Monte Carlo methods: a features review in terms of use for assessing the reliability of RC structures
dc.citation.epage | 54 | |
dc.citation.issue | 2 | |
dc.citation.spage | 48 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Титаренко, Р. Ю. | |
dc.contributor.author | Хміль, Р. Є. | |
dc.contributor.author | Tytarenko, R. | |
dc.contributor.author | Khmil, R. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-05-29T11:44:07Z | |
dc.date.available | 2024-05-29T11:44:07Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Останнім часом істотно зросла актуальність проблеми оптимізації проєктних рішень залізобетонних елементів за рахунок максимального використання ресурсу їх несучої здатності. Вирішення цієї проблеми залежить від фундаментального розуміння таких понять, як “надійність” та “довговічність”, а оскільки параметри будь-яких навантажень, впливів або резерву несучої здатності є випадковими величинами, побудова максимально достовірних стохастичних моделей роботи конструкцій незабаром має стати основою широкої концепції “надійнісного проєктування”. Разом із тим найпростішим (за незначної мінливості даних) є імовірнісний аналіз конструкцій, роботу яких можна наближено описати за допомогою лінійної функції; однак насправді жодна функція випадкових величин не є строго лінійною. І навіть більше, зі зростанням значень коефіцієнтів варіації вхідних змінних підвищується і ймовірність відмови елементів, що унеможливлює застосування більшості методів її оцінювання; отже, виникає необхідність використання універсальних методів розрахунку нелінійних систем – так званих методів Монте-Карло. Серед іншого, метою цієї оглядової статті було аналізування особливостей методів Монте-Карло з погляду їх використання в задачах оцінювання безвідмовності, довговічності та залишкового ресурсу (як ключових параметрів забезпечення надійності) залізобетонних елементів в умовах експлуатації. Крім того, в роботі висвітлено основні переваги та недоліки цих методів відповідно до загальновідомих теорій. Насамкінець, на основі огляду сучасних літературних джерел сформульовано рекомендації щодо подальших досліджень надійності та довговічності залізобетонних конструкцій (зокрема пошкоджених) в умовах сумісної дії на них механічних навантажень й корозійно-агресивного середовища із використанням методів Монте-Карло. | |
dc.description.abstract | Recently, the optimization issue relevance of reinforced concrete (RC) structures design solutions through the maximum use of their bearing capacity resource has increased significantly; in turn, solving this issue depends on a fundamental understanding of the reliability and durability concepts. Because any loads, impacts, or bearing capacity reserve parameters are random variables, there is a need to build stochastic models, which can become the “reliability design” concept base shortly. Among other things, this review article is devoted to the Monte Carlo methods features analysis in terms of their use in the RC members’ reliability assessment tasks. Based on a modern literary sources review, recommendations for further studies of the RC structures’ reliability and durability (including damaged ones) under the conditions of the combined action of loads and a corrosive environment (using Monte Carlo methods) were also formulated. | |
dc.format.extent | 48-54 | |
dc.format.pages | 7 | |
dc.identifier.citation | Tytarenko R. Monte Carlo methods: a features review in terms of use for assessing the reliability of RC structures / R. Tytarenko, R. Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 48–54. | |
dc.identifier.citationen | Tytarenko R. Monte Carlo methods: a features review in terms of use for assessing the reliability of RC structures / R. Tytarenko, R. Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 48–54. | |
dc.identifier.doi | doi.org/10.23939/jtbp2023.02.048 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/62185 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (5), 2023 | |
dc.relation.references | Tytarenko, R., Khmil, R., Selejdak, J., & Vashkevych, R. (2023). Probabilistic durability assessment of RC structures in operation: an analytical review of existing methods. Lecture Notes in Civil Engineering, 290, 408-415. DOI: https://doi.org/10.1007/978-3-031-14141-6_41 | |
dc.relation.references | Ditlevsen, O., & Madsen, H. O. (2005). Structural Reliability Methods: Monograph (Internet ed. 2.2.5.). Lyngby: Technical University of Denmark. URL: http://od-website.dk/books/OD-HOM-StrucRelMeth-Ed2.3.7.pdf | |
dc.relation.references | Raizer, V. D. (1998). Theory of reliability in structural design: Monograph. Moscow: ASV (in Russian). URL: https://dwg.ru/dnl/6899 | |
dc.relation.references | Khmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., & Vegera, P. I. (2021). Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, 1021(1), 012014. DOI: https://doi.org/10.1088/1757-899X/1021/1/012014 | |
dc.relation.references | Schiessl, P. (2005). New approach to service life design of concrete structure. Asian Journal of Civil Engineering (Building and Housing), 6(5), 393-407. URL: https://scholar.google.com.ua/schhp?hl=uk | |
dc.relation.references | Van Coile, R., Caspeele, R., & Taerwe, L. (2014). The mixed lognormal distribution for a more precise assessment of the reliability of concrete slabs exposed to fire. Safety, Reliability and Risk Analysis: Beyond the Horizon - Proceedings of the European Safety and Reliability Conference (ESREL 2013), 2693-2699. London: Taylor & Francis Group. URL: https://scholar.google.com.ua/schhp?hl=uk | |
dc.relation.references | Nogueira, C. G., Leonel, E. D., & Coda, H. B. (2012). Reliability algorithms applied to reinforced concrete structures durability assessment. IBRACON Structures and Materials Journal, 5(4), 440-450. DOI: https://doi.org/10.1590/S1983-41952012000400003 | |
dc.relation.references | Conciatori, D., Bruhwiler, E., & Morgenthaler, S. (2009). Calculation of reinforced concrete corrosion initiation probabilities using the Rosenblueth method. International Journal of Reliability and Safety, 3(4), 345-362. DOI: https://doi.org/10.1504/IJRS.2009.028581 | |
dc.relation.references | Guo, H., Jiang, C., Gu, X., Dong, Y., & Zhang, W. (2023). Time-dependent reliability analysis of reinforced concrete beams considering marine environmental actions. Engineering Structures, 288, 116252. DOI: https://doi.org/10.1016/j.engstruct.2023.116252 | |
dc.relation.references | Pellizzer, G. P., Leonel, E. D., & Nogueira, C. G. (2015). Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis. IBRACON Structures and Materials Journal, 8(4), 479-490. https://doi.org/10.1590/S1983-41952015000400004 | |
dc.relation.references | Şengül, Ö. (2011). Probabilistic design for the durability of reinforced concrete structural elements exposed to chloride containing environments. Teknik Dergi, 22(2), 5409-5423. URL: https://dergipark.org.tr/en/pub/tekderg/issue/12749/155174 | |
dc.relation.references | Yuan, W., Wu, X., Wang, Y., Liu, Z., & Zhou, P. (2023). Time-dependent seismic reliability of coastal bridge piers subjected to nonuniform corrosion. Materials, 16(3), 1029. DOI: https://doi.org/10.3390/ma16031029 | |
dc.relation.references | MacGregor, J. G., Mirza, S. A., & Ellingwood, B. (1983). Statistical analysis of resistance of reinforced and prestressed concrete members. Journal of the American Concrete Institute, 80(3), 167-176. DOI: https://doi.org/10.14359/10715 | |
dc.relation.references | Hosseini, A. R. M., Razzaghi, M. S., & Shamskia, N. (2023). Probabilistic seismic safety assessment of bridges with random pier scouring. Proceedings of the Institution of Civil Engineers: Structures and Buildings. DOI: https://doi.org/10.1680/jstbu.23.00014 | |
dc.relation.references | Jitao, Y., Liuzhuo, C., Jun, G., & Ren, X. (2019). Structural durability and concept system of structural reliability. IOP Conference Series: Earth and Environmental Science, 340(5), 052035. DOI: https://doi.org/10.1088/1755-1315/304/5/052035 | |
dc.relation.references | Vořechovská, D., Šomodíková, M., Podroužek, J., Lehký, D., & Teplý, B. (2017). Concrete structures under combined mechanical and environmental actions: modelling of durability and reliability. Computers and Concrete, 20(1), 99-110. DOI: https://doi.org/10.12989/cac.2017.20.1.99 | |
dc.relation.references | Wang, C., Li, Q., & Ellingwood, B. R. (2016). Time-dependent reliability of ageing structures: an approximate approach. Structure and Infrastructure Engineering, 12(12), 1566-1572. DOI: https://doi.org/10.1080/15732479.2016.1151447 | |
dc.relation.references | Akhavan Kazemi, M., Hoseini Vaez, S. R., & Fathali, M. A. (2023). European Journal of Environmental and Civil Engineering, 27(5), 1876-1896. DOI: https://doi.org/10.1080/19648189.2022.2102082 | |
dc.relation.references | Huang, Y., Yan, D., Yang, Z., & Liu, G. (2016). 2D and 3D homogenization and fracture analysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo simulations. Engineering Fracture Mechanics, 163, 37-54. DOI: https://doi.org/10.1016/j.engfracmech.2016.06.018 | |
dc.relation.references | Wang, J., Wang, Y., Zhang, Y., Liu, Y., & Shi, C. (2022). Life cycle dynamic sustainability maintenance strategy optimization of fly ash RC beam based on Monte Carlo simulation. Journal of Cleaner Production, 351, 131337. DOI: https://doi.org/10.1016/j.jclepro.2022.131337 | |
dc.relation.references | Badal, P. S., & Tesfamariam, S. (2023). Seismic resilience of typical code-conforming RC moment frame buildings in Canada. Earthquake Spectra, 39(2), 748-771. DOI: https://doi.org/10.1177/87552930221145455 | |
dc.relation.references | Wang, J., Wu, Z., & Ye, X. (2023). Time-dependent reliability assessment of a simply supported girder bridge based on the third-moment method. Structures, 50, 1353-1367. DOI: https://doi.org/10.1016/j.istruc.2023.02.030 | |
dc.relation.references | Zhang, Y., Xu, J., & Beer, M. (2023). A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction. Reliability Engineering & System Safety, 232, 109031. DOI: https://doi.org/10.1016/j.ress.2022.109031 | |
dc.relation.referencesen | Tytarenko, R., Khmil, R., Selejdak, J., & Vashkevych, R. (2023). Probabilistic durability assessment of RC structures in operation: an analytical review of existing methods. Lecture Notes in Civil Engineering, 290, 408-415. DOI: https://doi.org/10.1007/978-3-031-14141-6_41 | |
dc.relation.referencesen | Ditlevsen, O., & Madsen, H. O. (2005). Structural Reliability Methods: Monograph (Internet ed. 2.2.5.). Lyngby: Technical University of Denmark. URL: http://od-website.dk/books/OD-HOM-StrucRelMeth-Ed2.3.7.pdf | |
dc.relation.referencesen | Raizer, V. D. (1998). Theory of reliability in structural design: Monograph. Moscow: ASV (in Russian). URL: https://dwg.ru/dnl/6899 | |
dc.relation.referencesen | Khmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., & Vegera, P. I. (2021). Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, 1021(1), 012014. DOI: https://doi.org/10.1088/1757-899X/1021/1/012014 | |
dc.relation.referencesen | Schiessl, P. (2005). New approach to service life design of concrete structure. Asian Journal of Civil Engineering (Building and Housing), 6(5), 393-407. URL: https://scholar.google.com.ua/schhp?hl=uk | |
dc.relation.referencesen | Van Coile, R., Caspeele, R., & Taerwe, L. (2014). The mixed lognormal distribution for a more precise assessment of the reliability of concrete slabs exposed to fire. Safety, Reliability and Risk Analysis: Beyond the Horizon - Proceedings of the European Safety and Reliability Conference (ESREL 2013), 2693-2699. London: Taylor & Francis Group. URL: https://scholar.google.com.ua/schhp?hl=uk | |
dc.relation.referencesen | Nogueira, C. G., Leonel, E. D., & Coda, H. B. (2012). Reliability algorithms applied to reinforced concrete structures durability assessment. IBRACON Structures and Materials Journal, 5(4), 440-450. DOI: https://doi.org/10.1590/S1983-41952012000400003 | |
dc.relation.referencesen | Conciatori, D., Bruhwiler, E., & Morgenthaler, S. (2009). Calculation of reinforced concrete corrosion initiation probabilities using the Rosenblueth method. International Journal of Reliability and Safety, 3(4), 345-362. DOI: https://doi.org/10.1504/IJRS.2009.028581 | |
dc.relation.referencesen | Guo, H., Jiang, C., Gu, X., Dong, Y., & Zhang, W. (2023). Time-dependent reliability analysis of reinforced concrete beams considering marine environmental actions. Engineering Structures, 288, 116252. DOI: https://doi.org/10.1016/j.engstruct.2023.116252 | |
dc.relation.referencesen | Pellizzer, G. P., Leonel, E. D., & Nogueira, C. G. (2015). Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis. IBRACON Structures and Materials Journal, 8(4), 479-490. https://doi.org/10.1590/S1983-41952015000400004 | |
dc.relation.referencesen | Şengül, Ö. (2011). Probabilistic design for the durability of reinforced concrete structural elements exposed to chloride containing environments. Teknik Dergi, 22(2), 5409-5423. URL: https://dergipark.org.tr/en/pub/tekderg/issue/12749/155174 | |
dc.relation.referencesen | Yuan, W., Wu, X., Wang, Y., Liu, Z., & Zhou, P. (2023). Time-dependent seismic reliability of coastal bridge piers subjected to nonuniform corrosion. Materials, 16(3), 1029. DOI: https://doi.org/10.3390/ma16031029 | |
dc.relation.referencesen | MacGregor, J. G., Mirza, S. A., & Ellingwood, B. (1983). Statistical analysis of resistance of reinforced and prestressed concrete members. Journal of the American Concrete Institute, 80(3), 167-176. DOI: https://doi.org/10.14359/10715 | |
dc.relation.referencesen | Hosseini, A. R. M., Razzaghi, M. S., & Shamskia, N. (2023). Probabilistic seismic safety assessment of bridges with random pier scouring. Proceedings of the Institution of Civil Engineers: Structures and Buildings. DOI: https://doi.org/10.1680/jstbu.23.00014 | |
dc.relation.referencesen | Jitao, Y., Liuzhuo, C., Jun, G., & Ren, X. (2019). Structural durability and concept system of structural reliability. IOP Conference Series: Earth and Environmental Science, 340(5), 052035. DOI: https://doi.org/10.1088/1755-1315/304/5/052035 | |
dc.relation.referencesen | Vořechovská, D., Šomodíková, M., Podroužek, J., Lehký, D., & Teplý, B. (2017). Concrete structures under combined mechanical and environmental actions: modelling of durability and reliability. Computers and Concrete, 20(1), 99-110. DOI: https://doi.org/10.12989/cac.2017.20.1.99 | |
dc.relation.referencesen | Wang, C., Li, Q., & Ellingwood, B. R. (2016). Time-dependent reliability of ageing structures: an approximate approach. Structure and Infrastructure Engineering, 12(12), 1566-1572. DOI: https://doi.org/10.1080/15732479.2016.1151447 | |
dc.relation.referencesen | Akhavan Kazemi, M., Hoseini Vaez, S. R., & Fathali, M. A. (2023). European Journal of Environmental and Civil Engineering, 27(5), 1876-1896. DOI: https://doi.org/10.1080/19648189.2022.2102082 | |
dc.relation.referencesen | Huang, Y., Yan, D., Yang, Z., & Liu, G. (2016). 2D and 3D homogenization and fracture analysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo simulations. Engineering Fracture Mechanics, 163, 37-54. DOI: https://doi.org/10.1016/j.engfracmech.2016.06.018 | |
dc.relation.referencesen | Wang, J., Wang, Y., Zhang, Y., Liu, Y., & Shi, C. (2022). Life cycle dynamic sustainability maintenance strategy optimization of fly ash RC beam based on Monte Carlo simulation. Journal of Cleaner Production, 351, 131337. DOI: https://doi.org/10.1016/j.jclepro.2022.131337 | |
dc.relation.referencesen | Badal, P. S., & Tesfamariam, S. (2023). Seismic resilience of typical code-conforming RC moment frame buildings in Canada. Earthquake Spectra, 39(2), 748-771. DOI: https://doi.org/10.1177/87552930221145455 | |
dc.relation.referencesen | Wang, J., Wu, Z., & Ye, X. (2023). Time-dependent reliability assessment of a simply supported girder bridge based on the third-moment method. Structures, 50, 1353-1367. DOI: https://doi.org/10.1016/j.istruc.2023.02.030 | |
dc.relation.referencesen | Zhang, Y., Xu, J., & Beer, M. (2023). A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction. Reliability Engineering & System Safety, 232, 109031. DOI: https://doi.org/10.1016/j.ress.2022.109031 | |
dc.relation.uri | https://doi.org/10.1007/978-3-031-14141-6_41 | |
dc.relation.uri | http://od-website.dk/books/OD-HOM-StrucRelMeth-Ed2.3.7.pdf | |
dc.relation.uri | https://dwg.ru/dnl/6899 | |
dc.relation.uri | https://doi.org/10.1088/1757-899X/1021/1/012014 | |
dc.relation.uri | https://scholar.google.com.ua/schhp?hl=uk | |
dc.relation.uri | https://doi.org/10.1590/S1983-41952012000400003 | |
dc.relation.uri | https://doi.org/10.1504/IJRS.2009.028581 | |
dc.relation.uri | https://doi.org/10.1016/j.engstruct.2023.116252 | |
dc.relation.uri | https://doi.org/10.1590/S1983-41952015000400004 | |
dc.relation.uri | https://dergipark.org.tr/en/pub/tekderg/issue/12749/155174 | |
dc.relation.uri | https://doi.org/10.3390/ma16031029 | |
dc.relation.uri | https://doi.org/10.14359/10715 | |
dc.relation.uri | https://doi.org/10.1680/jstbu.23.00014 | |
dc.relation.uri | https://doi.org/10.1088/1755-1315/304/5/052035 | |
dc.relation.uri | https://doi.org/10.12989/cac.2017.20.1.99 | |
dc.relation.uri | https://doi.org/10.1080/15732479.2016.1151447 | |
dc.relation.uri | https://doi.org/10.1080/19648189.2022.2102082 | |
dc.relation.uri | https://doi.org/10.1016/j.engfracmech.2016.06.018 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2022.131337 | |
dc.relation.uri | https://doi.org/10.1177/87552930221145455 | |
dc.relation.uri | https://doi.org/10.1016/j.istruc.2023.02.030 | |
dc.relation.uri | https://doi.org/10.1016/j.ress.2022.109031 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Tytarenko R., Khmil R., 2023 | |
dc.subject | методи Монте-Карло | |
dc.subject | функція розподілу | |
dc.subject | стохастична модель | |
dc.subject | імовірнісний аналіз | |
dc.subject | оцінка надійності | |
dc.subject | залізобетонний елемент | |
dc.subject | Monte Carlo methods | |
dc.subject | distribution function | |
dc.subject | stochastic model | |
dc.subject | probabilistic analysis | |
dc.subject | reliability assessment | |
dc.subject | reinforced concrete (RC) member | |
dc.title | Monte Carlo methods: a features review in terms of use for assessing the reliability of RC structures | |
dc.title.alternative | Огляд особливостей використання методів Монте-Карло під час оцінювання надійності залізобетонних конструкцій | |
dc.type | Article |
Files
License bundle
1 - 1 of 1