Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system

dc.citation.epage13
dc.citation.issue2
dc.citation.spage7
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСозанський, М. А.
dc.contributor.authorГумінілович, Р. Р.
dc.contributor.authorСтаднік, В. Є.
dc.contributor.authorКлапчук, О. В.
dc.contributor.authorШаповал, П. Й.
dc.contributor.authorSozanskyi, M. A.
dc.contributor.authorGuminilovych, R. R.
dc.contributor.authorStadnik, V. Ye.
dc.contributor.authorKlapchuk, O. V.
dc.contributor.authorShapoval, P. Yo.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:22Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractНа основі термодинамічних констант розраховано концентраційні межі вихідної цинк- вмісної солі та діапазон значень рН, за яких можливе осадження ZnS та ZnSe без Zn(OH)2. Граничні умови утворення твердого розчину ZnSxSe1–x у системі гідроксид – гідразин – тіосечовина – селен визначено за областю перекриття між побудованими зонами утворення ZnS та ZnSe. На основі математичних розрахунків вирішено завдання складної міжмолекулярної взаємодії між закомплексованими йонами цинку і двома халькогенізаторами у робочому розчині. Зразок плівки ZnSxSe1–x було осаджено в межах розрахованої області її утворення, що під- тверджено рентгенодифракційним та елементним аналізом.
dc.description.abstractBased on thermodynamic constants, the concentration limits of the initial zinc-containing salt and the range of pH values at which the depositions of ZnS and ZnSe without Zn(OH)2 are possible were calculated. The boundary conditions of the formation of the ZnSxSe1–x solid solution in the hydroxide-hydrazine-thiourea-selenium system were defined by the overlap area between the constructed ZnS and ZnSe formation zones. The task of complex intermolecular interaction between complexed zinc ions and two chalcogenizers in the working solution was solved on the basis of mathematical calculations. A sample of the ZnSxSe1–x film was deposited within the calculated area of its formation, which was confirmed by X-ray diffraction and elemental analysis.
dc.format.extent7-13
dc.format.pages7
dc.identifier.citationMathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system / M. A. Sozanskyi, R. R. Guminilovych, V. Ye. Stadnik, O. V. Klapchuk, P. Yo. Shapoval // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 7–13.
dc.identifier.citation2015Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system / Sozanskyi M. A. та ін. // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 7–13.
dc.identifier.citationenAPASozanskyi, M. A., Guminilovych, R. R., Stadnik, V. Ye., Klapchuk, O. V., & Shapoval, P. Yo. (2024). Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system. Chemistry, Technology and Application of Substances, 7(2), 7-13. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOSozanskyi M. A., Guminilovych R. R., Stadnik V. Ye., Klapchuk O. V., Shapoval P. Yo. (2024) Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 7-13.
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.007
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124447
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Sozanskyi, M. A., Shapoval, P. Yo., Chaykivska, R. T., Stadnik, V. Ye., & Yatchyshyn, Yo. Yo.(2016). Hidrokhimichnyy syntez tonkykh plivok tsynku selenidu (ZnSe) v prysutnosti natriyu hidroksydu ta yikhni vlastyvosti. Bulletin of Lviv Polytechnic National University. Series of Chemistry, Materials Technology and their Application, 841, 36–42. Retrieved from https://science.lpnu.ua/sites/default/files/journalpaper/2017/jun/3784/sozanskyi.pdf
dc.relation.references2. Kraus, W., & Nolze, G. (1996). Powder cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29,301–303. DOI: 10.1107/s0021889895014920
dc.relation.references3. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved fromDOI: 10.18434/M32154
dc.relation.references4. Feng, F., Li, K., Li, Y., & Ma, Z. (2017). Synthesis of hollow CUS and PDS via microwaveassisted Cation Exchange. Journal of Nanoscience and Nanotechnology, 17(5), 3615–3619.DOI: 10.1166/jnn.2017.13038
dc.relation.references5. Zhao, Q., Tang, Z., Pan, Y., Han, J., Yang, J., Guo, Y., Lai, X., Yang, Z., & Li, G. (2023). The Ksp gap enabled precipitation transformation reactions from transition metal hydroxides to sulfides for alkali metal ion storage. Inorganic Chemistry Frontiers, 10(11),3406–3414. DOI: 10.1039/d3qi00324h
dc.relation.references6. Pingale, P. C., Mane, S. T., Lendave, S. A., Kamble, S. S., Suryawanshi, R. V., Singh, A., Kothari, D. C., Deshmukh, L. P., & Sharon, M. (2013). Liquid phase chemical deposition of high tech ZnSe Thin Flims. Journal of Nepal Chemical Society, 30, 130–137. DOI:10.3126/jncs.v30i0.9384
dc.relation.references7. Pawar, S. W., Meshram, A. A., Tabhane, P., & Tabhane, V. A. (2018). Photochemical deposition of ZnSe thin films. Advanced Science, Engineering and Medicine,10(7), 767–772. DOI: 10.1166/asem.2018.2254
dc.relation.references8. Wen, Y., Bao, Z., & Wu, X. (2018). Research on recovery of valuable metals in waste acid from copper smelting flue gas acid-making and reduction and harmless treatment of solid wastes. The Minerals, Metals & Materials Series, 303–312. DOI: 10.1007/978-3-319-95022-8_24
dc.relation.references9. Haynes, W. M. (Ed.) (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press, Taylor & Francis Group. DOI: 10.1201/9781315380476
dc.relation.references10. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69–76. Retrieved from https://udhtu.edu.ua/public/userfiles/file/VHHT/2018/4/Sozanskyi.pdf
dc.relation.references11. Cameron, W. (2010). Cyanamides. Kirk-Othmer Encyclopedia of Chemical Technology, 1–15. DOI:10.1002/0471238961.0325011416012005.a01.pub3
dc.relation.references12. García-Valenzuela, J. A. (2016). Simple thiourea hydrolysis or intermediate complex mechanism? taking up the formation of metal sulfides from metal– thiourea alkaline solutions. Comments on Inorganic Chemistry, 37(2), 99–115. DOI: 10.1080/02603594.2016.1230547
dc.relation.references13. Shapoval, P., Sozanskyi, M., Yatchyshyn, I., Kulyk, B., Shpotyuk, M., & Gladyshevskii, R. (2016). The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions. Chemistry & Chemical Technology,10, 317–323. DOI: 10.23939/chcht10.03.317
dc.relation.references14. Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O.-S., & Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and Metal Oxide Thin Films. Current Applied Physics, 11, 117–161. DOI:10.1016/j.cap.2010.07.007
dc.relation.references15. Liu, J., Wei, A., & Zhao, Y. (2014). Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films. Journal of Alloys and Compounds, 588, 228–234. DOI: 10.1016/j.jallcom.2013.11.042
dc.relation.referencesen1. Sozanskyi, M. A., Shapoval, P. Yo., Chaykivska, R. T., Stadnik, V. Ye., & Yatchyshyn, Yo. Yo.(2016). Hidrokhimichnyy syntez tonkykh plivok tsynku selenidu (ZnSe) v prysutnosti natriyu hidroksydu ta yikhni vlastyvosti. Bulletin of Lviv Polytechnic National University. Series of Chemistry, Materials Technology and their Application, 841, 36–42. Retrieved from https://science.lpnu.ua/sites/default/files/journalpaper/2017/jun/3784/sozanskyi.pdf
dc.relation.referencesen2. Kraus, W., & Nolze, G. (1996). Powder cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29,301–303. DOI: 10.1107/s0021889895014920
dc.relation.referencesen3. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved fromDOI: 10.18434/M32154
dc.relation.referencesen4. Feng, F., Li, K., Li, Y., & Ma, Z. (2017). Synthesis of hollow CUS and PDS via microwaveassisted Cation Exchange. Journal of Nanoscience and Nanotechnology, 17(5), 3615–3619.DOI: 10.1166/jnn.2017.13038
dc.relation.referencesen5. Zhao, Q., Tang, Z., Pan, Y., Han, J., Yang, J., Guo, Y., Lai, X., Yang, Z., & Li, G. (2023). The Ksp gap enabled precipitation transformation reactions from transition metal hydroxides to sulfides for alkali metal ion storage. Inorganic Chemistry Frontiers, 10(11),3406–3414. DOI: 10.1039/d3qi00324h
dc.relation.referencesen6. Pingale, P. C., Mane, S. T., Lendave, S. A., Kamble, S. S., Suryawanshi, R. V., Singh, A., Kothari, D. C., Deshmukh, L. P., & Sharon, M. (2013). Liquid phase chemical deposition of high tech ZnSe Thin Flims. Journal of Nepal Chemical Society, 30, 130–137. DOI:10.3126/jncs.v30i0.9384
dc.relation.referencesen7. Pawar, S. W., Meshram, A. A., Tabhane, P., & Tabhane, V. A. (2018). Photochemical deposition of ZnSe thin films. Advanced Science, Engineering and Medicine,10(7), 767–772. DOI: 10.1166/asem.2018.2254
dc.relation.referencesen8. Wen, Y., Bao, Z., & Wu, X. (2018). Research on recovery of valuable metals in waste acid from copper smelting flue gas acid-making and reduction and harmless treatment of solid wastes. The Minerals, Metals & Materials Series, 303–312. DOI: 10.1007/978-3-319-95022-8_24
dc.relation.referencesen9. Haynes, W. M. (Ed.) (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press, Taylor & Francis Group. DOI: 10.1201/9781315380476
dc.relation.referencesen10. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69–76. Retrieved from https://udhtu.edu.ua/public/userfiles/file/VHHT/2018/4/Sozanskyi.pdf
dc.relation.referencesen11. Cameron, W. (2010). Cyanamides. Kirk-Othmer Encyclopedia of Chemical Technology, 1–15. DOI:10.1002/0471238961.0325011416012005.a01.pub3
dc.relation.referencesen12. García-Valenzuela, J. A. (2016). Simple thiourea hydrolysis or intermediate complex mechanism? taking up the formation of metal sulfides from metal– thiourea alkaline solutions. Comments on Inorganic Chemistry, 37(2), 99–115. DOI: 10.1080/02603594.2016.1230547
dc.relation.referencesen13. Shapoval, P., Sozanskyi, M., Yatchyshyn, I., Kulyk, B., Shpotyuk, M., & Gladyshevskii, R. (2016). The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions. Chemistry & Chemical Technology,10, 317–323. DOI: 10.23939/chcht10.03.317
dc.relation.referencesen14. Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O.-S., & Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and Metal Oxide Thin Films. Current Applied Physics, 11, 117–161. DOI:10.1016/j.cap.2010.07.007
dc.relation.referencesen15. Liu, J., Wei, A., & Zhao, Y. (2014). Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films. Journal of Alloys and Compounds, 588, 228–234. DOI: 10.1016/j.jallcom.2013.11.042
dc.relation.urihttps://science.lpnu.ua/sites/default/files/journalpaper/2017/jun/3784/sozanskyi.pdf
dc.relation.urihttps://udhtu.edu.ua/public/userfiles/file/VHHT/2018/4/Sozanskyi.pdf
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectсульфід цинку
dc.subjectселенід цинку
dc.subjectнапівпровідникові плівки
dc.subjectтвердий розчин
dc.subjectхімічний синтез
dc.subjectрентгенівська дифракція
dc.subjectzinc sulfide
dc.subjectzinc selenide
dc.subjectsemiconductor films
dc.subjectsolid solution
dc.subjectchemical synthesis
dc.subjectХ-ray diffraction
dc.titleMathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system
dc.title.alternativeМатематичний розрахунок граничних умов утворення сульфіду–селеніду цинку в системі гідроксид–гідразин–тіосечовина–селен
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Sozanskyi_M_A-Mathematical_calculation_7-13.pdf
Size:
357.1 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: