Analysis of thermodynamic, stress-strain, and loaded states of chromium-nickel alloy workpieces using machining process simulation in advantage software

dc.citation.epage62
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage45
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorStupnytskyy, Vadym
dc.contributor.authorProdanchuk, Oleh
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-06T10:26:06Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractMachining difficult-to-cut materials, which include most high-alloy chromium-nickel steels and alloys, requires optimization of cutting parameters, correct application of tool materials, cutting blade geometry, etc. The particular relevance of a scientifically based analysis in addressing these issues is due to the large costs incurred in machining products made from such materials. The possibilities of experimental research to provide correct technological recommendations are quite limited. Instead, analytical modeling is imperfect due to the complexity of formalizing dynamic processes accompanied by fast-moving power, thermodynamic, and stress-strain phenomena. An effective research mechanism is simulation modeling of the cutting process of a hard-to-machine material (including in the AdvantEdge software). The article presents an analysis of the results of simulation studies of the influence of the main parameters of machining (depth and cutting speed) on the formation of power, thermodynamic, and stress-strain (including residual) parameters formed during cutting of chromium-nickel alloy Inconel IN 718. This analysis allows us to conclude the feasibility of choosing cutting parameters to ensure the effective performance properties of products made of this material.
dc.format.extent45-62
dc.format.pages18
dc.identifier.citationStupnytskyy V. Analysis of thermodynamic, stress-strain, and loaded states of chromium-nickel alloy workpieces using machining process simulation in advantage software / Stupnytskyy Vadym, Prodanchuk Oleh // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 45–62.
dc.identifier.citationenStupnytskyy V. Analysis of thermodynamic, stress-strain, and loaded states of chromium-nickel alloy workpieces using machining process simulation in advantage software / Stupnytskyy Vadym, Prodanchuk Oleh // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 45–62.
dc.identifier.doidoi.org/10.23939/ujmems2024.01.045
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64008
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 1 (10), 2024
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 1 (10), 2024
dc.relation.references[1] P. Zheng, H. Wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, et al. "Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives", Frontiers of Mechanical Engineering, vol. 13, pp. 137-150, 2018 https://doi.org/10.1007/s11465-018-0499-5
dc.relation.references[2] B. Meindl, N. F. Ayala, J. Mendonça, A. G. Frank, "The four smarts of Industry 4.0: Evolution of ten years of research and future perspectives", Technological Forecasting and Social Change, vol.168, 120784, 2021 https://doi.org/10.1016/j.techfore.2021.120784
dc.relation.references[3] U. Şeker, I. Ciftci, H. Hasirci, "The effect of alloying elements on surface roughness and cutting forces during machining of ductile iron", Materials & Design, vol.24, no. 1, pp. 47-51, 2003 https://doi.org/10.1016/S0261-3069(02)00081-X
dc.relation.references[4] E. Alizadeh, "Factors influencing the machinability of sintered steels", Powder Metallurgy and Metal Ceramics, vol.47 , pp. 304-315, 2008 https://doi.org/10.1007/s11106-008-9021-7
dc.relation.references[5] Davim J. (eds). Machining of Hard Materials, Springer, London, 2011. https://doi.org/10.1007/978-1-84996-450-0
dc.relation.references[6] O. Ivchenko, et al., "Method for an Effective Selection of Tools and Cutting Conditions during Precise Turning of Non-Alloy Quality Steel C45", Materials, vol.15, no 2, 505, 2022. https://doi.org/10.3390/ma15020505
dc.relation.references[7] S. Debnath, M. M. Reddy, Q. S. Yi. "Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method", Measurement, vol.7, no. 8, pp. 111-119, 2016 https://doi.org/10.1016/j.measurement.2015.09.011
dc.relation.references[8] V. Stupnytskyy, I. Hrytsay, "Simulation study of cutting-induced residual stress", in Design, Simulation, Manufacturing: The Innovation Exchange, vol.1, pp. 341-350, 2020. https://doi.org/10.1007/978-3-030-22365-6_34
dc.relation.references[9] C. Shan, M. Zhang, S. Zhang, J. Dang, "Prediction of machining-induced residual stress in orthogonal cutting of Ti6Al4V", The International Journal of Advanced Manufacturing Technology, vol.107, pp. 2375-2385, 2020 https://doi.org/10.1007/s00170-020-05181-5
dc.relation.references[10] D. Zhu, X. Zhang, H. Ding, "Tool wear characteristics in machining of nickel-based superalloys", International Journal of Machine Tools and Manufacture, vol. 64, pp. 60-77, 2013. https://doi.org/10.1016/j.ijmachtools.2012.08.001
dc.relation.references[11] V. P. Astakhov, S. Shvets, "The assessment of plastic deformation in metal cutting", Journal of Materials Processing Technology, vol.146, no. 2, pp. 193-202, 2004. https://doi.org/10.1016/j.jmatprotec.2003.10.015
dc.relation.references[12] S. P. F. C. Jaspers, J. H. Dautzenberg, "Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone", Journal of Materials Processing Technology, vol. 122, no. 2-3, pp. 322-330, 2002 https://doi.org/10.1016/S0924-0136(01)01228-6
dc.relation.references[13] F. Liang, M. Sauceau, G. Dusserre, J.-L. Dirion, P. Arlabosse, "Modelling of the rheological behavior of mechanically dewatered sewage sludge in uniaxial cyclic compression", Water Research, vol. 147, pp. 413-421, 2018. https://doi.org/10.1016/j.watres.2018.10.016
dc.relation.references[14] D. Gomez-Marquez, E. Ledesma-Orozco, R. Hino et al. "Numerical study on the hot compression test for bulk metal forming application", SN Applied Sciences, vol. 4, 220, 2022. https://doi.org/10.1007/s42452-022-05093-x
dc.relation.references[15] C. Constantin, et al. "FEM tools for cutting process modelling and simulation", Scientific Bulletin, Series D: Mechanical Engineering, vol. 74, no. 4, pp. 149-162, 2012.
dc.relation.referencesen[1] P. Zheng, H. Wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, et al. "Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives", Frontiers of Mechanical Engineering, vol. 13, pp. 137-150, 2018 https://doi.org/10.1007/s11465-018-0499-5
dc.relation.referencesen[2] B. Meindl, N. F. Ayala, J. Mendonça, A. G. Frank, "The four smarts of Industry 4.0: Evolution of ten years of research and future perspectives", Technological Forecasting and Social Change, vol.168, 120784, 2021 https://doi.org/10.1016/j.techfore.2021.120784
dc.relation.referencesen[3] U. Şeker, I. Ciftci, H. Hasirci, "The effect of alloying elements on surface roughness and cutting forces during machining of ductile iron", Materials & Design, vol.24, no. 1, pp. 47-51, 2003 https://doi.org/10.1016/S0261-3069(02)00081-X
dc.relation.referencesen[4] E. Alizadeh, "Factors influencing the machinability of sintered steels", Powder Metallurgy and Metal Ceramics, vol.47 , pp. 304-315, 2008 https://doi.org/10.1007/s11106-008-9021-7
dc.relation.referencesen[5] Davim J. (eds). Machining of Hard Materials, Springer, London, 2011. https://doi.org/10.1007/978-1-84996-450-0
dc.relation.referencesen[6] O. Ivchenko, et al., "Method for an Effective Selection of Tools and Cutting Conditions during Precise Turning of Non-Alloy Quality Steel P.45", Materials, vol.15, no 2, 505, 2022. https://doi.org/10.3390/ma15020505
dc.relation.referencesen[7] S. Debnath, M. M. Reddy, Q. S. Yi. "Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method", Measurement, vol.7, no. 8, pp. 111-119, 2016 https://doi.org/10.1016/j.measurement.2015.09.011
dc.relation.referencesen[8] V. Stupnytskyy, I. Hrytsay, "Simulation study of cutting-induced residual stress", in Design, Simulation, Manufacturing: The Innovation Exchange, vol.1, pp. 341-350, 2020. https://doi.org/10.1007/978-3-030-22365-6_34
dc.relation.referencesen[9] C. Shan, M. Zhang, S. Zhang, J. Dang, "Prediction of machining-induced residual stress in orthogonal cutting of Ti6Al4V", The International Journal of Advanced Manufacturing Technology, vol.107, pp. 2375-2385, 2020 https://doi.org/10.1007/s00170-020-05181-5
dc.relation.referencesen[10] D. Zhu, X. Zhang, H. Ding, "Tool wear characteristics in machining of nickel-based superalloys", International Journal of Machine Tools and Manufacture, vol. 64, pp. 60-77, 2013. https://doi.org/10.1016/j.ijmachtools.2012.08.001
dc.relation.referencesen[11] V. P. Astakhov, S. Shvets, "The assessment of plastic deformation in metal cutting", Journal of Materials Processing Technology, vol.146, no. 2, pp. 193-202, 2004. https://doi.org/10.1016/j.jmatprotec.2003.10.015
dc.relation.referencesen[12] S. P. F. C. Jaspers, J. H. Dautzenberg, "Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone", Journal of Materials Processing Technology, vol. 122, no. 2-3, pp. 322-330, 2002 https://doi.org/10.1016/S0924-0136(01)01228-6
dc.relation.referencesen[13] F. Liang, M. Sauceau, G. Dusserre, J.-L. Dirion, P. Arlabosse, "Modelling of the rheological behavior of mechanically dewatered sewage sludge in uniaxial cyclic compression", Water Research, vol. 147, pp. 413-421, 2018. https://doi.org/10.1016/j.watres.2018.10.016
dc.relation.referencesen[14] D. Gomez-Marquez, E. Ledesma-Orozco, R. Hino et al. "Numerical study on the hot compression test for bulk metal forming application", SN Applied Sciences, vol. 4, 220, 2022. https://doi.org/10.1007/s42452-022-05093-x
dc.relation.referencesen[15] C. Constantin, et al. "FEM tools for cutting process modelling and simulation", Scientific Bulletin, Series D: Mechanical Engineering, vol. 74, no. 4, pp. 149-162, 2012.
dc.relation.urihttps://doi.org/10.1007/s11465-018-0499-5
dc.relation.urihttps://doi.org/10.1016/j.techfore.2021.120784
dc.relation.urihttps://doi.org/10.1016/S0261-3069(02)00081-X
dc.relation.urihttps://doi.org/10.1007/s11106-008-9021-7
dc.relation.urihttps://doi.org/10.1007/978-1-84996-450-0
dc.relation.urihttps://doi.org/10.3390/ma15020505
dc.relation.urihttps://doi.org/10.1016/j.measurement.2015.09.011
dc.relation.urihttps://doi.org/10.1007/978-3-030-22365-6_34
dc.relation.urihttps://doi.org/10.1007/s00170-020-05181-5
dc.relation.urihttps://doi.org/10.1016/j.ijmachtools.2012.08.001
dc.relation.urihttps://doi.org/10.1016/j.jmatprotec.2003.10.015
dc.relation.urihttps://doi.org/10.1016/S0924-0136(01)01228-6
dc.relation.urihttps://doi.org/10.1016/j.watres.2018.10.016
dc.relation.urihttps://doi.org/10.1007/s42452-022-05093-x
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Stupnytskyy V., Prodanchuk O., 2024
dc.subjectdifficult-to-cut materials
dc.subjectcutting
dc.subjectchromium-nickel alloy
dc.subjectstress-strain state
dc.subjectresidual stress
dc.subjectthermodynamic state
dc.subjectAdvantEdge
dc.titleAnalysis of thermodynamic, stress-strain, and loaded states of chromium-nickel alloy workpieces using machining process simulation in advantage software
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Stupnytskyy_V-Analysis_of_thermodynamic_45-62.pdf
Size:
12.28 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Stupnytskyy_V-Analysis_of_thermodynamic_45-62__COVER.png
Size:
474.01 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: