Thermometric Bridge Circuits for Measuring Thermophysical Properties
Date
2021-06-01
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Lviv Politechnic Publishing House
Abstract
У цій статті наиведено конструкції ряду приладів для вимірювання теплопровідності твердих матеріалів
розроблені на основі нових методологічних підходів, запропонованих авторами статті, що дозволяють проводити вимірювання в широкому діапазоні значень теплопровідності з вищою точністю. В основі запропонованих підходів використано принцип інваріантності – забезпечення компенсації впливу різних неінформативних параметрів на результат вимірювання. Для розрахунку розроблених мостових теплових вимірювальних схем (зрівноважених, незрівноважених та неповного зрівноваження) застосовано теорію теплових
кіл, яка ґрунтується на аналогії процесів переносу тепла й електрики. Побудова приладів для вимірювання
теплопровідності на основі мостових теплових вимірювальних схем дає змогу значно підвищити точність
вимірювання теплофізичних характеристик матеріалів за рахунок зменшення похибок від впливу неінформативних параметрів на результат вимірювань. Це, своєю чергою, дало змогу розширити діапазон вимірювання значень теплопровідності, підвищити надійність і зменшити собівартість приладів унаслідок спрощення вимірювальної схеми.
The article presents the designs of a number of devices for measuring the thermal conductivity of solids developed using the new methodological approaches proposed by the authors, which enable measurements in a wide range of thermal conductivity values with better accuracy. The proposed approaches rely on the principle of invariance, which consists in ensuring the compensation of the effect of various non-informative parameters on the measurement result. For calculating the developed thermometric bridge circuits (balanced, unbalanced and partially balanced), there was applied the theory of thermal circuits based on the similarity between heat transfer and electricity transfer. The design of thermometric devices based on thermometric bridge circuits makes it possible to raise significantly the accuracy of measuring thermophysical properties of materials due to the reduced errors stemming from the effect of non-informative parameters on the measurement result. This, in turn, allowed the extended measurement range for the thermal conductivity, increased reliability and reduced cost of the devices owing to the simplified measuring circuit.
The article presents the designs of a number of devices for measuring the thermal conductivity of solids developed using the new methodological approaches proposed by the authors, which enable measurements in a wide range of thermal conductivity values with better accuracy. The proposed approaches rely on the principle of invariance, which consists in ensuring the compensation of the effect of various non-informative parameters on the measurement result. For calculating the developed thermometric bridge circuits (balanced, unbalanced and partially balanced), there was applied the theory of thermal circuits based on the similarity between heat transfer and electricity transfer. The design of thermometric devices based on thermometric bridge circuits makes it possible to raise significantly the accuracy of measuring thermophysical properties of materials due to the reduced errors stemming from the effect of non-informative parameters on the measurement result. This, in turn, allowed the extended measurement range for the thermal conductivity, increased reliability and reduced cost of the devices owing to the simplified measuring circuit.
Description
Keywords
коефіцієнт теплопровідності, мостова теплова вимірювальна схема, досліджуваний зразок, еталонний зразок, тепловий опір, теплопровідне коло, thermal conductivity coefficient, thermometric bridge circuit, test specimen, reference specimen, thermal resistance, thermal conductivity circuit
Citation
Vasylkivskyi I. Thermometric Bridge Circuits for Measuring Thermophysical Properties / Ihor Vasylkivskyi, Vasyl Fedynets, Yaroslav Yusyk // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 2. — P. 127–136.