Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system
| dc.citation.epage | 13 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 7 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Созанський, М. А. | |
| dc.contributor.author | Гумінілович, Р. Р. | |
| dc.contributor.author | Стаднік, В. Є. | |
| dc.contributor.author | Клапчук, О. В. | |
| dc.contributor.author | Шаповал, П. Й. | |
| dc.contributor.author | Sozanskyi, M. A. | |
| dc.contributor.author | Guminilovych, R. R. | |
| dc.contributor.author | Stadnik, V. Ye. | |
| dc.contributor.author | Klapchuk, O. V. | |
| dc.contributor.author | Shapoval, P. Yo. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-15T13:53:22Z | |
| dc.date.created | 2024-10-10 | |
| dc.date.issued | 2024-10-10 | |
| dc.description.abstract | На основі термодинамічних констант розраховано концентраційні межі вихідної цинк- вмісної солі та діапазон значень рН, за яких можливе осадження ZnS та ZnSe без Zn(OH)2. Граничні умови утворення твердого розчину ZnSxSe1–x у системі гідроксид – гідразин – тіосечовина – селен визначено за областю перекриття між побудованими зонами утворення ZnS та ZnSe. На основі математичних розрахунків вирішено завдання складної міжмолекулярної взаємодії між закомплексованими йонами цинку і двома халькогенізаторами у робочому розчині. Зразок плівки ZnSxSe1–x було осаджено в межах розрахованої області її утворення, що під- тверджено рентгенодифракційним та елементним аналізом. | |
| dc.description.abstract | Based on thermodynamic constants, the concentration limits of the initial zinc-containing salt and the range of pH values at which the depositions of ZnS and ZnSe without Zn(OH)2 are possible were calculated. The boundary conditions of the formation of the ZnSxSe1–x solid solution in the hydroxide-hydrazine-thiourea-selenium system were defined by the overlap area between the constructed ZnS and ZnSe formation zones. The task of complex intermolecular interaction between complexed zinc ions and two chalcogenizers in the working solution was solved on the basis of mathematical calculations. A sample of the ZnSxSe1–x film was deposited within the calculated area of its formation, which was confirmed by X-ray diffraction and elemental analysis. | |
| dc.format.extent | 7-13 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system / M. A. Sozanskyi, R. R. Guminilovych, V. Ye. Stadnik, O. V. Klapchuk, P. Yo. Shapoval // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 7–13. | |
| dc.identifier.citation2015 | Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system / Sozanskyi M. A. та ін. // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 7–13. | |
| dc.identifier.citationenAPA | Sozanskyi, M. A., Guminilovych, R. R., Stadnik, V. Ye., Klapchuk, O. V., & Shapoval, P. Yo. (2024). Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system. Chemistry, Technology and Application of Substances, 7(2), 7-13. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Sozanskyi M. A., Guminilovych R. R., Stadnik V. Ye., Klapchuk O. V., Shapoval P. Yo. (2024) Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 7-13. | |
| dc.identifier.doi | https://doi.org/10.23939/ctas2024.02.007 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124447 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (7), 2024 | |
| dc.relation.references | 1. Sozanskyi, M. A., Shapoval, P. Yo., Chaykivska, R. T., Stadnik, V. Ye., & Yatchyshyn, Yo. Yo.(2016). Hidrokhimichnyy syntez tonkykh plivok tsynku selenidu (ZnSe) v prysutnosti natriyu hidroksydu ta yikhni vlastyvosti. Bulletin of Lviv Polytechnic National University. Series of Chemistry, Materials Technology and their Application, 841, 36–42. Retrieved from https://science.lpnu.ua/sites/default/files/journalpaper/2017/jun/3784/sozanskyi.pdf | |
| dc.relation.references | 2. Kraus, W., & Nolze, G. (1996). Powder cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29,301–303. DOI: 10.1107/s0021889895014920 | |
| dc.relation.references | 3. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved fromDOI: 10.18434/M32154 | |
| dc.relation.references | 4. Feng, F., Li, K., Li, Y., & Ma, Z. (2017). Synthesis of hollow CUS and PDS via microwaveassisted Cation Exchange. Journal of Nanoscience and Nanotechnology, 17(5), 3615–3619.DOI: 10.1166/jnn.2017.13038 | |
| dc.relation.references | 5. Zhao, Q., Tang, Z., Pan, Y., Han, J., Yang, J., Guo, Y., Lai, X., Yang, Z., & Li, G. (2023). The Ksp gap enabled precipitation transformation reactions from transition metal hydroxides to sulfides for alkali metal ion storage. Inorganic Chemistry Frontiers, 10(11),3406–3414. DOI: 10.1039/d3qi00324h | |
| dc.relation.references | 6. Pingale, P. C., Mane, S. T., Lendave, S. A., Kamble, S. S., Suryawanshi, R. V., Singh, A., Kothari, D. C., Deshmukh, L. P., & Sharon, M. (2013). Liquid phase chemical deposition of high tech ZnSe Thin Flims. Journal of Nepal Chemical Society, 30, 130–137. DOI:10.3126/jncs.v30i0.9384 | |
| dc.relation.references | 7. Pawar, S. W., Meshram, A. A., Tabhane, P., & Tabhane, V. A. (2018). Photochemical deposition of ZnSe thin films. Advanced Science, Engineering and Medicine,10(7), 767–772. DOI: 10.1166/asem.2018.2254 | |
| dc.relation.references | 8. Wen, Y., Bao, Z., & Wu, X. (2018). Research on recovery of valuable metals in waste acid from copper smelting flue gas acid-making and reduction and harmless treatment of solid wastes. The Minerals, Metals & Materials Series, 303–312. DOI: 10.1007/978-3-319-95022-8_24 | |
| dc.relation.references | 9. Haynes, W. M. (Ed.) (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press, Taylor & Francis Group. DOI: 10.1201/9781315380476 | |
| dc.relation.references | 10. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69–76. Retrieved from https://udhtu.edu.ua/public/userfiles/file/VHHT/2018/4/Sozanskyi.pdf | |
| dc.relation.references | 11. Cameron, W. (2010). Cyanamides. Kirk-Othmer Encyclopedia of Chemical Technology, 1–15. DOI:10.1002/0471238961.0325011416012005.a01.pub3 | |
| dc.relation.references | 12. García-Valenzuela, J. A. (2016). Simple thiourea hydrolysis or intermediate complex mechanism? taking up the formation of metal sulfides from metal– thiourea alkaline solutions. Comments on Inorganic Chemistry, 37(2), 99–115. DOI: 10.1080/02603594.2016.1230547 | |
| dc.relation.references | 13. Shapoval, P., Sozanskyi, M., Yatchyshyn, I., Kulyk, B., Shpotyuk, M., & Gladyshevskii, R. (2016). The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions. Chemistry & Chemical Technology,10, 317–323. DOI: 10.23939/chcht10.03.317 | |
| dc.relation.references | 14. Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O.-S., & Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and Metal Oxide Thin Films. Current Applied Physics, 11, 117–161. DOI:10.1016/j.cap.2010.07.007 | |
| dc.relation.references | 15. Liu, J., Wei, A., & Zhao, Y. (2014). Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films. Journal of Alloys and Compounds, 588, 228–234. DOI: 10.1016/j.jallcom.2013.11.042 | |
| dc.relation.referencesen | 1. Sozanskyi, M. A., Shapoval, P. Yo., Chaykivska, R. T., Stadnik, V. Ye., & Yatchyshyn, Yo. Yo.(2016). Hidrokhimichnyy syntez tonkykh plivok tsynku selenidu (ZnSe) v prysutnosti natriyu hidroksydu ta yikhni vlastyvosti. Bulletin of Lviv Polytechnic National University. Series of Chemistry, Materials Technology and their Application, 841, 36–42. Retrieved from https://science.lpnu.ua/sites/default/files/journalpaper/2017/jun/3784/sozanskyi.pdf | |
| dc.relation.referencesen | 2. Kraus, W., & Nolze, G. (1996). Powder cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29,301–303. DOI: 10.1107/s0021889895014920 | |
| dc.relation.referencesen | 3. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved fromDOI: 10.18434/M32154 | |
| dc.relation.referencesen | 4. Feng, F., Li, K., Li, Y., & Ma, Z. (2017). Synthesis of hollow CUS and PDS via microwaveassisted Cation Exchange. Journal of Nanoscience and Nanotechnology, 17(5), 3615–3619.DOI: 10.1166/jnn.2017.13038 | |
| dc.relation.referencesen | 5. Zhao, Q., Tang, Z., Pan, Y., Han, J., Yang, J., Guo, Y., Lai, X., Yang, Z., & Li, G. (2023). The Ksp gap enabled precipitation transformation reactions from transition metal hydroxides to sulfides for alkali metal ion storage. Inorganic Chemistry Frontiers, 10(11),3406–3414. DOI: 10.1039/d3qi00324h | |
| dc.relation.referencesen | 6. Pingale, P. C., Mane, S. T., Lendave, S. A., Kamble, S. S., Suryawanshi, R. V., Singh, A., Kothari, D. C., Deshmukh, L. P., & Sharon, M. (2013). Liquid phase chemical deposition of high tech ZnSe Thin Flims. Journal of Nepal Chemical Society, 30, 130–137. DOI:10.3126/jncs.v30i0.9384 | |
| dc.relation.referencesen | 7. Pawar, S. W., Meshram, A. A., Tabhane, P., & Tabhane, V. A. (2018). Photochemical deposition of ZnSe thin films. Advanced Science, Engineering and Medicine,10(7), 767–772. DOI: 10.1166/asem.2018.2254 | |
| dc.relation.referencesen | 8. Wen, Y., Bao, Z., & Wu, X. (2018). Research on recovery of valuable metals in waste acid from copper smelting flue gas acid-making and reduction and harmless treatment of solid wastes. The Minerals, Metals & Materials Series, 303–312. DOI: 10.1007/978-3-319-95022-8_24 | |
| dc.relation.referencesen | 9. Haynes, W. M. (Ed.) (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press, Taylor & Francis Group. DOI: 10.1201/9781315380476 | |
| dc.relation.referencesen | 10. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69–76. Retrieved from https://udhtu.edu.ua/public/userfiles/file/VHHT/2018/4/Sozanskyi.pdf | |
| dc.relation.referencesen | 11. Cameron, W. (2010). Cyanamides. Kirk-Othmer Encyclopedia of Chemical Technology, 1–15. DOI:10.1002/0471238961.0325011416012005.a01.pub3 | |
| dc.relation.referencesen | 12. García-Valenzuela, J. A. (2016). Simple thiourea hydrolysis or intermediate complex mechanism? taking up the formation of metal sulfides from metal– thiourea alkaline solutions. Comments on Inorganic Chemistry, 37(2), 99–115. DOI: 10.1080/02603594.2016.1230547 | |
| dc.relation.referencesen | 13. Shapoval, P., Sozanskyi, M., Yatchyshyn, I., Kulyk, B., Shpotyuk, M., & Gladyshevskii, R. (2016). The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions. Chemistry & Chemical Technology,10, 317–323. DOI: 10.23939/chcht10.03.317 | |
| dc.relation.referencesen | 14. Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O.-S., & Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and Metal Oxide Thin Films. Current Applied Physics, 11, 117–161. DOI:10.1016/j.cap.2010.07.007 | |
| dc.relation.referencesen | 15. Liu, J., Wei, A., & Zhao, Y. (2014). Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films. Journal of Alloys and Compounds, 588, 228–234. DOI: 10.1016/j.jallcom.2013.11.042 | |
| dc.relation.uri | https://science.lpnu.ua/sites/default/files/journalpaper/2017/jun/3784/sozanskyi.pdf | |
| dc.relation.uri | https://udhtu.edu.ua/public/userfiles/file/VHHT/2018/4/Sozanskyi.pdf | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.subject | сульфід цинку | |
| dc.subject | селенід цинку | |
| dc.subject | напівпровідникові плівки | |
| dc.subject | твердий розчин | |
| dc.subject | хімічний синтез | |
| dc.subject | рентгенівська дифракція | |
| dc.subject | zinc sulfide | |
| dc.subject | zinc selenide | |
| dc.subject | semiconductor films | |
| dc.subject | solid solution | |
| dc.subject | chemical synthesis | |
| dc.subject | Х-ray diffraction | |
| dc.title | Mathematical calculation of the boundary conditions for zinc sulfide–selenide formation in the hydroxide–hydrazine–thiourea–selenium system | |
| dc.title.alternative | Математичний розрахунок граничних умов утворення сульфіду–селеніду цинку в системі гідроксид–гідразин–тіосечовина–селен | |
| dc.type | Article |