Дослідження антиоксидантних властивостей екстрактів відкасника безстеблового (Carlina acaulis l.), арніки гірської (Arnica montana l.) та календули лікарської (Calendula officinalis l.)
| dc.citation.epage | 111 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 103 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Яремкевич, О. С. | |
| dc.contributor.author | Федоришин, О. М. | |
| dc.contributor.author | Yaremkevych, O. S. | |
| dc.contributor.author | Fedoryshyn, O. M. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T07:59:44Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Досліджено процеси пероксидного окиснення ліпідів (ПОЛ) та окисної модифікації протеїнів (ОМП) 40 % та 70 % водно-етанольних рослинних екстрактів (РЕ) кореня відкасника безстеблового (Carlina acaulis L.), суцвіть арніки гірської (Arnica montana L.) та календули лікарської (Calendula officinalisL.) на гепатоцитах печінки щура в умовах ініціювання вільнорадикального окиснення in vitro. Досліджувані РЕ зменшують утворення вільних радикалів у білках та ліпідах, що, очевидно, пов’язано з наявністю в екстрактах фенольних сполук, флавоноїдів та поліфенолів. Найкращі показники продемонстрували рослинні екстракти арніки та календули. Екстракт арніки у концентрації 40 % має кращі антиоксидантні властивості, ніж його 70 % екстракт. | |
| dc.description.abstract | The intensity of lipid peroxidation (LPO) and oxidative modification of proteins (OMP) was investigated under the influence of 40 % and 70 % aqueous-ethanol plant extracts (PE) of the root of Carlina acaulis L., flowers of Arnica montana L. and Calendula officinalis L. on rat liver hepatocytes under conditions of free radical oxidation initiation in vitro. Investigated plant extracts reduce the formation of free radicals in proteins and lipids, which is evidently associated with the presence of phenolic compounds, flavonoids, and polyphenols in the extracts. The best results were demonstrated by the plant extracts of arnica and calendula. Arnica extract at a concentration of 40 % exhibited better antioxidant properties than its 70 % extract. | |
| dc.format.extent | 103-111 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Яремкевич О. С. Дослідження антиоксидантних властивостей екстрактів відкасника безстеблового (Carlina acaulis l.), арніки гірської (Arnica montana l.) та календули лікарської (Calendula officinalis l.) / О. С. Яремкевич, О. М. Федоришин // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 103–111. | |
| dc.identifier.citationen | Yaremkevych O. S. Research on the antioxidant properties of extracts from stemless carline thistle (Carlina acaulis l.), mountain arnica (Arnica montana l.) and pot marigold (Calendula officinalis l.) / O. S. Yaremkevych, O. M. Fedoryshyn // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 103–111. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.103 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111733 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Rabasa, C.,Dickson, S. L. (2016). Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 9, 71-77. https://doi.org/10.1016/j.cobeha.2016.01.011 | |
| dc.relation.references | 2. Gupta, R. K., Patel, A. K., Shah, N., Choudhary, K. A., Jha, U. K., Yadav, U. C., Gupta, P. K., & Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: A Review. Asian Pacific Journal of Cancer Prevention, 15(11), 4405-4409. https://doi.org/10.7314/APJCP.2014.15.11.4405 | |
| dc.relation.references | 3. Petersen, R.C. (2017). Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophysics, 4(2), 240-283. https://doi:10.3934/biophy.2017.2.240 | |
| dc.relation.references | 4. Buchko, O., Havryliak, V., Yaremkevych, O., Konechna, R., & Ohorodnyk, N. (2019). Metabolic processes in the organism of animals under the action of plant extract. Regul. Mech. Biosyst., 10(2), 149, 3-12. https://doi.org/10.15421/021922 | |
| dc.relation.references | 5. Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., Kumar, S., Bhatti, G.K., & Reddy, P.H. (2022).Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184(1), 114-134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019 | |
| dc.relation.references | 6. Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol, 137289. https://doi.org/10.5402/2012/137289 | |
| dc.relation.references | 7. Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neuro-degenerative diseases. Annu. Rev. Pharmacol Toxicol, 36, 83−106. https://doi.org/10.1146/annurev.pa.36.040196.000503 | |
| dc.relation.references | 8. Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell Signal, 24(5), 981−90. https://doi.org/10.1016/j.cellsig.2012.01.008 | |
| dc.relation.references | 9. Srikanthan, K., Shapiro, J. I., &Sodhi, K. (2016). The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Obesity and Cardiovascular Disease. Molecules., 21(9), 1172. https://doi:10.3390/molecules21091172 | |
| dc.relation.references | 10. Shapoval, H. S. (2003). Mechanisms of antioxidant protection of the body under the action of active forms of oxygen. Ukraine biochem. journal, 75(2), 5-13. | |
| dc.relation.references | 11. Mizutani, T., & Masaki, H. (2014). Anti-photoaging capability of antioxidant extract from Camellia japonica leaf. Experimental Dermatology, 23(1), 23-26. https://doi:10.1111/exd.12395 | |
| dc.relation.references | 12. Ahn, K. (2017). The worldwide trend of using botanical drugs and strategies for developing global drugs. Biochemistry & Molecular Biology Reports, 50(3), 111-116. https://doi:10.5483/BMBRep.2017.50.3.221 | |
| dc.relation.references | 13. Chekman I. S. Flavonoyidy - kliniko-farmakolohichnyy aspekt. Fitoterapiya v Ukrayini. 2000. № 2. S. 3-5. | |
| dc.relation.references | 14. Pavela, R., Maggi, F., Petrelli, R., Cappellacci, L., Buccioni, M., Palmieri, A., Canale, A., &Benelli, G. (2020).Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol., 136, 111037. https://doi:10.1016/j.fct.2019.111037. | |
| dc.relation.references | 15. Dordevica, S., Tadica, V., Petrovic, S., Kucic-Markovic, Je., Dobric, S., Milenkovic, M., & Hadzifejzovice, N. (2012). Bioactivity assays on Carlina acaulis and C. acanthifolia root and herb extracts. Digest Journal of Nanomaterials and Biostructures, 7(3), 1213 - 1222. | |
| dc.relation.references | 16. Strzemskia, M., Wójciak-Kosiora, M., Sowaa, I., Załuskib, D., & Verpoortec, R. (2019). Historical and traditional medical applications of Carlina acaulis L. - A critical ethnopharmacological review. Journal of Ethnopharmacology, 239. https://doi.org/10.1016/j.jep.2019.111842 | |
| dc.relation.references | 17. Wnorowski, A., Wnorowska, S., Wojas-Krawczyk, K., Grenda, A., Staniak, M., Michalak, A., Woźniak, S., Matosiuk, D., Biała, G., Wójciak, M., Sowa, I., Krawczyk, P., & Strzemski, M. (2020). Toxicity of Carlina Oxide-A Natural Polyacetylene from the Carlina acaulis Roots - in vitro and in vivo study. Toxins, 12(4), 239. https://doi:10.3390/toxins12040239 | |
| dc.relation.references | 18. Fedoryshyn, O. M., Petrina, R. O., Krvavych, A. S., Kniazieva, K. S., Hubrii, Z. V., & Atamanyuk, V. M. (2023). Research on aspects of the extraction kinetics of metabolites of Carlina acaulis while mixing. Voprosy khimii i khimicheskoi tekhnologii, 1(146), 3-10. https://doi:10.32434/0321-4095-2023-146-1-3-10 | |
| dc.relation.references | 19. Konechna, R., Khropot, O., Petrina, R., Kurka, M., Gubriy, Z., & Novikov, V. (2017). Research of antioxidant properties of extracts of the plants and the callus biomass. Asian Journal of Pharmaceutical and Clinical Research, 10(7), 182-185. https://doi.org/10.22159/ajpcr.2017.v10i7.18408 | |
| dc.relation.references | 20. Dadi, T. H., Vahjen, W., & Zentek, J. (2020). Lythrum salicaria L. herb and gut microbiota of healthy post-weaning piglets. Focus on prebiotic properties and formation of postbiotic metabolites in ex vivo cultures. J. Ethnopharmacol, 261. https://doi.org/10.1016/j.jep.2020.113073 | |
| dc.relation.references | 21. Vorobetsʹ, N. M., & Pinyazhko, O. B. (2012). Fiziolohichno aktyvni rechovyny ta antyoksydantna aktyvnistʹ sutsvitʹ arniky hirsʹkoyi (Arnica montana). Ukrayinsʹkyy farmatsevtychnyy zhurnal, 1-2 (18-19), 82-85. | |
| dc.relation.references | 22. Pokorny, J. (2008). Application of phenolic antioxidants in food products. EJEAF Chem., 7, 3320-3324. | |
| dc.relation.references | 23. Pietta, P. G. (2000). Flavonoids as antioxidants. J.Nat.Food., 63,1035-1042. https://doi.org/10.1021/np9904509 | |
| dc.relation.references | 24. Roki, D., Menkovic, N., Savikin-Fodulovic, K., Krviokuca-Dokic, D., Ristic, M., &Grubisic, D. (2001). Flavonoids and essential oil in flower heads of inroduced Arnica chamissonis. J Herbs Spices Med Plants, 8(4), 19-27. https://doi.org/10.1300/J044v08n04_03 | |
| dc.relation.references | 25. Abbasi, A.M., Khan, M.A., & Ahmad, M. (2010). Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. Ethnopharmacol, 128, 322-335. https://doi.org/10.1016/j.jep.2010.01.052 | |
| dc.relation.references | 26. Spitaler, R., Schlorhaufer, P.D., & Ellmerer, E.P. (2006). Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana. Phytochemistry, 67, 409. https://doi:10.1016/j.phytochem.2005.11.018 | |
| dc.relation.references | 27. Della Loggia, R., Tubaro, A., Sosa, S., Becker, H., Saar, St., & Isaac, O. (1994). The role of triterpenoids in the topical antiinflammatory activity of Calendula officinalis flowers. Planta Med., 60, 516-520. https://doi:10.1055/s-2006-959562 | |
| dc.relation.references | 28. Sheludko, L. P., & Kutsenko, N. I. (2013). Medicinal plants (breeding and seed production): monograph. Poltava, 183-189. | |
| dc.relation.references | 29. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119. | |
| dc.relation.references | 30. Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2012). IBM SPSS for Introductory statistics. In: Use and Interpretation, 4-th ed.; Routledge Taylor & amp; Francis Group, New York. https://doi.org/10.4324/9780203127315 | |
| dc.relation.references | 31. Prochazkova, D., Bousova, I., & Wilhelmova, N. (2011). Antioxidant and properties of flavonoids. Fitoterapia, 82, 513-523. | |
| dc.relation.references | 32. Chekman, I. S. (2000). Flavonoids are a clinical and pharmacological aspect. Fitoterapiia v Ukraini, 2, 3-5. | |
| dc.relation.references | 33. Kishimoto, S., Maoka, T., Sumitomo, K., & Ohmiya, A. (2005). Analysis of carotenoid composition in petals of Calendula (Calendula officinalis L.). Biosci Biotechnol Biochem., 69(11), 2122-2128. https://doi.org/10.1271/bbb.69.2122. | |
| dc.relation.references | 34. Pintea, A., Bele, C., Andrei, S., & Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47(1-4), 37-40. https://www2.sci.u-szeged.hu/ABS/2003/ActaHP/4737.pdf. | |
| dc.relation.references | 35. Shahrbabaki, S. M. A. K., Zoalhasani, S., & Kodory, M. (2013). Effects of sowing date and nitrogen fertilizer on seed and flower yield of pot marigold (Calendula officinalis L.) in the Kerman. Adv Environ Biol., 7, 3925-3929. | |
| dc.relation.references | 36. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119. | |
| dc.relation.references | 37. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative Stress and Antioxidant Defense. W World Allergy Organization Journal, 5(1), 9-19. doi:10.1097/WOX.0b013e3182439613 | |
| dc.relation.referencesen | 1. Rabasa, C.,Dickson, S. L. (2016). Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 9, 71-77. https://doi.org/10.1016/j.cobeha.2016.01.011 | |
| dc.relation.referencesen | 2. Gupta, R. K., Patel, A. K., Shah, N., Choudhary, K. A., Jha, U. K., Yadav, U. C., Gupta, P. K., & Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: A Review. Asian Pacific Journal of Cancer Prevention, 15(11), 4405-4409. https://doi.org/10.7314/APJCP.2014.15.11.4405 | |
| dc.relation.referencesen | 3. Petersen, R.C. (2017). Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophysics, 4(2), 240-283. https://doi:10.3934/biophy.2017.2.240 | |
| dc.relation.referencesen | 4. Buchko, O., Havryliak, V., Yaremkevych, O., Konechna, R., & Ohorodnyk, N. (2019). Metabolic processes in the organism of animals under the action of plant extract. Regul. Mech. Biosyst., 10(2), 149, 3-12. https://doi.org/10.15421/021922 | |
| dc.relation.referencesen | 5. Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., Kumar, S., Bhatti, G.K., & Reddy, P.H. (2022).Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184(1), 114-134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019 | |
| dc.relation.referencesen | 6. Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol, 137289. https://doi.org/10.5402/2012/137289 | |
| dc.relation.referencesen | 7. Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neuro-degenerative diseases. Annu. Rev. Pharmacol Toxicol, 36, 83−106. https://doi.org/10.1146/annurev.pa.36.040196.000503 | |
| dc.relation.referencesen | 8. Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell Signal, 24(5), 981−90. https://doi.org/10.1016/j.cellsig.2012.01.008 | |
| dc.relation.referencesen | 9. Srikanthan, K., Shapiro, J. I., &Sodhi, K. (2016). The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Obesity and Cardiovascular Disease. Molecules., 21(9), 1172. https://doi:10.3390/molecules21091172 | |
| dc.relation.referencesen | 10. Shapoval, H. S. (2003). Mechanisms of antioxidant protection of the body under the action of active forms of oxygen. Ukraine biochem. journal, 75(2), 5-13. | |
| dc.relation.referencesen | 11. Mizutani, T., & Masaki, H. (2014). Anti-photoaging capability of antioxidant extract from Camellia japonica leaf. Experimental Dermatology, 23(1), 23-26. https://doi:10.1111/exd.12395 | |
| dc.relation.referencesen | 12. Ahn, K. (2017). The worldwide trend of using botanical drugs and strategies for developing global drugs. Biochemistry & Molecular Biology Reports, 50(3), 111-116. https://doi:10.5483/BMBRep.2017.50.3.221 | |
| dc.relation.referencesen | 13. Chekman I. S. Flavonoyidy - kliniko-farmakolohichnyy aspekt. Fitoterapiya v Ukrayini. 2000. No 2. S. 3-5. | |
| dc.relation.referencesen | 14. Pavela, R., Maggi, F., Petrelli, R., Cappellacci, L., Buccioni, M., Palmieri, A., Canale, A., &Benelli, G. (2020).Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol., 136, 111037. https://doi:10.1016/j.fct.2019.111037. | |
| dc.relation.referencesen | 15. Dordevica, S., Tadica, V., Petrovic, S., Kucic-Markovic, Je., Dobric, S., Milenkovic, M., & Hadzifejzovice, N. (2012). Bioactivity assays on Carlina acaulis and C. acanthifolia root and herb extracts. Digest Journal of Nanomaterials and Biostructures, 7(3), 1213 - 1222. | |
| dc.relation.referencesen | 16. Strzemskia, M., Wójciak-Kosiora, M., Sowaa, I., Załuskib, D., & Verpoortec, R. (2019). Historical and traditional medical applications of Carlina acaulis L, A critical ethnopharmacological review. Journal of Ethnopharmacology, 239. https://doi.org/10.1016/j.jep.2019.111842 | |
| dc.relation.referencesen | 17. Wnorowski, A., Wnorowska, S., Wojas-Krawczyk, K., Grenda, A., Staniak, M., Michalak, A., Woźniak, S., Matosiuk, D., Biała, G., Wójciak, M., Sowa, I., Krawczyk, P., & Strzemski, M. (2020). Toxicity of Carlina Oxide-A Natural Polyacetylene from the Carlina acaulis Roots - in vitro and in vivo study. Toxins, 12(4), 239. https://doi:10.3390/toxins12040239 | |
| dc.relation.referencesen | 18. Fedoryshyn, O. M., Petrina, R. O., Krvavych, A. S., Kniazieva, K. S., Hubrii, Z. V., & Atamanyuk, V. M. (2023). Research on aspects of the extraction kinetics of metabolites of Carlina acaulis while mixing. Voprosy khimii i khimicheskoi tekhnologii, 1(146), 3-10. https://doi:10.32434/0321-4095-2023-146-1-3-10 | |
| dc.relation.referencesen | 19. Konechna, R., Khropot, O., Petrina, R., Kurka, M., Gubriy, Z., & Novikov, V. (2017). Research of antioxidant properties of extracts of the plants and the callus biomass. Asian Journal of Pharmaceutical and Clinical Research, 10(7), 182-185. https://doi.org/10.22159/ajpcr.2017.v10i7.18408 | |
| dc.relation.referencesen | 20. Dadi, T. H., Vahjen, W., & Zentek, J. (2020). Lythrum salicaria L. herb and gut microbiota of healthy post-weaning piglets. Focus on prebiotic properties and formation of postbiotic metabolites in ex vivo cultures. J. Ethnopharmacol, 261. https://doi.org/10.1016/j.jep.2020.113073 | |
| dc.relation.referencesen | 21. Vorobetsʹ, N. M., & Pinyazhko, O. B. (2012). Fiziolohichno aktyvni rechovyny ta antyoksydantna aktyvnistʹ sutsvitʹ arniky hirsʹkoyi (Arnica montana). Ukrayinsʹkyy farmatsevtychnyy zhurnal, 1-2 (18-19), 82-85. | |
| dc.relation.referencesen | 22. Pokorny, J. (2008). Application of phenolic antioxidants in food products. EJEAF Chem., 7, 3320-3324. | |
| dc.relation.referencesen | 23. Pietta, P. G. (2000). Flavonoids as antioxidants. J.Nat.Food., 63,1035-1042. https://doi.org/10.1021/np9904509 | |
| dc.relation.referencesen | 24. Roki, D., Menkovic, N., Savikin-Fodulovic, K., Krviokuca-Dokic, D., Ristic, M., &Grubisic, D. (2001). Flavonoids and essential oil in flower heads of inroduced Arnica chamissonis. J Herbs Spices Med Plants, 8(4), 19-27. https://doi.org/10.1300/J044v08n04_03 | |
| dc.relation.referencesen | 25. Abbasi, A.M., Khan, M.A., & Ahmad, M. (2010). Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. Ethnopharmacol, 128, 322-335. https://doi.org/10.1016/j.jep.2010.01.052 | |
| dc.relation.referencesen | 26. Spitaler, R., Schlorhaufer, P.D., & Ellmerer, E.P. (2006). Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana. Phytochemistry, 67, 409. https://doi:10.1016/j.phytochem.2005.11.018 | |
| dc.relation.referencesen | 27. Della Loggia, R., Tubaro, A., Sosa, S., Becker, H., Saar, St., & Isaac, O. (1994). The role of triterpenoids in the topical antiinflammatory activity of Calendula officinalis flowers. Planta Med., 60, 516-520. https://doi:10.1055/s-2006-959562 | |
| dc.relation.referencesen | 28. Sheludko, L. P., & Kutsenko, N. I. (2013). Medicinal plants (breeding and seed production): monograph. Poltava, 183-189. | |
| dc.relation.referencesen | 29. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119. | |
| dc.relation.referencesen | 30. Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2012). IBM SPSS for Introductory statistics. In: Use and Interpretation, 4-th ed.; Routledge Taylor & amp; Francis Group, New York. https://doi.org/10.4324/9780203127315 | |
| dc.relation.referencesen | 31. Prochazkova, D., Bousova, I., & Wilhelmova, N. (2011). Antioxidant and properties of flavonoids. Fitoterapia, 82, 513-523. | |
| dc.relation.referencesen | 32. Chekman, I. S. (2000). Flavonoids are a clinical and pharmacological aspect. Fitoterapiia v Ukraini, 2, 3-5. | |
| dc.relation.referencesen | 33. Kishimoto, S., Maoka, T., Sumitomo, K., & Ohmiya, A. (2005). Analysis of carotenoid composition in petals of Calendula (Calendula officinalis L.). Biosci Biotechnol Biochem., 69(11), 2122-2128. https://doi.org/10.1271/bbb.69.2122. | |
| dc.relation.referencesen | 34. Pintea, A., Bele, C., Andrei, S., & Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47(1-4), 37-40. https://www2.sci.u-szeged.hu/ABS/2003/ActaHP/4737.pdf. | |
| dc.relation.referencesen | 35. Shahrbabaki, S. M. A. K., Zoalhasani, S., & Kodory, M. (2013). Effects of sowing date and nitrogen fertilizer on seed and flower yield of pot marigold (Calendula officinalis L.) in the Kerman. Adv Environ Biol., 7, 3925-3929. | |
| dc.relation.referencesen | 36. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119. | |
| dc.relation.referencesen | 37. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative Stress and Antioxidant Defense. W World Allergy Organization Journal, 5(1), 9-19. doi:10.1097/WOX.0b013e3182439613 | |
| dc.relation.uri | https://doi.org/10.1016/j.cobeha.2016.01.011 | |
| dc.relation.uri | https://doi.org/10.7314/APJCP.2014.15.11.4405 | |
| dc.relation.uri | https://doi:10.3934/biophy.2017.2.240 | |
| dc.relation.uri | https://doi.org/10.15421/021922 | |
| dc.relation.uri | https://doi.org/10.1016/j.freeradbiomed.2022.03.019 | |
| dc.relation.uri | https://doi.org/10.5402/2012/137289 | |
| dc.relation.uri | https://doi.org/10.1146/annurev.pa.36.040196.000503 | |
| dc.relation.uri | https://doi.org/10.1016/j.cellsig.2012.01.008 | |
| dc.relation.uri | https://doi:10.3390/molecules21091172 | |
| dc.relation.uri | https://doi:10.1111/exd.12395 | |
| dc.relation.uri | https://doi:10.5483/BMBRep.2017.50.3.221 | |
| dc.relation.uri | https://doi:10.1016/j.fct.2019.111037 | |
| dc.relation.uri | https://doi.org/10.1016/j.jep.2019.111842 | |
| dc.relation.uri | https://doi:10.3390/toxins12040239 | |
| dc.relation.uri | https://doi:10.32434/0321-4095-2023-146-1-3-10 | |
| dc.relation.uri | https://doi.org/10.22159/ajpcr.2017.v10i7.18408 | |
| dc.relation.uri | https://doi.org/10.1016/j.jep.2020.113073 | |
| dc.relation.uri | https://doi.org/10.1021/np9904509 | |
| dc.relation.uri | https://doi.org/10.1300/J044v08n04_03 | |
| dc.relation.uri | https://doi.org/10.1016/j.jep.2010.01.052 | |
| dc.relation.uri | https://doi:10.1016/j.phytochem.2005.11.018 | |
| dc.relation.uri | https://doi:10.1055/s-2006-959562 | |
| dc.relation.uri | https://doi.org/10.4324/9780203127315 | |
| dc.relation.uri | https://doi.org/10.1271/bbb.69.2122 | |
| dc.relation.uri | https://www2.sci.u-szeged.hu/ABS/2003/ActaHP/4737.pdf | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | антиоксидантна активність | |
| dc.subject | рослинний екстракт | |
| dc.subject | перекисне окиснення ліпідів (ПОЛ) | |
| dc.subject | окисна модифікація протеїнів (ОМП) | |
| dc.subject | Carlina acaulis L. | |
| dc.subject | Arnica montana L. | |
| dc.subject | Calendula officinalis L | |
| dc.subject | antioxidant activity | |
| dc.subject | plant extract | |
| dc.subject | lipid peroxidation (LPO) | |
| dc.subject | oxidative modification of proteins (OMP) | |
| dc.subject | Carlina acaulis L. | |
| dc.subject | Arnica montana L. | |
| dc.subject | Calendula officinalis L | |
| dc.title | Дослідження антиоксидантних властивостей екстрактів відкасника безстеблового (Carlina acaulis l.), арніки гірської (Arnica montana l.) та календули лікарської (Calendula officinalis l.) | |
| dc.title.alternative | Research on the antioxidant properties of extracts from stemless carline thistle (Carlina acaulis l.), mountain arnica (Arnica montana l.) and pot marigold (Calendula officinalis l.) | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1