Дослідження антиоксидантних властивостей екстрактів відкасника безстеблового (Carlina acaulis l.), арніки гірської (Arnica montana l.) та календули лікарської (Calendula officinalis l.)

dc.citation.epage111
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage103
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЯремкевич, О. С.
dc.contributor.authorФедоришин, О. М.
dc.contributor.authorYaremkevych, O. S.
dc.contributor.authorFedoryshyn, O. M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:44Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДосліджено процеси пероксидного окиснення ліпідів (ПОЛ) та окисної модифікації протеїнів (ОМП) 40 % та 70 % водно-етанольних рослинних екстрактів (РЕ) кореня відкасника безстеблового (Carlina acaulis L.), суцвіть арніки гірської (Arnica montana L.) та календули лікарської (Calendula officinalisL.) на гепатоцитах печінки щура в умовах ініціювання вільнорадикального окиснення in vitro. Досліджувані РЕ зменшують утворення вільних радикалів у білках та ліпідах, що, очевидно, пов’язано з наявністю в екстрактах фенольних сполук, флавоноїдів та поліфенолів. Найкращі показники продемонстрували рослинні екстракти арніки та календули. Екстракт арніки у концентрації 40 % має кращі антиоксидантні властивості, ніж його 70 % екстракт.
dc.description.abstractThe intensity of lipid peroxidation (LPO) and oxidative modification of proteins (OMP) was investigated under the influence of 40 % and 70 % aqueous-ethanol plant extracts (PE) of the root of Carlina acaulis L., flowers of Arnica montana L. and Calendula officinalis L. on rat liver hepatocytes under conditions of free radical oxidation initiation in vitro. Investigated plant extracts reduce the formation of free radicals in proteins and lipids, which is evidently associated with the presence of phenolic compounds, flavonoids, and polyphenols in the extracts. The best results were demonstrated by the plant extracts of arnica and calendula. Arnica extract at a concentration of 40 % exhibited better antioxidant properties than its 70 % extract.
dc.format.extent103-111
dc.format.pages9
dc.identifier.citationЯремкевич О. С. Дослідження антиоксидантних властивостей екстрактів відкасника безстеблового (Carlina acaulis l.), арніки гірської (Arnica montana l.) та календули лікарської (Calendula officinalis l.) / О. С. Яремкевич, О. М. Федоришин // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 103–111.
dc.identifier.citationenYaremkevych O. S. Research on the antioxidant properties of extracts from stemless carline thistle (Carlina acaulis l.), mountain arnica (Arnica montana l.) and pot marigold (Calendula officinalis l.) / O. S. Yaremkevych, O. M. Fedoryshyn // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 103–111.
dc.identifier.doidoi.org/10.23939/ctas2024.01.103
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111733
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Rabasa, C.,Dickson, S. L. (2016). Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 9, 71-77. https://doi.org/10.1016/j.cobeha.2016.01.011
dc.relation.references2. Gupta, R. K., Patel, A. K., Shah, N., Choudhary, K. A., Jha, U. K., Yadav, U. C., Gupta, P. K., & Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: A Review. Asian Pacific Journal of Cancer Prevention, 15(11), 4405-4409. https://doi.org/10.7314/APJCP.2014.15.11.4405
dc.relation.references3. Petersen, R.C. (2017). Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophysics, 4(2), 240-283. https://doi:10.3934/biophy.2017.2.240
dc.relation.references4. Buchko, O., Havryliak, V., Yaremkevych, O., Konechna, R., & Ohorodnyk, N. (2019). Metabolic processes in the organism of animals under the action of plant extract. Regul. Mech. Biosyst., 10(2), 149, 3-12. https://doi.org/10.15421/021922
dc.relation.references5. Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., Kumar, S., Bhatti, G.K., & Reddy, P.H. (2022).Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184(1), 114-134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
dc.relation.references6. Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol, 137289. https://doi.org/10.5402/2012/137289
dc.relation.references7. Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neuro-degenerative diseases. Annu. Rev. Pharmacol Toxicol, 36, 83−106. https://doi.org/10.1146/annurev.pa.36.040196.000503
dc.relation.references8. Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell Signal, 24(5), 981−90. https://doi.org/10.1016/j.cellsig.2012.01.008
dc.relation.references9. Srikanthan, K., Shapiro, J. I., &Sodhi, K. (2016). The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Obesity and Cardiovascular Disease. Molecules., 21(9), 1172. https://doi:10.3390/molecules21091172
dc.relation.references10. Shapoval, H. S. (2003). Mechanisms of antioxidant protection of the body under the action of active forms of oxygen. Ukraine biochem. journal, 75(2), 5-13.
dc.relation.references11. Mizutani, T., & Masaki, H. (2014). Anti-photoaging capability of antioxidant extract from Camellia japonica leaf. Experimental Dermatology, 23(1), 23-26. https://doi:10.1111/exd.12395
dc.relation.references12. Ahn, K. (2017). The worldwide trend of using botanical drugs and strategies for developing global drugs. Biochemistry & Molecular Biology Reports, 50(3), 111-116. https://doi:10.5483/BMBRep.2017.50.3.221
dc.relation.references13. Chekman I. S. Flavonoyidy - kliniko-farmakolohichnyy aspekt. Fitoterapiya v Ukrayini. 2000. № 2. S. 3-5.
dc.relation.references14. Pavela, R., Maggi, F., Petrelli, R., Cappellacci, L., Buccioni, M., Palmieri, A., Canale, A., &Benelli, G. (2020).Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol., 136, 111037. https://doi:10.1016/j.fct.2019.111037.
dc.relation.references15. Dordevica, S., Tadica, V., Petrovic, S., Kucic-Markovic, Je., Dobric, S., Milenkovic, M., & Hadzifejzovice, N. (2012). Bioactivity assays on Carlina acaulis and C. acanthifolia root and herb extracts. Digest Journal of Nanomaterials and Biostructures, 7(3), 1213 - 1222.
dc.relation.references16. Strzemskia, M., Wójciak-Kosiora, M., Sowaa, I., Załuskib, D., & Verpoortec, R. (2019). Historical and traditional medical applications of Carlina acaulis L. - A critical ethnopharmacological review. Journal of Ethnopharmacology, 239. https://doi.org/10.1016/j.jep.2019.111842
dc.relation.references17. Wnorowski, A., Wnorowska, S., Wojas-Krawczyk, K., Grenda, A., Staniak, M., Michalak, A., Woźniak, S., Matosiuk, D., Biała, G., Wójciak, M., Sowa, I., Krawczyk, P., & Strzemski, M. (2020). Toxicity of Carlina Oxide-A Natural Polyacetylene from the Carlina acaulis Roots - in vitro and in vivo study. Toxins, 12(4), 239. https://doi:10.3390/toxins12040239
dc.relation.references18. Fedoryshyn, O. M., Petrina, R. O., Krvavych, A. S., Kniazieva, K. S., Hubrii, Z. V., & Atamanyuk, V. M. (2023). Research on aspects of the extraction kinetics of metabolites of Carlina acaulis while mixing. Voprosy khimii i khimicheskoi tekhnologii, 1(146), 3-10. https://doi:10.32434/0321-4095-2023-146-1-3-10
dc.relation.references19. Konechna, R., Khropot, O., Petrina, R., Kurka, M., Gubriy, Z., & Novikov, V. (2017). Research of antioxidant properties of extracts of the plants and the callus biomass. Asian Journal of Pharmaceutical and Clinical Research, 10(7), 182-185. https://doi.org/10.22159/ajpcr.2017.v10i7.18408
dc.relation.references20. Dadi, T. H., Vahjen, W., & Zentek, J. (2020). Lythrum salicaria L. herb and gut microbiota of healthy post-weaning piglets. Focus on prebiotic properties and formation of postbiotic metabolites in ex vivo cultures. J. Ethnopharmacol, 261. https://doi.org/10.1016/j.jep.2020.113073
dc.relation.references21. Vorobetsʹ, N. M., & Pinyazhko, O. B. (2012). Fiziolohichno aktyvni rechovyny ta antyoksydantna aktyvnistʹ sutsvitʹ arniky hirsʹkoyi (Arnica montana). Ukrayinsʹkyy farmatsevtychnyy zhurnal, 1-2 (18-19), 82-85.
dc.relation.references22. Pokorny, J. (2008). Application of phenolic antioxidants in food products. EJEAF Chem., 7, 3320-3324.
dc.relation.references23. Pietta, P. G. (2000). Flavonoids as antioxidants. J.Nat.Food., 63,1035-1042. https://doi.org/10.1021/np9904509
dc.relation.references24. Roki, D., Menkovic, N., Savikin-Fodulovic, K., Krviokuca-Dokic, D., Ristic, M., &Grubisic, D. (2001). Flavonoids and essential oil in flower heads of inroduced Arnica chamissonis. J Herbs Spices Med Plants, 8(4), 19-27. https://doi.org/10.1300/J044v08n04_03
dc.relation.references25. Abbasi, A.M., Khan, M.A., & Ahmad, M. (2010). Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. Ethnopharmacol, 128, 322-335. https://doi.org/10.1016/j.jep.2010.01.052
dc.relation.references26. Spitaler, R., Schlorhaufer, P.D., & Ellmerer, E.P. (2006). Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana. Phytochemistry, 67, 409. https://doi:10.1016/j.phytochem.2005.11.018
dc.relation.references27. Della Loggia, R., Tubaro, A., Sosa, S., Becker, H., Saar, St., & Isaac, O. (1994). The role of triterpenoids in the topical antiinflammatory activity of Calendula officinalis flowers. Planta Med., 60, 516-520. https://doi:10.1055/s-2006-959562
dc.relation.references28. Sheludko, L. P., & Kutsenko, N. I. (2013). Medicinal plants (breeding and seed production): monograph. Poltava, 183-189.
dc.relation.references29. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119.
dc.relation.references30. Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2012). IBM SPSS for Introductory statistics. In: Use and Interpretation, 4-th ed.; Routledge Taylor & amp; Francis Group, New York. https://doi.org/10.4324/9780203127315
dc.relation.references31. Prochazkova, D., Bousova, I., & Wilhelmova, N. (2011). Antioxidant and properties of flavonoids. Fitoterapia, 82, 513-523.
dc.relation.references32. Chekman, I. S. (2000). Flavonoids are a clinical and pharmacological aspect. Fitoterapiia v Ukraini, 2, 3-5.
dc.relation.references33. Kishimoto, S., Maoka, T., Sumitomo, K., & Ohmiya, A. (2005). Analysis of carotenoid composition in petals of Calendula (Calendula officinalis L.). Biosci Biotechnol Biochem., 69(11), 2122-2128. https://doi.org/10.1271/bbb.69.2122.
dc.relation.references34. Pintea, A., Bele, C., Andrei, S., & Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47(1-4), 37-40. https://www2.sci.u-szeged.hu/ABS/2003/ActaHP/4737.pdf.
dc.relation.references35. Shahrbabaki, S. M. A. K., Zoalhasani, S., & Kodory, M. (2013). Effects of sowing date and nitrogen fertilizer on seed and flower yield of pot marigold (Calendula officinalis L.) in the Kerman. Adv Environ Biol., 7, 3925-3929.
dc.relation.references36. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119.
dc.relation.references37. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative Stress and Antioxidant Defense. W World Allergy Organization Journal, 5(1), 9-19. doi:10.1097/WOX.0b013e3182439613
dc.relation.referencesen1. Rabasa, C.,Dickson, S. L. (2016). Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 9, 71-77. https://doi.org/10.1016/j.cobeha.2016.01.011
dc.relation.referencesen2. Gupta, R. K., Patel, A. K., Shah, N., Choudhary, K. A., Jha, U. K., Yadav, U. C., Gupta, P. K., & Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: A Review. Asian Pacific Journal of Cancer Prevention, 15(11), 4405-4409. https://doi.org/10.7314/APJCP.2014.15.11.4405
dc.relation.referencesen3. Petersen, R.C. (2017). Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophysics, 4(2), 240-283. https://doi:10.3934/biophy.2017.2.240
dc.relation.referencesen4. Buchko, O., Havryliak, V., Yaremkevych, O., Konechna, R., & Ohorodnyk, N. (2019). Metabolic processes in the organism of animals under the action of plant extract. Regul. Mech. Biosyst., 10(2), 149, 3-12. https://doi.org/10.15421/021922
dc.relation.referencesen5. Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., Kumar, S., Bhatti, G.K., & Reddy, P.H. (2022).Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184(1), 114-134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
dc.relation.referencesen6. Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol, 137289. https://doi.org/10.5402/2012/137289
dc.relation.referencesen7. Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neuro-degenerative diseases. Annu. Rev. Pharmacol Toxicol, 36, 83−106. https://doi.org/10.1146/annurev.pa.36.040196.000503
dc.relation.referencesen8. Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell Signal, 24(5), 981−90. https://doi.org/10.1016/j.cellsig.2012.01.008
dc.relation.referencesen9. Srikanthan, K., Shapiro, J. I., &Sodhi, K. (2016). The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Obesity and Cardiovascular Disease. Molecules., 21(9), 1172. https://doi:10.3390/molecules21091172
dc.relation.referencesen10. Shapoval, H. S. (2003). Mechanisms of antioxidant protection of the body under the action of active forms of oxygen. Ukraine biochem. journal, 75(2), 5-13.
dc.relation.referencesen11. Mizutani, T., & Masaki, H. (2014). Anti-photoaging capability of antioxidant extract from Camellia japonica leaf. Experimental Dermatology, 23(1), 23-26. https://doi:10.1111/exd.12395
dc.relation.referencesen12. Ahn, K. (2017). The worldwide trend of using botanical drugs and strategies for developing global drugs. Biochemistry & Molecular Biology Reports, 50(3), 111-116. https://doi:10.5483/BMBRep.2017.50.3.221
dc.relation.referencesen13. Chekman I. S. Flavonoyidy - kliniko-farmakolohichnyy aspekt. Fitoterapiya v Ukrayini. 2000. No 2. S. 3-5.
dc.relation.referencesen14. Pavela, R., Maggi, F., Petrelli, R., Cappellacci, L., Buccioni, M., Palmieri, A., Canale, A., &Benelli, G. (2020).Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol., 136, 111037. https://doi:10.1016/j.fct.2019.111037.
dc.relation.referencesen15. Dordevica, S., Tadica, V., Petrovic, S., Kucic-Markovic, Je., Dobric, S., Milenkovic, M., & Hadzifejzovice, N. (2012). Bioactivity assays on Carlina acaulis and C. acanthifolia root and herb extracts. Digest Journal of Nanomaterials and Biostructures, 7(3), 1213 - 1222.
dc.relation.referencesen16. Strzemskia, M., Wójciak-Kosiora, M., Sowaa, I., Załuskib, D., & Verpoortec, R. (2019). Historical and traditional medical applications of Carlina acaulis L, A critical ethnopharmacological review. Journal of Ethnopharmacology, 239. https://doi.org/10.1016/j.jep.2019.111842
dc.relation.referencesen17. Wnorowski, A., Wnorowska, S., Wojas-Krawczyk, K., Grenda, A., Staniak, M., Michalak, A., Woźniak, S., Matosiuk, D., Biała, G., Wójciak, M., Sowa, I., Krawczyk, P., & Strzemski, M. (2020). Toxicity of Carlina Oxide-A Natural Polyacetylene from the Carlina acaulis Roots - in vitro and in vivo study. Toxins, 12(4), 239. https://doi:10.3390/toxins12040239
dc.relation.referencesen18. Fedoryshyn, O. M., Petrina, R. O., Krvavych, A. S., Kniazieva, K. S., Hubrii, Z. V., & Atamanyuk, V. M. (2023). Research on aspects of the extraction kinetics of metabolites of Carlina acaulis while mixing. Voprosy khimii i khimicheskoi tekhnologii, 1(146), 3-10. https://doi:10.32434/0321-4095-2023-146-1-3-10
dc.relation.referencesen19. Konechna, R., Khropot, O., Petrina, R., Kurka, M., Gubriy, Z., & Novikov, V. (2017). Research of antioxidant properties of extracts of the plants and the callus biomass. Asian Journal of Pharmaceutical and Clinical Research, 10(7), 182-185. https://doi.org/10.22159/ajpcr.2017.v10i7.18408
dc.relation.referencesen20. Dadi, T. H., Vahjen, W., & Zentek, J. (2020). Lythrum salicaria L. herb and gut microbiota of healthy post-weaning piglets. Focus on prebiotic properties and formation of postbiotic metabolites in ex vivo cultures. J. Ethnopharmacol, 261. https://doi.org/10.1016/j.jep.2020.113073
dc.relation.referencesen21. Vorobetsʹ, N. M., & Pinyazhko, O. B. (2012). Fiziolohichno aktyvni rechovyny ta antyoksydantna aktyvnistʹ sutsvitʹ arniky hirsʹkoyi (Arnica montana). Ukrayinsʹkyy farmatsevtychnyy zhurnal, 1-2 (18-19), 82-85.
dc.relation.referencesen22. Pokorny, J. (2008). Application of phenolic antioxidants in food products. EJEAF Chem., 7, 3320-3324.
dc.relation.referencesen23. Pietta, P. G. (2000). Flavonoids as antioxidants. J.Nat.Food., 63,1035-1042. https://doi.org/10.1021/np9904509
dc.relation.referencesen24. Roki, D., Menkovic, N., Savikin-Fodulovic, K., Krviokuca-Dokic, D., Ristic, M., &Grubisic, D. (2001). Flavonoids and essential oil in flower heads of inroduced Arnica chamissonis. J Herbs Spices Med Plants, 8(4), 19-27. https://doi.org/10.1300/J044v08n04_03
dc.relation.referencesen25. Abbasi, A.M., Khan, M.A., & Ahmad, M. (2010). Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. Ethnopharmacol, 128, 322-335. https://doi.org/10.1016/j.jep.2010.01.052
dc.relation.referencesen26. Spitaler, R., Schlorhaufer, P.D., & Ellmerer, E.P. (2006). Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana. Phytochemistry, 67, 409. https://doi:10.1016/j.phytochem.2005.11.018
dc.relation.referencesen27. Della Loggia, R., Tubaro, A., Sosa, S., Becker, H., Saar, St., & Isaac, O. (1994). The role of triterpenoids in the topical antiinflammatory activity of Calendula officinalis flowers. Planta Med., 60, 516-520. https://doi:10.1055/s-2006-959562
dc.relation.referencesen28. Sheludko, L. P., & Kutsenko, N. I. (2013). Medicinal plants (breeding and seed production): monograph. Poltava, 183-189.
dc.relation.referencesen29. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119.
dc.relation.referencesen30. Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2012). IBM SPSS for Introductory statistics. In: Use and Interpretation, 4-th ed.; Routledge Taylor & amp; Francis Group, New York. https://doi.org/10.4324/9780203127315
dc.relation.referencesen31. Prochazkova, D., Bousova, I., & Wilhelmova, N. (2011). Antioxidant and properties of flavonoids. Fitoterapia, 82, 513-523.
dc.relation.referencesen32. Chekman, I. S. (2000). Flavonoids are a clinical and pharmacological aspect. Fitoterapiia v Ukraini, 2, 3-5.
dc.relation.referencesen33. Kishimoto, S., Maoka, T., Sumitomo, K., & Ohmiya, A. (2005). Analysis of carotenoid composition in petals of Calendula (Calendula officinalis L.). Biosci Biotechnol Biochem., 69(11), 2122-2128. https://doi.org/10.1271/bbb.69.2122.
dc.relation.referencesen34. Pintea, A., Bele, C., Andrei, S., & Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47(1-4), 37-40. https://www2.sci.u-szeged.hu/ABS/2003/ActaHP/4737.pdf.
dc.relation.referencesen35. Shahrbabaki, S. M. A. K., Zoalhasani, S., & Kodory, M. (2013). Effects of sowing date and nitrogen fertilizer on seed and flower yield of pot marigold (Calendula officinalis L.) in the Kerman. Adv Environ Biol., 7, 3925-3929.
dc.relation.referencesen36. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119.
dc.relation.referencesen37. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative Stress and Antioxidant Defense. W World Allergy Organization Journal, 5(1), 9-19. doi:10.1097/WOX.0b013e3182439613
dc.relation.urihttps://doi.org/10.1016/j.cobeha.2016.01.011
dc.relation.urihttps://doi.org/10.7314/APJCP.2014.15.11.4405
dc.relation.urihttps://doi:10.3934/biophy.2017.2.240
dc.relation.urihttps://doi.org/10.15421/021922
dc.relation.urihttps://doi.org/10.1016/j.freeradbiomed.2022.03.019
dc.relation.urihttps://doi.org/10.5402/2012/137289
dc.relation.urihttps://doi.org/10.1146/annurev.pa.36.040196.000503
dc.relation.urihttps://doi.org/10.1016/j.cellsig.2012.01.008
dc.relation.urihttps://doi:10.3390/molecules21091172
dc.relation.urihttps://doi:10.1111/exd.12395
dc.relation.urihttps://doi:10.5483/BMBRep.2017.50.3.221
dc.relation.urihttps://doi:10.1016/j.fct.2019.111037
dc.relation.urihttps://doi.org/10.1016/j.jep.2019.111842
dc.relation.urihttps://doi:10.3390/toxins12040239
dc.relation.urihttps://doi:10.32434/0321-4095-2023-146-1-3-10
dc.relation.urihttps://doi.org/10.22159/ajpcr.2017.v10i7.18408
dc.relation.urihttps://doi.org/10.1016/j.jep.2020.113073
dc.relation.urihttps://doi.org/10.1021/np9904509
dc.relation.urihttps://doi.org/10.1300/J044v08n04_03
dc.relation.urihttps://doi.org/10.1016/j.jep.2010.01.052
dc.relation.urihttps://doi:10.1016/j.phytochem.2005.11.018
dc.relation.urihttps://doi:10.1055/s-2006-959562
dc.relation.urihttps://doi.org/10.4324/9780203127315
dc.relation.urihttps://doi.org/10.1271/bbb.69.2122
dc.relation.urihttps://www2.sci.u-szeged.hu/ABS/2003/ActaHP/4737.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectантиоксидантна активність
dc.subjectрослинний екстракт
dc.subjectперекисне окиснення ліпідів (ПОЛ)
dc.subjectокисна модифікація протеїнів (ОМП)
dc.subjectCarlina acaulis L.
dc.subjectArnica montana L.
dc.subjectCalendula officinalis L
dc.subjectantioxidant activity
dc.subjectplant extract
dc.subjectlipid peroxidation (LPO)
dc.subjectoxidative modification of proteins (OMP)
dc.subjectCarlina acaulis L.
dc.subjectArnica montana L.
dc.subjectCalendula officinalis L
dc.titleДослідження антиоксидантних властивостей екстрактів відкасника безстеблового (Carlina acaulis l.), арніки гірської (Arnica montana l.) та календули лікарської (Calendula officinalis l.)
dc.title.alternativeResearch on the antioxidant properties of extracts from stemless carline thistle (Carlina acaulis l.), mountain arnica (Arnica montana l.) and pot marigold (Calendula officinalis l.)
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Yaremkevych_O_S-Research_on_the_antioxidant_103-111.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Yaremkevych_O_S-Research_on_the_antioxidant_103-111__COVER.png
Size:
436.1 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: