Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis

dc.citation.epage120
dc.citation.issue2
dc.citation.journalTitleEnvironmental Problems
dc.citation.spage115
dc.citation.volume3
dc.contributor.affiliationSumy State University
dc.contributor.authorChernysh, Yelizaveta
dc.contributor.authorPlyatsuk, Leonid
dc.contributor.authorGabbassova, Sabina
dc.coverage.placenameLviv
dc.date.accessioned2019-03-25T11:16:04Z
dc.date.available2019-03-25T11:16:04Z
dc.date.created2018-02-01
dc.date.issued2018-02-01
dc.description.abstractEcological and biochemical analysis of transformations of sulfur compounds of natural and technogenic genesis is carried out in the article. Biochemical analysis was based on metabolic models of bacteria Thiobacillus sp., Acidithiobacillus sp. etc. and the study of ecological trophic groups of microorganisms using the KEGG database to establish the regularities of sulfur transformations produced using secondary raw materials. The ways of attracting bacterially transformed sulfur by plant systems as an environmentally safe direction for improving S-nutrition in the ecosystem were determined.
dc.format.extent115-120
dc.format.pages6
dc.identifier.citationChernysh Y. Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis / Yelizaveta Chernysh, Leonid Plyatsuk, Sabina Gabbassova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 115–120.
dc.identifier.citationenChernysh Y. Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis / Yelizaveta Chernysh, Leonid Plyatsuk, Sabina Gabbassova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 115–120.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44782
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 2 (3), 2018
dc.relation.references[1] Höfgen R. Amino Acid and Sulfur Metabolism. Information from site of Department Willmitzer of The Max Planck Institute of Molecular Plant Physiology. –2018 – Available at: http://www.mpimp-golm.mpg.de/5892/2hoefgen
dc.relation.references[2] Palego L. Sulfur Metabolism and Sulfur-Containing Amino Acids: I- Molecular Effectors / L. Palego, L. Betti, G. Giannaccini // Biochem Pharmacol (Los Angel). – 2015. – No 4: 158. doi: 10.4172/2167-0501.1000158. – Available at: https://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099
dc.relation.references[3] Gahan J. The role of bacteria and mycorrhiza in plant sulfur supply / J. Gahan, A. Schmalenberger // Front Plant Sci. – 2014. – No 5: 723. doi: 10.3389/fpls.2014.00723 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179
dc.relation.references[4] Anantharaman K. Sulfur oxidation genes in diverse deep-sea viruses / K. Anantharaman, M. B. Duhaime, J. A. Breier, K. A. Wendt, B. M. Toner, G. J. Dick // Science. – 2014. – Vol. 344(6185). – P. 757–760. – Available at: https://www.ncbi.nlm.nih.gov/pubmed /24789974
dc.relation.references[5] Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea / Ghosh W., Dam B. // FEMS Microbiol Rev. – 2009. – No. 33(6). – P. 999–1043. doi: 10.1111/j.1574-6976.2009.00187.x. – Available at: https://www.ncbi.nlm.nih.gov/pubmed/19645821
dc.relation.references[6] KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet – Available at: http://www.kegg.jp/keggbin/show_pathway?ko00920+K13811.
dc.relation.references[7] Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis / J. Valdés, F. Veloso, E. Jedlicki, D. Holmes // BMC Genomics. – 2003. – Vol. 4: 51. doi: 10.1186/1471-2164-4-51 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/
dc.relation.references[8] Suzuki I. Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions / I. Suzuki // Canadian Journal of Microbiology. – 1999. – Vol. 45(2). – P. 97–105. – Available at: https://doi.org/10.1139/w98-223
dc.relation.references[9] Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans / Huaqun Yin, Xian Zhang, Xiaoqi Li [etc.] // BMC Microbiol. – 2014. – Vol. 14: 179. doi:10.1186/1471-2180-14-179 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/
dc.relation.references[10] Chernish Ye. Opportunity of biochemical process for phosphogypsum utilization / Ye. Chernish, L. Plyatsuk // The Journal of Solid waste technology and management. – 2016. – Vol. 42, No. 2. – P. 108–115.
dc.relation.references[11] Plyatsuk L. D. The Removal of Hydrogen Sulfide in the Biodesulfurization System Using Granulated Phosphogypsum / L. D. Plyatsuk , Y. Y. Chernysh // Eurasian Chemico-Technological Journal. – 2016. – Vol. 18, No. 1. – P. 47–54.
dc.relation.referencesen[1] Höfgen R. Amino Acid and Sulfur Metabolism. Information from site of Department Willmitzer of The Max Planck Institute of Molecular Plant Physiology. –2018 – Available at: http://www.mpimp-golm.mpg.de/5892/2hoefgen
dc.relation.referencesen[2] Palego L. Sulfur Metabolism and Sulfur-Containing Amino Acids: I- Molecular Effectors, L. Palego, L. Betti, G. Giannaccini, Biochem Pharmacol (Los Angel), 2015, No 4: 158. doi: 10.4172/2167-0501.1000158, Available at: https://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099
dc.relation.referencesen[3] Gahan J. The role of bacteria and mycorrhiza in plant sulfur supply, J. Gahan, A. Schmalenberger, Front Plant Sci, 2014, No 5: 723. doi: 10.3389/fpls.2014.00723 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179
dc.relation.referencesen[4] Anantharaman K. Sulfur oxidation genes in diverse deep-sea viruses, K. Anantharaman, M. B. Duhaime, J. A. Breier, K. A. Wendt, B. M. Toner, G. J. Dick, Science, 2014, Vol. 344(6185), P. 757–760, Available at: https://www.ncbi.nlm.nih.gov/pubmed /24789974
dc.relation.referencesen[5] Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea, Ghosh W., Dam B., FEMS Microbiol Rev, 2009, No. 33(6), P. 999–1043. doi: 10.1111/j.1574-6976.2009.00187.x, Available at: https://www.ncbi.nlm.nih.gov/pubmed/19645821
dc.relation.referencesen[6] KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet – Available at: http://www.kegg.jp/keggbin/show_pathway?ko00920+K13811.
dc.relation.referencesen[7] Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis, J. Valdés, F. Veloso, E. Jedlicki, D. Holmes, BMC Genomics, 2003, Vol. 4: 51. doi: 10.1186/1471-2164-4-51 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/
dc.relation.referencesen[8] Suzuki I. Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions, I. Suzuki, Canadian Journal of Microbiology, 1999, Vol. 45(2), P. 97–105, Available at: https://doi.org/10.1139/w98-223
dc.relation.referencesen[9] Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans, Huaqun Yin, Xian Zhang, Xiaoqi Li [etc.], BMC Microbiol, 2014, Vol. 14: 179. doi:10.1186/1471-2180-14-179 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/
dc.relation.referencesen[10] Chernish Ye. Opportunity of biochemical process for phosphogypsum utilization, Ye. Chernish, L. Plyatsuk, The Journal of Solid waste technology and management, 2016, Vol. 42, No. 2, P. 108–115.
dc.relation.referencesen[11] Plyatsuk L. D. The Removal of Hydrogen Sulfide in the Biodesulfurization System Using Granulated Phosphogypsum, L. D. Plyatsuk , Y. Y. Chernysh, Eurasian Chemico-Technological Journal, 2016, Vol. 18, No. 1, P. 47–54.
dc.relation.urihttp://www.mpimp-golm.mpg.de/5892/2hoefgen
dc.relation.urihttps://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/19645821
dc.relation.urihttp://www.kegg.jp/keggbin/show_pathway?ko00920+K13811
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/
dc.relation.urihttps://doi.org/10.1139/w98-223
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder© Chernysh Yе., Plyatsuk L., Gabbassova S., 2018
dc.subjectecological and biochemical analysis
dc.subjectsulfur compounds
dc.subjectmetabolic models
dc.subjectagro-ecosystem
dc.subjectsecondary raw materials
dc.titleEnvironmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2018v3n2_Chernysh_Y-Environmental_biochemical_115-120.pdf
Size:
304.64 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2018v3n2_Chernysh_Y-Environmental_biochemical_115-120__COVER.png
Size:
1.13 MB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.98 KB
Format:
Plain Text
Description: