Prediction of Electric Vehicle Mileage According to Optimal Energy Consumption Criterion
dc.citation.epage | 27 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Енергетика та системи керування | |
dc.citation.spage | 19 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Чкалов, Олексій | |
dc.contributor.author | Дропа, Роман | |
dc.contributor.author | Chkalov, Oleksii | |
dc.contributor.author | Dropa, Roman | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-10T08:12:24Z | |
dc.date.created | 2024-02-28 | |
dc.date.issued | 2024-02-28 | |
dc.description.abstract | Обмежений пробіг без заряджання є однією з головних перешкод до широкого розповсюдження електромобілів. Краще розуміння енергоспоживання автомобіля та запасу ходу можуть допомогти зменшити стрес водіїв електромобілів. Ця робота пропонує стратегію прогнозування на основі моделі для оцінки енергоспоживання електромобіля. Оцінка враховує конкретні параметри електромобіля, а також топології дорожньої мережі, в якій працює транспортний засіб, і реальні умови руху. Представлена макромодель енергоспоживання електромобіля дозволяє використовувати доступні на типових картах веб-сервіси для отримання зведених даних в реальному часі. Дорожня мережа моделюється як зважений орієнтований граф, що адаптований до запропонованої моделі споживання енергії. Оптимізація пробігу досягається засобами алгоритму пошуку оптимального шляху, придатного для використання в реальному часі. Отриманий таким чином діапазон руху забезпечує покращену точність і надійність у порівнянні з середнім споживанням та на основі дистанційної стратегії. | |
dc.description.abstract | In the field of electric vehicle usage, an inherent challenge lies in the restricted mileage capacity prior to requiring a recharge, hindering broader acceptance of electric vehicles. To alleviate this concern, enhancing the comprehension of vehicle energy consumption and range plays a pivotal role in easing the anxieties of electric vehicle drivers. Within this context, a novel model-based predictive approach is introduced for estimating electric vehicle energy consumption. This method considers the vehicle's specific parameters, the road network's topology, and actual traffic conditions. Through the macro model of electric vehicle energy consumption, real-time summary data can be extracted using conventional map-based web services. By representing the road network as a weighted directed graph tailored to the energy consumption model, an algorithm aids in mileage optimization by determining the optimal path for immediate use. The resultant motion range from this approach offers improved precision and dependability in contrast to conventional strategies based on average consumption and distance. | |
dc.format.extent | 19-27 | |
dc.format.pages | 9 | |
dc.identifier.citation | Chkalov O. Prediction of Electric Vehicle Mileage According to Optimal Energy Consumption Criterion / Oleksii Chkalov, Roman Dropa // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 19–27. | |
dc.identifier.citationen | Chkalov O. Prediction of Electric Vehicle Mileage According to Optimal Energy Consumption Criterion / Oleksii Chkalov, Roman Dropa // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 19–27. | |
dc.identifier.doi | doi.org/10.23939/jeecs2024.01.019 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64042 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Енергетика та системи керування, 1 (10), 2024 | |
dc.relation.ispartof | Energy Engineering and Control Systems, 1 (10), 2024 | |
dc.relation.references | [1] Varga, B. O.; Mariasiu, F. (2018). Indirect environment-related effects of electric car vehicles use. Environ. Eng. Manag. J., 17, 1591–1599. | |
dc.relation.references | [2] Zhu, J.; Wierzbicki, T.; Li, W. (2018). A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J. Power Sources, 378, 153–168. | |
dc.relation.references | [3] M. C. McManus (2012). Environmental Consequences of the Use of Batteries in Low Carbon Systems: The Impact of Battery Production. Applied Energy, Vol. 93, pp. 288–295. | |
dc.relation.references | [4] EN21. Renewables 2015 Global Status Report. Available online: http://www.ren21.net/wp-content/uploads/2015/07/REN12-GSR2015_Onlinebook_low1.pdf (accessed on 16 December 2023). | |
dc.relation.references | [5] Wu, G.; Inderbitzin, A.; Bening, C. (2015). Total cost of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy, 80, 196–214. | |
dc.relation.references | [6] G. De Nunzio, L. Thibault, and A. Sciarretta, “A Model-Based Eco-Routing Strategy for Electric Vehicles in Large Urban Networks,” in IEEE 19th Conference on Intelligent Transportation Systems, 2016, pp. 2301–2306. | |
dc.relation.references | [7] Park, O. K.; Cho, Y.; Lee, S.; Yoo, H. C.; Song, H. K.; Cho, J. (2011). Who Will Drive Electric Vehicles, Olivine or Spinel? Energy Environ. Sci., 4, 1621–1633. | |
dc.relation.references | [8] Franke, T.; Günther, M.; Trantow, M.; Krems, J. F. (2017). Does this range suit me? Range satisfaction of battery electric vehicle users. Appl. Ergon., 65, 191–199. | |
dc.relation.references | [9] W. Vaz, A. K. R. Nandi, R. G. Landers, and U. O. Koylu, “Electric Vehicle Range Prediction for Constant Speed Trip Using MultiObjective Optimization Objective Optimization,” Journal of Power. | |
dc.relation.references | [10] D. O’Connor, “Notes on the Bellman-Ford-Moore Shortest Path Algorithm and its Implementation in MATLAB,” Dublin University College, Tech. Rep., 2012. | |
dc.relation.references | [11] Labeye, E.; Hugot, M.; Brusque, C.; Regan, M. A. (2016). The electric vehicle: A new driving experience involving specific skills and rules. Transp. Res. Part F. Traffic Psychol. Behav., 37, 27–40. | |
dc.relation.referencesen | [1] Varga, B. O.; Mariasiu, F. (2018). Indirect environment-related effects of electric car vehicles use. Environ. Eng. Manag. J., 17, 1591–1599. | |
dc.relation.referencesen | [2] Zhu, J.; Wierzbicki, T.; Li, W. (2018). A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J. Power Sources, 378, 153–168. | |
dc.relation.referencesen | [3] M. C. McManus (2012). Environmental Consequences of the Use of Batteries in Low Carbon Systems: The Impact of Battery Production. Applied Energy, Vol. 93, pp. 288–295. | |
dc.relation.referencesen | [4] EN21. Renewables 2015 Global Status Report. Available online: http://www.ren21.net/wp-content/uploads/2015/07/REN12-GSR2015_Onlinebook_low1.pdf (accessed on 16 December 2023). | |
dc.relation.referencesen | [5] Wu, G.; Inderbitzin, A.; Bening, C. (2015). Total cost of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy, 80, 196–214. | |
dc.relation.referencesen | [6] G. De Nunzio, L. Thibault, and A. Sciarretta, "A Model-Based Eco-Routing Strategy for Electric Vehicles in Large Urban Networks," in IEEE 19th Conference on Intelligent Transportation Systems, 2016, pp. 2301–2306. | |
dc.relation.referencesen | [7] Park, O. K.; Cho, Y.; Lee, S.; Yoo, H. C.; Song, H. K.; Cho, J. (2011). Who Will Drive Electric Vehicles, Olivine or Spinel? Energy Environ. Sci., 4, 1621–1633. | |
dc.relation.referencesen | [8] Franke, T.; Günther, M.; Trantow, M.; Krems, J. F. (2017). Does this range suit me? Range satisfaction of battery electric vehicle users. Appl. Ergon., 65, 191–199. | |
dc.relation.referencesen | [9] W. Vaz, A. K. R. Nandi, R. G. Landers, and U. O. Koylu, "Electric Vehicle Range Prediction for Constant Speed Trip Using MultiObjective Optimization Objective Optimization," Journal of Power. | |
dc.relation.referencesen | [10] D. O’Connor, "Notes on the Bellman-Ford-Moore Shortest Path Algorithm and its Implementation in MATLAB," Dublin University College, Tech. Rep., 2012. | |
dc.relation.referencesen | [11] Labeye, E.; Hugot, M.; Brusque, C.; Regan, M. A. (2016). The electric vehicle: A new driving experience involving specific skills and rules. Transp. Res. Part F. Traffic Psychol. Behav., 37, 27–40. | |
dc.relation.uri | http://www.ren21.net/wp-content/uploads/2015/07/REN12-GSR2015_Onlinebook_low1.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | запас ходу | |
dc.subject | оцінка споживання енергії | |
dc.subject | електромобілі | |
dc.subject | суміжний граф | |
dc.subject | алгоритм найкоротшого шляху | |
dc.subject | mileage | |
dc.subject | energy consumption | |
dc.subject | electric vehicle | |
dc.subject | adjoint graph | |
dc.subject | shortest path algorithm | |
dc.title | Prediction of Electric Vehicle Mileage According to Optimal Energy Consumption Criterion | |
dc.title.alternative | Прогнозування пробігу електромобіля за критерієм енергетичної оптимальності | |
dc.type | Article |
Files
License bundle
1 - 1 of 1