Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis
dc.citation.epage | 120 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Environmental Problems | |
dc.citation.spage | 115 | |
dc.citation.volume | 3 | |
dc.contributor.affiliation | Sumy State University | |
dc.contributor.author | Chernysh, Yelizaveta | |
dc.contributor.author | Plyatsuk, Leonid | |
dc.contributor.author | Gabbassova, Sabina | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2019-03-25T11:16:04Z | |
dc.date.available | 2019-03-25T11:16:04Z | |
dc.date.created | 2018-02-01 | |
dc.date.issued | 2018-02-01 | |
dc.description.abstract | Ecological and biochemical analysis of transformations of sulfur compounds of natural and technogenic genesis is carried out in the article. Biochemical analysis was based on metabolic models of bacteria Thiobacillus sp., Acidithiobacillus sp. etc. and the study of ecological trophic groups of microorganisms using the KEGG database to establish the regularities of sulfur transformations produced using secondary raw materials. The ways of attracting bacterially transformed sulfur by plant systems as an environmentally safe direction for improving S-nutrition in the ecosystem were determined. | |
dc.format.extent | 115-120 | |
dc.format.pages | 6 | |
dc.identifier.citation | Chernysh Y. Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis / Yelizaveta Chernysh, Leonid Plyatsuk, Sabina Gabbassova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 115–120. | |
dc.identifier.citationen | Chernysh Y. Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis / Yelizaveta Chernysh, Leonid Plyatsuk, Sabina Gabbassova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 115–120. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/44782 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Environmental Problems, 2 (3), 2018 | |
dc.relation.references | [1] Höfgen R. Amino Acid and Sulfur Metabolism. Information from site of Department Willmitzer of The Max Planck Institute of Molecular Plant Physiology. –2018 – Available at: http://www.mpimp-golm.mpg.de/5892/2hoefgen | |
dc.relation.references | [2] Palego L. Sulfur Metabolism and Sulfur-Containing Amino Acids: I- Molecular Effectors / L. Palego, L. Betti, G. Giannaccini // Biochem Pharmacol (Los Angel). – 2015. – No 4: 158. doi: 10.4172/2167-0501.1000158. – Available at: https://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099 | |
dc.relation.references | [3] Gahan J. The role of bacteria and mycorrhiza in plant sulfur supply / J. Gahan, A. Schmalenberger // Front Plant Sci. – 2014. – No 5: 723. doi: 10.3389/fpls.2014.00723 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179 | |
dc.relation.references | [4] Anantharaman K. Sulfur oxidation genes in diverse deep-sea viruses / K. Anantharaman, M. B. Duhaime, J. A. Breier, K. A. Wendt, B. M. Toner, G. J. Dick // Science. – 2014. – Vol. 344(6185). – P. 757–760. – Available at: https://www.ncbi.nlm.nih.gov/pubmed /24789974 | |
dc.relation.references | [5] Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea / Ghosh W., Dam B. // FEMS Microbiol Rev. – 2009. – No. 33(6). – P. 999–1043. doi: 10.1111/j.1574-6976.2009.00187.x. – Available at: https://www.ncbi.nlm.nih.gov/pubmed/19645821 | |
dc.relation.references | [6] KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet – Available at: http://www.kegg.jp/keggbin/show_pathway?ko00920+K13811. | |
dc.relation.references | [7] Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis / J. Valdés, F. Veloso, E. Jedlicki, D. Holmes // BMC Genomics. – 2003. – Vol. 4: 51. doi: 10.1186/1471-2164-4-51 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/ | |
dc.relation.references | [8] Suzuki I. Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions / I. Suzuki // Canadian Journal of Microbiology. – 1999. – Vol. 45(2). – P. 97–105. – Available at: https://doi.org/10.1139/w98-223 | |
dc.relation.references | [9] Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans / Huaqun Yin, Xian Zhang, Xiaoqi Li [etc.] // BMC Microbiol. – 2014. – Vol. 14: 179. doi:10.1186/1471-2180-14-179 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/ | |
dc.relation.references | [10] Chernish Ye. Opportunity of biochemical process for phosphogypsum utilization / Ye. Chernish, L. Plyatsuk // The Journal of Solid waste technology and management. – 2016. – Vol. 42, No. 2. – P. 108–115. | |
dc.relation.references | [11] Plyatsuk L. D. The Removal of Hydrogen Sulfide in the Biodesulfurization System Using Granulated Phosphogypsum / L. D. Plyatsuk , Y. Y. Chernysh // Eurasian Chemico-Technological Journal. – 2016. – Vol. 18, No. 1. – P. 47–54. | |
dc.relation.referencesen | [1] Höfgen R. Amino Acid and Sulfur Metabolism. Information from site of Department Willmitzer of The Max Planck Institute of Molecular Plant Physiology. –2018 – Available at: http://www.mpimp-golm.mpg.de/5892/2hoefgen | |
dc.relation.referencesen | [2] Palego L. Sulfur Metabolism and Sulfur-Containing Amino Acids: I- Molecular Effectors, L. Palego, L. Betti, G. Giannaccini, Biochem Pharmacol (Los Angel), 2015, No 4: 158. doi: 10.4172/2167-0501.1000158, Available at: https://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099 | |
dc.relation.referencesen | [3] Gahan J. The role of bacteria and mycorrhiza in plant sulfur supply, J. Gahan, A. Schmalenberger, Front Plant Sci, 2014, No 5: 723. doi: 10.3389/fpls.2014.00723 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179 | |
dc.relation.referencesen | [4] Anantharaman K. Sulfur oxidation genes in diverse deep-sea viruses, K. Anantharaman, M. B. Duhaime, J. A. Breier, K. A. Wendt, B. M. Toner, G. J. Dick, Science, 2014, Vol. 344(6185), P. 757–760, Available at: https://www.ncbi.nlm.nih.gov/pubmed /24789974 | |
dc.relation.referencesen | [5] Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea, Ghosh W., Dam B., FEMS Microbiol Rev, 2009, No. 33(6), P. 999–1043. doi: 10.1111/j.1574-6976.2009.00187.x, Available at: https://www.ncbi.nlm.nih.gov/pubmed/19645821 | |
dc.relation.referencesen | [6] KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet – Available at: http://www.kegg.jp/keggbin/show_pathway?ko00920+K13811. | |
dc.relation.referencesen | [7] Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis, J. Valdés, F. Veloso, E. Jedlicki, D. Holmes, BMC Genomics, 2003, Vol. 4: 51. doi: 10.1186/1471-2164-4-51 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/ | |
dc.relation.referencesen | [8] Suzuki I. Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions, I. Suzuki, Canadian Journal of Microbiology, 1999, Vol. 45(2), P. 97–105, Available at: https://doi.org/10.1139/w98-223 | |
dc.relation.referencesen | [9] Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans, Huaqun Yin, Xian Zhang, Xiaoqi Li [etc.], BMC Microbiol, 2014, Vol. 14: 179. doi:10.1186/1471-2180-14-179 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/ | |
dc.relation.referencesen | [10] Chernish Ye. Opportunity of biochemical process for phosphogypsum utilization, Ye. Chernish, L. Plyatsuk, The Journal of Solid waste technology and management, 2016, Vol. 42, No. 2, P. 108–115. | |
dc.relation.referencesen | [11] Plyatsuk L. D. The Removal of Hydrogen Sulfide in the Biodesulfurization System Using Granulated Phosphogypsum, L. D. Plyatsuk , Y. Y. Chernysh, Eurasian Chemico-Technological Journal, 2016, Vol. 18, No. 1, P. 47–54. | |
dc.relation.uri | http://www.mpimp-golm.mpg.de/5892/2hoefgen | |
dc.relation.uri | https://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/19645821 | |
dc.relation.uri | http://www.kegg.jp/keggbin/show_pathway?ko00920+K13811 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/ | |
dc.relation.uri | https://doi.org/10.1139/w98-223 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/ | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2018 | |
dc.rights.holder | © Chernysh Yе., Plyatsuk L., Gabbassova S., 2018 | |
dc.subject | ecological and biochemical analysis | |
dc.subject | sulfur compounds | |
dc.subject | metabolic models | |
dc.subject | agro-ecosystem | |
dc.subject | secondary raw materials | |
dc.title | Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis | |
dc.type | Article |
Files
License bundle
1 - 1 of 1