних систем – так званих методів Монте-Карло. Серед іншого, метою цієї оглядової статті було аналізування особливостей методів Монте-Карло з погляду їх використання в задачах оцінювання безвідмовності, довговічності та залишкового ресурсу (як ключових параметрів забезпечення надійності) залізобетонних елементів в умовах експлуатації. Крім того, в роботі висвітлено основні переваги та недоліки цих методів відповідно до загальновідомих теорій. Насамкінець, на основі огляду сучасних літературних джерел сформульовано рекомендації щодо подальших досліджень надійності та довговічності залізобетонних конструкцій (зокрема пошкоджених) в умовах сумісної дії на них механічних навантажень й корозійно-агресивного середовища із використанням методів Монте-Карло.
dc.description.abstractRecently, the optimization issue relevance of reinforced concrete (RC) structures design solutions through the maximum use of their bearing capacity resource has increased significantly; in turn, solving this issue depends on a fundamental understanding of the reliability and durability concepts. Because any loads, impacts, or bearing capacity reserve parameters are random variables, there is a need to build stochastic models, which can become the “reliability design” concept base shortly. Among other things, this review article is devoted to the Monte Carlo methods features analysis in terms of their use in the RC members’ reliability assessment tasks. Based on a modern literary sources review, recommendations for further studies of the RC structures’ reliability and durability (including damaged ones) under the conditions of the combined action of loads and a corrosive environment (using Monte Carlo methods) were also formulated.
dc.format.extent48-54
dc.format.pages7
dc.identifier.citationTytarenko R. Monte Carlo methods: a features review in terms of use for assessing the reliability of RC structures / R. Tytarenko, R. Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 48–54.
dc.identifier.citationenTytarenko R. Monte Carlo methods: a features review in terms of use for assessing the reliability of RC structures / R. Tytarenko, R. Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 48–54.
dc.identifier.doidoi.org/10.23939/jtbp2023.02.048
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/62185
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (5), 2023
dc.relation.referencesTytarenko, R., Khmil, R., Selejdak, J., & Vashkevych, R. (2023). Probabilistic durability assessment of RC structures in operation: an analytical review of existing methods. Lecture Notes in Civil Engineering, 290, 408-415. DOI: https://doi.org/10.1007/978-3-031-14141-6_41
dc.relation.referencesDitlevsen, O., & Madsen, H. O. (2005). Structural Reliability Methods: Monograph (Internet ed. 2.2.5.). Lyngby: Technical University of Denmark. URL: http://od-website.dk/books/OD-HOM-StrucRelMeth-Ed2.3.7.pdf
dc.relation.referencesRaizer, V. D. (1998). Theory of reliability in structural design: Monograph. Moscow: ASV (in Russian). URL: https://dwg.ru/dnl/6899
dc.relation.referencesKhmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., & Vegera, P. I. (2021). Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, 1021(1), 012014. DOI: https://doi.org/10.1088/1757-899X/1021/1/012014
dc.relation.referencesSchiessl, P. (2005). New approach to service life design of concrete structure. Asian Journal of Civil Engineering (Building and Housing), 6(5), 393-407. URL: https://scholar.google.com.ua/schhp?hl=uk
dc.relation.referencesVan Coile, R., Caspeele, R., & Taerwe, L. (2014). The mixed lognormal distribution for a more precise assessment of the reliability of concrete slabs exposed to fire. Safety, Reliability and Risk Analysis: Beyond the Horizon - Proceedings of the European Safety and Reliability Conference (ESREL 2013), 2693-2699. London: Taylor & Francis Group. URL: https://scholar.google.com.ua/schhp?hl=uk
dc.relation.referencesNogueira, C. G., Leonel, E. D., & Coda, H. B. (2012). Reliability algorithms applied to reinforced concrete structures durability assessment. IBRACON Structures and Materials Journal, 5(4), 440-450. DOI: https://doi.org/10.1590/S1983-41952012000400003
dc.relation.referencesConciatori, D., Bruhwiler, E., & Morgenthaler, S. (2009). Calculation of reinforced concrete corrosion initiation probabilities using the Rosenblueth method. International Journal of Reliability and Safety, 3(4), 345-362. DOI: https://doi.org/10.1504/IJRS.2009.028581
dc.relation.referencesGuo, H., Jiang, C., Gu, X., Dong, Y., & Zhang, W. (2023). Time-dependent reliability analysis of reinforced concrete beams considering marine environmental actions. Engineering Structures, 288, 116252. DOI: https://doi.org/10.1016/j.engstruct.2023.116252
dc.relation.referencesPellizzer, G. P., Leonel, E. D., & Nogueira, C. G. (2015). Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis. IBRACON Structures and Materials Journal, 8(4), 479-490. https://doi.org/10.1590/S1983-41952015000400004
dc.relation.referencesŞengül, Ö. (2011). Probabilistic design for the durability of reinforced concrete structural elements exposed to chloride containing environments. Teknik Dergi, 22(2), 5409-5423. URL: https://dergipark.org.tr/en/pub/tekderg/issue/12749/155174
dc.relation.referencesYuan, W., Wu, X., Wang, Y., Liu, Z., & Zhou, P. (2023). Time-dependent seismic reliability of coastal bridge piers subjected to nonuniform corrosion. Materials, 16(3), 1029. DOI: https://doi.org/10.3390/ma16031029
dc.relation.referencesMacGregor, J. G., Mirza, S. A., & Ellingwood, B. (1983). Statistical analysis of resistance of reinforced and prestressed concrete members. Journal of the American Concrete Institute, 80(3), 167-176. DOI: https://doi.org/10.14359/10715
dc.relation.referencesHosseini, A. R. M., Razzaghi, M. S., & Shamskia, N. (2023). Probabilistic seismic safety assessment of bridges with random pier scouring. Proceedings of the Institution of Civil Engineers: Structures and Buildings. DOI: https://doi.org/10.1680/jstbu.23.00014
dc.relation.referencesJitao, Y., Liuzhuo, C., Jun, G., & Ren, X. (2019). Structural durability and concept system of structural reliability. IOP Conference Series: Earth and Environmental Science, 340(5), 052035. DOI: https://doi.org/10.1088/1755-1315/304/5/052035
dc.relation.referencesVořechovská, D., Šomodíková, M., Podroužek, J., Lehký, D., & Teplý, B. (2017). Concrete structures under combined mechanical and environmental actions: modelling of durability and reliability. Computers and Concrete, 20(1), 99-110. DOI: https://doi.org/10.12989/cac.2017.20.1.99
dc.relation.referencesWang, C., Li, Q., & Ellingwood, B. R. (2016). Time-dependent reliability of ageing structures: an approximate approach. Structure and Infrastructure Engineering, 12(12), 1566-1572. DOI: https://doi.org/10.1080/15732479.2016.1151447
dc.relation.referencesAkhavan Kazemi, M., Hoseini Vaez, S. R., & Fathali, M. A. (2023). European Journal of Environmental and Civil Engineering, 27(5), 1876-1896. DOI: https://doi.org/10.1080/19648189.2022.2102082
dc.relation.referencesHuang, Y., Yan, D., Yang, Z., & Liu, G. (2016). 2D and 3D homogenization and fracture analysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo simulations. Engineering Fracture Mechanics, 163, 37-54. DOI: https://doi.org/10.1016/j.engfracmech.2016.06.018
dc.relation.referencesWang, J., Wang, Y., Zhang, Y., Liu, Y., & Shi, C. (2022). Life cycle dynamic sustainability maintenance strategy optimization of fly ash RC beam based on Monte Carlo simulation. Journal of Cleaner Production, 351, 131337. DOI: https://doi.org/10.1016/j.jclepro.2022.131337
dc.relation.referencesBadal, P. S., & Tesfamariam, S. (2023). Seismic resilience of typical code-conforming RC moment frame buildings in Canada. Earthquake Spectra, 39(2), 748-771. DOI: https://doi.org/10.1177/87552930221145455
dc.relation.referencesWang, J., Wu, Z., & Ye, X. (2023). Time-dependent reliability assessment of a simply supported girder bridge based on the third-moment method. Structures, 50, 1353-1367. DOI: https://doi.org/10.1016/j.istruc.2023.02.030
dc.relation.referencesZhang, Y., Xu, J., & Beer, M. (2023). A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction. Reliability Engineering & System Safety, 232, 109031. DOI: https://doi.org/10.1016/j.ress.2022.109031
dc.relation.referencesenTytarenko, R., Khmil, R., Selejdak, J., & Vashkevych, R. (2023). Probabilistic durability assessment of RC structures in operation: an analytical review of existing methods. Lecture Notes in Civil Engineering, 290, 408-415. DOI: https://doi.org/10.1007/978-3-031-14141-6_41
dc.relation.referencesenDitlevsen, O., & Madsen, H. O. (2005). Structural Reliability Methods: Monograph (Internet ed. 2.2.5.). Lyngby: Technical University of Denmark. URL: http://od-website.dk/books/OD-HOM-StrucRelMeth-Ed2.3.7.pdf
dc.relation.referencesenRaizer, V. D. (1998). Theory of reliability in structural design: Monograph. Moscow: ASV (in Russian). URL: https://dwg.ru/dnl/6899
dc.relation.referencesenKhmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., & Vegera, P. I. (2021). Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, 1021(1), 012014. DOI: https://doi.org/10.1088/1757-899X/1021/1/012014
dc.relation.referencesenSchiessl, P. (2005). New approach to service life design of concrete structure. Asian Journal of Civil Engineering (Building and Housing), 6(5), 393-407. URL: https://scholar.google.com.ua/schhp?hl=uk
dc.relation.referencesenVan Coile, R., Caspeele, R., & Taerwe, L. (2014). The mixed lognormal distribution for a more precise assessment of the reliability of concrete slabs exposed to fire. Safety, Reliability and Risk Analysis: Beyond the Horizon - Proceedings of the European Safety and Reliability Conference (ESREL 2013), 2693-2699. London: Taylor & Francis Group. URL: https://scholar.google.com.ua/schhp?hl=uk
dc.relation.referencesenNogueira, C. G., Leonel, E. D., & Coda, H. B. (2012). Reliability algorithms applied to reinforced concrete structures durability assessment. IBRACON Structures and Materials Journal, 5(4), 440-450. DOI: https://doi.org/10.1590/S1983-41952012000400003
dc.relation.referencesenConciatori, D., Bruhwiler, E., & Morgenthaler, S. (2009). Calculation of reinforced concrete corrosion initiation probabilities using the Rosenblueth method. International Journal of Reliability and Safety, 3(4), 345-362. DOI: https://doi.org/10.1504/IJRS.2009.028581
dc.relation.referencesenGuo, H., Jiang, C., Gu, X., Dong, Y., & Zhang, W. (2023). Time-dependent reliability analysis of reinforced concrete beams considering marine environmental actions. Engineering Structures, 288, 116252. DOI: https://doi.org/10.1016/j.engstruct.2023.116252
dc.relation.referencesenPellizzer, G. P., Leonel, E. D., & Nogueira, C. G. (2015). Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis. IBRACON Structures and Materials Journal, 8(4), 479-490. https://doi.org/10.1590/S1983-41952015000400004
dc.relation.referencesenŞengül, Ö. (2011). Probabilistic design for the durability of reinforced concrete structural elements exposed to chloride containing environments. Teknik Dergi, 22(2), 5409-5423. URL: https://dergipark.org.tr/en/pub/tekderg/issue/12749/155174
dc.relation.referencesenYuan, W., Wu, X., Wang, Y., Liu, Z., & Zhou, P. (2023). Time-dependent seismic reliability of coastal bridge piers subjected to nonuniform corrosion. Materials, 16(3), 1029. DOI: https://doi.org/10.3390/ma16031029
dc.relation.referencesenMacGregor, J. G., Mirza, S. A., & Ellingwood, B. (1983). Statistical analysis of resistance of reinforced and prestressed concrete members. Journal of the American Concrete Institute, 80(3), 167-176. DOI: https://doi.org/10.14359/10715
dc.relation.referencesenHosseini, A. R. M., Razzaghi, M. S., & Shamskia, N. (2023). Probabilistic seismic safety assessment of bridges with random pier scouring. Proceedings of the Institution of Civil Engineers: Structures and Buildings. DOI: https://doi.org/10.1680/jstbu.23.00014
dc.relation.referencesenJitao, Y., Liuzhuo, C., Jun, G., & Ren, X. (2019). Structural durability and concept system of structural reliability. IOP Conference Series: Earth and Environmental Science, 340(5), 052035. DOI: https://doi.org/10.1088/1755-1315/304/5/052035
dc.relation.referencesenVořechovská, D., Šomodíková, M., Podroužek, J., Lehký, D., & Teplý, B. (2017). Concrete structures under combined mechanical and environmental actions: modelling of durability and reliability. Computers and Concrete, 20(1), 99-110. DOI: https://doi.org/10.12989/cac.2017.20.1.99
dc.relation.referencesenWang, C., Li, Q., & Ellingwood, B. R. (2016). Time-dependent reliability of ageing structures: an approximate approach. Structure and Infrastructure Engineering, 12(12), 1566-1572. DOI: https://doi.org/10.1080/15732479.2016.1151447
dc.relation.referencesenAkhavan Kazemi, M., Hoseini Vaez, S. R., & Fathali, M. A. (2023). European Journal of Environmental and Civil Engineering, 27(5), 1876-1896. DOI: https://doi.org/10.1080/19648189.2022.2102082
dc.relation.referencesenHuang, Y., Yan, D., Yang, Z., & Liu, G. (2016). 2D and 3D homogenization and fracture analysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo simulations. Engineering Fracture Mechanics, 163, 37-54. DOI: https://doi.org/10.1016/j.engfracmech.2016.06.018
dc.relation.referencesenWang, J., Wang, Y., Zhang, Y., Liu, Y., & Shi, C. (2022). Life cycle dynamic sustainability maintenance strategy optimization of fly ash RC beam based on Monte Carlo simulation. Journal of Cleaner Production, 351, 131337. DOI: https://doi.org/10.1016/j.jclepro.2022.131337
dc.relation.referencesenBadal, P. S., & Tesfamariam, S. (2023). Seismic resilience of typical code-conforming RC moment frame buildings in Canada. Earthquake Spectra, 39(2), 748-771. DOI: https://doi.org/10.1177/87552930221145455
dc.relation.referencesenWang, J., Wu, Z., & Ye, X. (2023). Time-dependent reliability assessment of a simply supported girder bridge based on the third-moment method. Structures, 50, 1353-1367. DOI: https://doi.org/10.1016/j.istruc.2023.02.030
dc.relation.referencesenZhang, Y., Xu, J., & Beer, M. (2023). A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction. Reliability Engineering & System Safety, 232, 109031. DOI: https://doi.org/10.1016/j.ress.2022.109031
dc.relation.urihttps://doi.org/10.1007/978-3-031-14141-6_41
dc.relation.urihttp://od-website.dk/books/OD-HOM-StrucRelMeth-Ed2.3.7.pdf
dc.relation.urihttps://dwg.ru/dnl/6899
dc.relation.urihttps://doi.org/10.1088/1757-899X/1021/1/012014
dc.relation.urihttps://scholar.google.com.ua/schhp?hl=uk
dc.relation.urihttps://doi.org/10.1590/S1983-41952012000400003
dc.relation.urihttps://doi.org/10.1504/IJRS.2009.028581
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2023.116252
dc.relation.urihttps://doi.org/10.1590/S1983-41952015000400004
dc.relation.urihttps://dergipark.org.tr/en/pub/tekderg/issue/12749/155174
dc.relation.urihttps://doi.org/10.3390/ma16031029
dc.relation.urihttps://doi.org/10.14359/10715
dc.relation.urihttps://doi.org/10.1680/jstbu.23.00014
dc.relation.urihttps://doi.org/10.1088/1755-1315/304/5/052035
dc.relation.urihttps://doi.org/10.12989/cac.2017.20.1.99
dc.relation.urihttps://doi.org/10.1080/15732479.2016.1151447
dc.relation.urihttps://doi.org/10.1080/19648189.2022.2102082
dc.relation.urihttps://doi.org/10.1016/j.engfracmech.2016.06.018
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2022.131337
dc.relation.urihttps://doi.org/10.1177/87552930221145455
dc.relation.urihttps://doi.org/10.1016/j.istruc.2023.02.030
dc.relation.urihttps://doi.org/10.1016/j.ress.2022.109031
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Tytarenko R., Khmil R., 2023
dc.subjectметоди Монте-Карло
dc.subjectфункція розподілу
dc.subjectстохастична модель
dc.subjectімовірнісний аналіз
dc.subjectоцінка надійності
dc.subjectзалізобетонний елемент
dc.subjectMonte Carlo methods
dc.subjectdistribution function
dc.subjectstochastic model
dc.subjectprobabilistic analysis
dc.subjectreliability assessment
dc.subjectreinforced concrete (RC) member
dc.titleMonte Carlo methods: a features review in terms of use for assessing the reliability of RC structures
dc.title.alternativeОгляд особливостей використання методів Монте-Карло під час оцінювання надійності залізобетонних конструкцій
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v5n2_Tytarenko_R-Monte_Carlo_methods_a_features_48-54.pdf
Size:
339.26 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v5n2_Tytarenko_R-Monte_Carlo_methods_a_features_48-54__COVER.png
Size:
466.16 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: