Missile Strike Simulation in a Video Game Engine
dc.citation.epage | 55 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Енергетика та системи керування | |
dc.citation.spage | 43 | |
dc.contributor.affiliation | Національний університет “Одеська морська академія” | |
dc.contributor.affiliation | National University “Odesa Maritime Academy” | |
dc.contributor.author | Тошев, Олександр | |
dc.contributor.author | Максимов, Олексій | |
dc.contributor.author | Кіріакіді, Максим | |
dc.contributor.author | Максимов, Максим | |
dc.contributor.author | Toshev, Oleksandr | |
dc.contributor.author | Maksymov, Oleksii | |
dc.contributor.author | Kiriakidi, Maksym | |
dc.contributor.author | Maksymov, Maksym | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-10T08:12:26Z | |
dc.date.created | 2024-02-28 | |
dc.date.issued | 2024-02-28 | |
dc.description.abstract | У сфері сучасних комп’ютерних ігор (особливо в жанрі бойових стратегій, реалістичних стрільців від першої особи та інших військових ігор) складність віртуальних морських бойових механізмів і стратегій значно зростає. Збільшується попит на летальніші симуляції, щоб забезпечити максимально реалістичний досвід і більш складний ігровий процес для всіх гравців. Метою цього дослідження є створення моделі та інструменту, які можуть точно передбачити вплив протикорабельних ракет на кораблі, які беруть участь у різних ігрових сценаріях. Охоплюючи широкий спектр типів ракет, стратегій висадки, класів кораблів, типів літаків, варіантів систем розвідки, технологій радіоелектронної боротьби та різних систем протиповітряної та протиракетної оборони, симуляція включає як наступальні, так і оборонні сценарії, щоб переконатися у важливості протикорабельних ракет в ігрових сценаріях. По-перше, дослідження зосереджено на вдосконаленні моделей прогнозування для розрахунку шкоди, завданої ракетними ударами військово-морським силам суперника. По-друге, він спрямований на вдосконалення алгоритмів для визначення необхідної кількості ракет, щоб запобігти просуванню сил суперника, таким чином максимізуючи оперативну ефективність і результативність у оборонних місіях. | |
dc.description.abstract | In the field of modern computer gaming (especially within the genre of war-game strategies, realistic first-person shooters and other warfare games) the complexity of virtual naval warfare mechanics and strategies significantly increases. There is a growing demand for advanced simulation tools to provide more immersive experience and more complex gameplay for all players. The goal of this research is to create a model and tool that can accurately predict the impact of anti-ship missiles on ships engaged in different game scenarios, considering a wide range of battle conditions. By encompassing a broad array of missile types, landing strategies, ship classes, aircraft types, reconnaissance options, electronic warfare technologies and various anti-air and missile defense systems, the simulation includes both offensive and defensive maneuvers to make sure that anti-ship missiles are important within the game scenarios. Firstly, the research focuses on enhancing prediction models for calculating the damage inflicted by missile strikes on opposing naval forces. Secondly, it seeks to refine algorithms for determining the required number of missiles to prevent rival player advances, thereby maximizing operational efficiency and effectiveness in defensive missions. | |
dc.format.extent | 43-55 | |
dc.format.pages | 13 | |
dc.identifier.citation | Missile Strike Simulation in a Video Game Engine / Oleksandr Toshev, Oleksii Maksymov, Maksym Kiriakidi, Maksym Maksymov // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 43–55. | |
dc.identifier.citationen | Missile Strike Simulation in a Video Game Engine / Oleksandr Toshev, Oleksii Maksymov, Maksym Kiriakidi, Maksym Maksymov // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 43–55. | |
dc.identifier.doi | doi.org/10.23939/jeecs2024.01.043 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64045 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Енергетика та системи керування, 1 (10), 2024 | |
dc.relation.ispartof | Energy Engineering and Control Systems, 1 (10), 2024 | |
dc.relation.references | [1] M. M. El-Madany, S. I. Alswailem, “Classical versus modern guidance laws for homing missiles”, Current Advances in Mechanical Design and Production VI, Pergamon, 1995, pp. 449–459. ISBN 9780080421407. DOI: https://doi.org/10.1016/B978-008042140-7/50040-8. | |
dc.relation.references | [2] David G. Hull, Jerry J. Radke, Rodney E. Mack, “Time-to-go prediction for homing missiles based on minimum-time intercepts”, Journal Article, 1991, Journal of Guidance, Control, and Dynamics, pp. 865–871, Vol. 14, Issue 5. DOI: https://doi.org/10.2514/3.20725. | |
dc.relation.references | [3] Gang LIU, Song-Yang LAO, Dong-Feng TAN, Zhi-Chao ZHOU, “Research Status and Progress on Anti-ship Missile Path Planning”, Acta Automatica Sinica, Vol. 39, Iss. 4, 2013, pp. 347–359. ISSN 1874-1029. DOI: https://doi.org/10.1016/S1874-1029(13)60034-8. | |
dc.relation.references | [4] Das Ranajit, Sirisha Ch. V., Choudhary Manoj Kumar, “Homing Guidance Design Challenges for Tactical Missile”, IFAC-PapersOnLine, Vol. 51, Iss. 1, 2018, pp. 36–41. ISSN 2405-8963.DOI: https://doi.org/10.1016/j.ifacol.2018.05.007. | |
dc.relation.references | [5] A. Tsourdos, A. Blumel, B. A. White, “Trajectory Control of a Non-Linear Homing Missile”, IFAC Proceedings Volumes, Vol. 31, Iss. 21, 1998, pp. 117–122. ISSN 1474-6670. DOI: https://doi.org/10.1016/S1474-6670(17)41068-8. | |
dc.relation.references | [6] Youan Zhang, Xingliang Wang, Huali Wu, “A distributed cooperative guidance law for salvo attack of multiple anti-ship missiles”, Chinese Journal of Aeronautics, Vol. 28, Iss. 5, 2015, pp. 1438–1450. ISSN 1000-9361. DOI: https://doi.org/10.1016/j.cja.2015.08.009. | |
dc.relation.references | [7] Tianle YAO, Weili WANG, Run MIAO, Qiwei HU, Jun DONG, Xuefei YAN, “Warhead power assessment based on double hierarchy hesitant fuzzy linguistic term sets theory and gained and lost dominance score method”, Chinese Journal of Aeronautics, Vol. 35, Iss. 4, 2022, pp. 362–375. ISSN 1000-9361. DOI: https://doi.org/10.1016/j.cja.2021.03.030. | |
dc.relation.references | [8] Jeon, I.-S., Lee, J.-I., Tahk, M.-J., “Impact-time-control guidance law for anti-ship missiles”, IEEE Transactions on Control Systems Technology, Vol. 14, Iss. 2, March 2006, pp. 260–266. ISSN: 1063-6536. DOI: https://doi.org/10.1109/TCST.2005.863655. | |
dc.relation.references | [9] Qilong SUN, Chenfeng ZHANG, Ning LIU, Weixue ZHOU, Naiming QI, “Guidance laws for attacking defended target”, Chinese Journal of Aeronautics, Vol. 32, Iss. 10, 2019, pp. 2337–2353. ISSN 1000-9361. DOI: https://doi.org/10.1016/j.cja.2019.05.011. | |
dc.relation.references | [10] Myungjun Jeon, Hyeon Kyu Yoon, Jongyeol Park, Shin Hyung Rhee, Jeonghwa Seo, “Identification of 4-DoF maneuvering mathematical models for a combatant in intact and damaged conditions”, International Journal of Naval Architecture and Ocean Engineering, Vol. 14, 2022, 100480. ISSN 2092-6782. DOI: https://doi.org/10.1016/j.ijnaoe.2022.100480. | |
dc.relation.references | [11] S. N. Ghawghawe and D. Ghose, “Pure proportional navigation against time-varying target manoeuvres”, in IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 4, pp. 1336–1347. Oct. 1996. DOI: https://doi.org/10.1109/7.543854. | |
dc.relation.references | [12] Zhao Shiyu, Zhou Rui, “Cooperative Guidance for Multimissile Salvo Attack”, Chinese Journal of Aeronautics, Vol. 21, Iss. 6, 2008, pp. 533–539. ISSN 1000-9361. DOI: https://doi.org/10.1016/S1000-9361(08)60171-5. | |
dc.relation.references | [13] Brian Gaudet, Roberto Furfaro, Richard Linares, “Reinforcement learning for angle-only intercept guidance of maneuvering targets”, Aerospace Science and Technology, Vol. 99, 2020, 105746. ISSN 1270-9638. DOI: https://doi.org/10.1016/j.ast.2020.105746. | |
dc.relation.references | [14] Lee, J.-I.,Jeon, I.-S.,Tahk, M.-J., “Guidance law to control impact time and angle”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, Iss. 1, January 2007, pp. 301–310. ISSN: 0018-9251, DOI: https://doi.org/10.1109/TAES.2007.357135. | |
dc.relation.references | [15] Min-Jea Tahk, Chang-Kyung Ryoo and Hangju Cho, “Recursive time-to-go estimation for homing guidance missiles”, in IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 1, pp. 13–24, Jan. 2002.DOI: https://doi.org/10.1109/7.993225. | |
dc.relation.references | [16] Yasukawa, H. Yoshimura, Y. 2015/03/01 “Introduction of MMG standard method for ship maneuvering predictions”, Journal of Marine Science and Technology, Vol. 20, Iss. 1437–8213. DOI: https://doi.org/10.1007/s00773-014-0293-y. | |
dc.relation.references | [17] Andrey Perelman, Tal Shima, Ilan Rusnak, “Cooperative Differential Games Strategies for Active Aircraft Protection from a Homing Missile“, Journal of Guidance, Control, and Dynamics, Vol. 34, Iss. 3, 2011. ISSN: 0731-5090. DOI: https://doi.org/10.2514/1.51611. | |
dc.relation.references | [18] Naiming QI, Qilong SUN, Jun ZHAO, “Evasion and pursuit guidance law against defended target”, Chinese Journal of Aeronautics, Vol. 30, Iss. 6, 2017, pp. 1958–1973. ISSN 1000-9361. DOI: https://doi.org/10.1016/j.cja.2017.06.015. | |
dc.relation.references | [19] Ivana Todić, Vladimir Kuzmanović, “Hardware in the loop simulation for homing missiles”, Materials Today: Proceedings, Volume 12, Part 2, 2019, pp. 514–520. ISSN 2214-7853. DOI: https://doi.org/10.1016/j.matpr.2019.03.157. | |
dc.relation.references | [20] Palumbo, Neil & Blauwkamp, Ross & Lloyd, Justin. “Basic Principles of Homing Guidance”, Johns Hopkins Apl Technical Digest. 29. 25–41, 2010, https://www.researchgate.net/publication/292646184_Basic_Principles_of_Homing_Guidance. | |
dc.relation.references | [21] I. Rusnak, “Optimal guidance laws with uncertain time-of-flight”, in IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, pp. 721–725, April 2000. DOI: https://doi.org/10.1109/7.845272 | |
dc.relation.references | [22] Tianle YAO, Run MIAO, Weili WANG, Zhirong LI, Jun DONG, Yajuan GU, Xuefei YAN, “Synthetic damage effect assessment through evidential reasoning approach and neural fuzzy inference: Application in ship target”, Chinese Journal of Aeronautics, Vol. 35, Iss.8, 2022, pp. 143–157. ISSN 1000-9361.DOI: https://doi.org/10.1016/j.cja.2021.08.010. | |
dc.relation.references | [23] P. R. Mahapatra and U. S. Shukla, “Accurate solution of proportional navigation for maneuvering targets”, in IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 1, pp. 81–89, Jan. 1989. DOI: https://doi.org/10.1109/7.18664. | |
dc.relation.references | [24] Hou Mingzhe, Duan Guangren, “Integrated Guidance and Control of Homing Missiles Against Ground Fixed Targets”, Chinese Journal of Aeronautics, Vol. 21, Iss. 2, 2008, pp. 162–168. ISSN 1000-9361. DOI: https://doi.org/10.1016/S1000-9361(08)60021-7. | |
dc.relation.referencesen | [1] M. M. El-Madany, S. I. Alswailem, "Classical versus modern guidance laws for homing missiles", Current Advances in Mechanical Design and Production VI, Pergamon, 1995, pp. 449–459. ISBN 9780080421407. DOI: https://doi.org/10.1016/B978-008042140-7/50040-8. | |
dc.relation.referencesen | [2] David G. Hull, Jerry J. Radke, Rodney E. Mack, "Time-to-go prediction for homing missiles based on minimum-time intercepts", Journal Article, 1991, Journal of Guidance, Control, and Dynamics, pp. 865–871, Vol. 14, Issue 5. DOI: https://doi.org/10.2514/3.20725. | |
dc.relation.referencesen | [3] Gang LIU, Song-Yang LAO, Dong-Feng TAN, Zhi-Chao ZHOU, "Research Status and Progress on Anti-ship Missile Path Planning", Acta Automatica Sinica, Vol. 39, Iss. 4, 2013, pp. 347–359. ISSN 1874-1029. DOI: https://doi.org/10.1016/S1874-1029(13)60034-8. | |
dc.relation.referencesen | [4] Das Ranajit, Sirisha Ch. V., Choudhary Manoj Kumar, "Homing Guidance Design Challenges for Tactical Missile", IFAC-PapersOnLine, Vol. 51, Iss. 1, 2018, pp. 36–41. ISSN 2405-8963.DOI: https://doi.org/10.1016/j.ifacol.2018.05.007. | |
dc.relation.referencesen | [5] A. Tsourdos, A. Blumel, B. A. White, "Trajectory Control of a Non-Linear Homing Missile", IFAC Proceedings Volumes, Vol. 31, Iss. 21, 1998, pp. 117–122. ISSN 1474-6670. DOI: https://doi.org/10.1016/S1474-6670(17)41068-8. | |
dc.relation.referencesen | [6] Youan Zhang, Xingliang Wang, Huali Wu, "A distributed cooperative guidance law for salvo attack of multiple anti-ship missiles", Chinese Journal of Aeronautics, Vol. 28, Iss. 5, 2015, pp. 1438–1450. ISSN 1000-9361. DOI: https://doi.org/10.1016/j.cja.2015.08.009. | |
dc.relation.referencesen | [7] Tianle YAO, Weili WANG, Run MIAO, Qiwei HU, Jun DONG, Xuefei YAN, "Warhead power assessment based on double hierarchy hesitant fuzzy linguistic term sets theory and gained and lost dominance score method", Chinese Journal of Aeronautics, Vol. 35, Iss. 4, 2022, pp. 362–375. ISSN 1000-9361. DOI: https://doi.org/10.1016/j.cja.2021.03.030. | |
dc.relation.referencesen | [8] Jeon, I.-S., Lee, J.-I., Tahk, M.-J., "Impact-time-control guidance law for anti-ship missiles", IEEE Transactions on Control Systems Technology, Vol. 14, Iss. 2, March 2006, pp. 260–266. ISSN: 1063-6536. DOI: https://doi.org/10.1109/TCST.2005.863655. | |
dc.relation.referencesen | [9] Qilong SUN, Chenfeng ZHANG, Ning LIU, Weixue ZHOU, Naiming QI, "Guidance laws for attacking defended target", Chinese Journal of Aeronautics, Vol. 32, Iss. 10, 2019, pp. 2337–2353. ISSN 1000-9361. DOI: https://doi.org/10.1016/j.cja.2019.05.011. | |
dc.relation.referencesen | [10] Myungjun Jeon, Hyeon Kyu Yoon, Jongyeol Park, Shin Hyung Rhee, Jeonghwa Seo, "Identification of 4-DoF maneuvering mathematical models for a combatant in intact and damaged conditions", International Journal of Naval Architecture and Ocean Engineering, Vol. 14, 2022, 100480. ISSN 2092-6782. DOI: https://doi.org/10.1016/j.ijnaoe.2022.100480. | |
dc.relation.referencesen | [11] S. N. Ghawghawe and D. Ghose, "Pure proportional navigation against time-varying target manoeuvres", in IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 4, pp. 1336–1347. Oct. 1996. DOI: https://doi.org/10.1109/7.543854. | |
dc.relation.referencesen | [12] Zhao Shiyu, Zhou Rui, "Cooperative Guidance for Multimissile Salvo Attack", Chinese Journal of Aeronautics, Vol. 21, Iss. 6, 2008, pp. 533–539. ISSN 1000-9361. DOI: https://doi.org/10.1016/S1000-9361(08)60171-5. | |
dc.relation.referencesen | [13] Brian Gaudet, Roberto Furfaro, Richard Linares, "Reinforcement learning for angle-only intercept guidance of maneuvering targets", Aerospace Science and Technology, Vol. 99, 2020, 105746. ISSN 1270-9638. DOI: https://doi.org/10.1016/j.ast.2020.105746. | |
dc.relation.referencesen | [14] Lee, J.-I.,Jeon, I.-S.,Tahk, M.-J., "Guidance law to control impact time and angle", IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, Iss. 1, January 2007, pp. 301–310. ISSN: 0018-9251, DOI: https://doi.org/10.1109/TAES.2007.357135. | |
dc.relation.referencesen | [15] Min-Jea Tahk, Chang-Kyung Ryoo and Hangju Cho, "Recursive time-to-go estimation for homing guidance missiles", in IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 1, pp. 13–24, Jan. 2002.DOI: https://doi.org/10.1109/7.993225. | |
dc.relation.referencesen | [16] Yasukawa, H. Yoshimura, Y. 2015/03/01 "Introduction of MMG standard method for ship maneuvering predictions", Journal of Marine Science and Technology, Vol. 20, Iss. 1437–8213. DOI: https://doi.org/10.1007/s00773-014-0293-y. | |
dc.relation.referencesen | [17] Andrey Perelman, Tal Shima, Ilan Rusnak, "Cooperative Differential Games Strategies for Active Aircraft Protection from a Homing Missile", Journal of Guidance, Control, and Dynamics, Vol. 34, Iss. 3, 2011. ISSN: 0731-5090. DOI: https://doi.org/10.2514/1.51611. | |
dc.relation.referencesen | [18] Naiming QI, Qilong SUN, Jun ZHAO, "Evasion and pursuit guidance law against defended target", Chinese Journal of Aeronautics, Vol. 30, Iss. 6, 2017, pp. 1958–1973. ISSN 1000-9361. DOI: https://doi.org/10.1016/j.cja.2017.06.015. | |
dc.relation.referencesen | [19] Ivana Todić, Vladimir Kuzmanović, "Hardware in the loop simulation for homing missiles", Materials Today: Proceedings, Volume 12, Part 2, 2019, pp. 514–520. ISSN 2214-7853. DOI: https://doi.org/10.1016/j.matpr.2019.03.157. | |
dc.relation.referencesen | [20] Palumbo, Neil & Blauwkamp, Ross & Lloyd, Justin. "Basic Principles of Homing Guidance", Johns Hopkins Apl Technical Digest. 29. 25–41, 2010, https://www.researchgate.net/publication/292646184_Basic_Principles_of_Homing_Guidance. | |
dc.relation.referencesen | [21] I. Rusnak, "Optimal guidance laws with uncertain time-of-flight", in IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, pp. 721–725, April 2000. DOI: https://doi.org/10.1109/7.845272 | |
dc.relation.referencesen | [22] Tianle YAO, Run MIAO, Weili WANG, Zhirong LI, Jun DONG, Yajuan GU, Xuefei YAN, "Synthetic damage effect assessment through evidential reasoning approach and neural fuzzy inference: Application in ship target", Chinese Journal of Aeronautics, Vol. 35, Iss.8, 2022, pp. 143–157. ISSN 1000-9361.DOI: https://doi.org/10.1016/j.cja.2021.08.010. | |
dc.relation.referencesen | [23] P. R. Mahapatra and U. S. Shukla, "Accurate solution of proportional navigation for maneuvering targets", in IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 1, pp. 81–89, Jan. 1989. DOI: https://doi.org/10.1109/7.18664. | |
dc.relation.referencesen | [24] Hou Mingzhe, Duan Guangren, "Integrated Guidance and Control of Homing Missiles Against Ground Fixed Targets", Chinese Journal of Aeronautics, Vol. 21, Iss. 2, 2008, pp. 162–168. ISSN 1000-9361. DOI: https://doi.org/10.1016/S1000-9361(08)60021-7. | |
dc.relation.uri | https://doi.org/10.1016/B978-008042140-7/50040-8 | |
dc.relation.uri | https://doi.org/10.2514/3.20725 | |
dc.relation.uri | https://doi.org/10.1016/S1874-1029(13)60034-8 | |
dc.relation.uri | https://doi.org/10.1016/j.ifacol.2018.05.007 | |
dc.relation.uri | https://doi.org/10.1016/S1474-6670(17)41068-8 | |
dc.relation.uri | https://doi.org/10.1016/j.cja.2015.08.009 | |
dc.relation.uri | https://doi.org/10.1016/j.cja.2021.03.030 | |
dc.relation.uri | https://doi.org/10.1109/TCST.2005.863655 | |
dc.relation.uri | https://doi.org/10.1016/j.cja.2019.05.011 | |
dc.relation.uri | https://doi.org/10.1016/j.ijnaoe.2022.100480 | |
dc.relation.uri | https://doi.org/10.1109/7.543854 | |
dc.relation.uri | https://doi.org/10.1016/S1000-9361(08)60171-5 | |
dc.relation.uri | https://doi.org/10.1016/j.ast.2020.105746 | |
dc.relation.uri | https://doi.org/10.1109/TAES.2007.357135 | |
dc.relation.uri | https://doi.org/10.1109/7.993225 | |
dc.relation.uri | https://doi.org/10.1007/s00773-014-0293-y | |
dc.relation.uri | https://doi.org/10.2514/1.51611 | |
dc.relation.uri | https://doi.org/10.1016/j.cja.2017.06.015 | |
dc.relation.uri | https://doi.org/10.1016/j.matpr.2019.03.157 | |
dc.relation.uri | https://www.researchgate.net/publication/292646184_Basic_Principles_of_Homing_Guidance | |
dc.relation.uri | https://doi.org/10.1109/7.845272 | |
dc.relation.uri | https://doi.org/10.1016/j.cja.2021.08.010 | |
dc.relation.uri | https://doi.org/10.1109/7.18664 | |
dc.relation.uri | https://doi.org/10.1016/S1000-9361(08)60021-7 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | комп’ютерна гра | |
dc.subject | протикорабельні ракети | |
dc.subject | наведення ракети | |
dc.subject | морський десант | |
dc.subject | система моделювання | |
dc.subject | computer game | |
dc.subject | anti-ship missiles | |
dc.subject | missile guidance simulation | |
dc.subject | naval landing | |
dc.subject | simulation framework | |
dc.title | Missile Strike Simulation in a Video Game Engine | |
dc.title.alternative | Симуляція ракетного удару у відеоігровому рушієві | |
dc.type | Article |
Files
License bundle
1 - 1 of 1