The possibility of using materials from demolished buildings in cold recycling technology for road base layers

dc.citation.epage12
dc.citation.issue1
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage8
dc.citation.volume7
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБідось, В. М.
dc.contributor.authorПетровська, Н. І.
dc.contributor.authorСідун, Ю. В.
dc.contributor.authorТурок, І. І.
dc.contributor.authorBidos, Volodymyr
dc.contributor.authorPetrovska, Nadiya
dc.contributor.authorSidun, Iurii
dc.contributor.authorTurok, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-26T08:05:26Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractОсновним напрямом сталого розвитку є раціональне використання природних ресурсів, попит на які під час будівництва дороги зростає. Важливе також зменшення негативного впливу на довкілля, адже як у результаті активної розбудови, так і внаслідок війни в Україні кількість відходів будівництва та знесення будівель зростає. Тому вирішення проблеми утилізації цих відходів є дуже важливим. У роботі досліджено можливість використання таких будівельних відходів, як азбестоцементний шифер, скло, цегла та бетон як заповнювачів у сумішах для шарів основи дорожнього одягу, виготовлених за технологією холодного ресайклінгу. З цією метою спроєктовано та досліджено 17 складів суміші – контрольний склад та чотири серії складів, у яких фрезерований дрібнозернистий асфальтобетон було частково замінено подрібненими азбестоцементним шифером (склад AS), склом (склад G), цеглою (склад B) та бетоном (склад CC) у кількості 5–20 мас. %. Усі досліджені склади містили 3 % портландцементу і 3 % води. Визначено фізико-механічні показники сумішей та матеріалів, виготовлених за технологією холодного ресайклінгу із різним вмістом будівельних відходів. Встановлено вплив виду та кількості досліджуваних будівельних відходів на середню густину, водонасичення та границю міцності на стиск через 7 діб та 28 діб тверднення за температури 20 °С та 50 °С дорожніх матеріалів, виготовлених за технологією холодного ресайклінгу. Як показали дослідження, вимоги до дорожніх матеріалів марки М20 із використанням портландцементу згідно із ДСТУ 8976:2020 задовольняють склади із заміною 5 мас. % та 10 мас. % фрезерованого матеріалу азбестоцементним шифером, склади із заміною 5 мас. % склом та цеглою, а також усі склади, які містили 5–20 мас. % подрібненого бетону. Отже, ці склади можна використовувати для влаштування шарів основи дорожнього одягу за технологією холодного ресайклінгу.
dc.description.abstractThe work investigated the possibility of using such construction waste as asbestos-cement slate, glass, brick and concrete as aggregates in mixtures for the base layers of road pavement made using cold recycling technology. For this purpose, 17 mixture compositions were designed and studied – the control composition and 4 series of compositions, in which the milled fine-grained asphalt concrete was partially replaced by crushed asbestos-cement slate, glass, brick and concrete in an amount of 520 wt. %. All studied compositions contained 3 % Portland cement and 3 % water. The physical and mechanical indicators of mixtures and materials made using cold recycling technology with different construction waste contents were determined. The influence of the type and amount of the studied construction waste on the average density, water saturation and compressive strength after 7 days and 28 days of hardening at temperatures of 20 °C and 50 °C of road materials made using cold recycling technology was established.
dc.format.extent8-12
dc.format.pages5
dc.identifier.citationThe possibility of using materials from demolished buildings in cold recycling technology for road base layers / Volodymyr Bidos, Nadiya Petrovska, Iurii Sidun, Iryna Turok // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 8–12.
dc.identifier.citationenThe possibility of using materials from demolished buildings in cold recycling technology for road base layers / Volodymyr Bidos, Nadiya Petrovska, Iurii Sidun, Iryna Turok // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 8–12.
dc.identifier.doidoi.org/10.23939/jtbp2025.01.008
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124479
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 1 (7), 2025
dc.relation.ispartofTheory and Building Practice, 1 (7), 2025
dc.relation.referencesShyshkin, E., Chernonosova, T., Haiko, Y., Ivasenko, V. and Krasnokutska, I. (2023). Recycling of construction waste as an innovative direction of the program of post-war reconstruction of destroyed cities. ce/papers, 6: 1039-1047. https://doi.org/10.1002/cepa.2896
dc.relation.referencesNasier, Sandeep. (2021). Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials. Materials Today: Proceedings. 45. 10.1016/j.matpr.2020.12.381.
dc.relation.referencesGyawali, T. (2022). Re-use of Concrete/Brick Debris Emerged from Big Earthquake in Recycled Concrete with Zero Residues. Cleaner Waste Systems. 2. 100007. 10.1016/j.clwas.2022.100007.
dc.relation.referencesArulrajah, A., Perera, S., Wong, Y., Maghool, F. (2020). Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes. Construction and Building Materials. 239. 117819. 10.1016/j.conbuildmat.2019.117819.
dc.relation.referencesTavakoli Mehrjardi, G., Azizi, A., Haji-Aziz, A., Asadollahfardi, G. (2020). Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics. 23. 100349. 10.1016/j.trgeo.2020.100349.
dc.relation.referencesZhang, J., Ding, L., Feng, L., Peng, J. (2020). Recycled Aggregates from Construction and Demolition Wastes as Alternative Filling Materials for Highway Subgrades in China. Journal of Cleaner Production. 255. 120223. 10.1016/j.jclepro.2020.120223.
dc.relation.referencesBeja, I., Motta, R., Bernucci, L. (2020). Application of recycled aggregates from construction and demolition waste with Portland cement and hydrated lime as pavement subbase in Brazil. Construction and Building Materials. 258. 119520. 10.1016/j.conbuildmat.2020.119520.
dc.relation.referencesGiwangkara, G., Mohamed, A., Abd Khalid, N., Nor, H., Hainin, M., Putra Jaya, R., Sani, N., Ismail, C. (2019). Recycled concrete aggregate as a road base material. IOP Conference Series: Materials Science and Engineering. 527. 012061. 10.1088/1757-899X/527/1/012061.
dc.relation.referencesDing, L., Zhang, J., Feng, B., Li, C. (2020). Performance Evaluation of Recycled Asphalt Mixtures Containing Construction and Demolition Waste Applicated as Pavement Base. Advances in Civil Engineering. 2020. 1-11. 10.1155/2020/8875402.
dc.relation.referencesXiao, F., Yao, S., Wang, J., Li, X., Amirkhanian, S. (2018). A literature review on cold recycling technology of asphalt pavement. Construction and Building Materials. 180. 579-604. 10.1016/j.conbuildmat.2018.06.006.
dc.relation.referencesBuczyński, P., Krasowski, J. (2024). Optimisation and Composition of the Recycled Cold Mix with a High Content of Waste Materials. Sustainability, 16(22), 9624. https://doi.org/10.3390/su16229624
dc.relation.referencesAlmusawi, A., Jaleel, M., Shoman, S., Lupanov, A. (2024). Enhancing waste asphalt durability through cold recycling and additive integration. Functional Composite Materials. 5. 1-9. 10.1186/s42252-024-00061-7.
dc.relation.referencesKopić, M., Milović, T., Matić, B., Jovanović, S., Marinković, M. (2022). Optimum Fluid Content in Pavement Cold In-Place Recycling Containing Waste Materials. Sustainability, 14(24), 16691. https://doi.org/10.3390/su142416691
dc.relation.referencesWang, Y., Leng, Z., Li, Xi, Hu, Ch. (2017). Cold recycling of reclaimed asphalt pavement towards improved engineering performance. Journal of Cleaner Production. 171. 10.1016/j.jclepro.2017.10.132.
dc.relation.referencesBidos, V., Sidun, Y. (2024). Bituminous cationic emulsions for the technology of cold recycling of road pavement // Youth - drivers of the country's renewal: collection of abstracts of the reports of the third All-Ukrainian scientific conference of young scientists, May 15, 2024, Kyiv. https://doi.org/10.36100/conference2024.01
dc.relation.referencesGómez-Meijide, B., Pérez Pérez, I. (2017). Properties of cold asphalt mixtures containing recycled aggregates from construction and demolition waste. Carreteras. 4. 1-11.
dc.relation.referencesZou, G., Zhang, J., Liu, X., Lin, Y., Yu, H. (2020). Design and performance of emulsified asphalt mixtures containing construction and demolition waste. Construction and Building Materials. 239. 117846. 10.1016/j.conbuildmat.2019.117846.
dc.relation.referencesGedik, A. (2020). A review on the evaluation of the potential utilization of construction and demolition waste in hot mix asphalt pavements. Resources, Conservation and Recycling. 161. 104956. 10.1016/j.resconrec.2020.104956.
dc.relation.referencesArulrajah, A., Jegatheesan, P., Aatheesan, T. (2011). Geotechnical Properties of Recycled Crushed Brick in Pavement Applications. Journal of Materials in Civil Engineering. 23. 1444 - 1452. 10.1061/(ASCE)MT.1943-5533.0000319.
dc.relation.referencesGómez Meijide, B., Pérez Pérez, I. (2016). Recycled construction and demolition waste in Cold Asphalt Mixtures: Evolutionary properties. Journal of Cleaner Production. 112. 588-598. 10.1016/j.jclepro.2015.08.038
dc.relation.referencesenShyshkin, E., Chernonosova, T., Haiko, Y., Ivasenko, V. and Krasnokutska, I. (2023). Recycling of construction waste as an innovative direction of the program of post-war reconstruction of destroyed cities. ce/papers, 6: 1039-1047. https://doi.org/10.1002/cepa.2896
dc.relation.referencesenNasier, Sandeep. (2021). Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials. Materials Today: Proceedings. 45. 10.1016/j.matpr.2020.12.381.
dc.relation.referencesenGyawali, T. (2022). Re-use of Concrete/Brick Debris Emerged from Big Earthquake in Recycled Concrete with Zero Residues. Cleaner Waste Systems. 2. 100007. 10.1016/j.clwas.2022.100007.
dc.relation.referencesenArulrajah, A., Perera, S., Wong, Y., Maghool, F. (2020). Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes. Construction and Building Materials. 239. 117819. 10.1016/j.conbuildmat.2019.117819.
dc.relation.referencesenTavakoli Mehrjardi, G., Azizi, A., Haji-Aziz, A., Asadollahfardi, G. (2020). Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics. 23. 100349. 10.1016/j.trgeo.2020.100349.
dc.relation.referencesenZhang, J., Ding, L., Feng, L., Peng, J. (2020). Recycled Aggregates from Construction and Demolition Wastes as Alternative Filling Materials for Highway Subgrades in China. Journal of Cleaner Production. 255. 120223. 10.1016/j.jclepro.2020.120223.
dc.relation.referencesenBeja, I., Motta, R., Bernucci, L. (2020). Application of recycled aggregates from construction and demolition waste with Portland cement and hydrated lime as pavement subbase in Brazil. Construction and Building Materials. 258. 119520. 10.1016/j.conbuildmat.2020.119520.
dc.relation.referencesenGiwangkara, G., Mohamed, A., Abd Khalid, N., Nor, H., Hainin, M., Putra Jaya, R., Sani, N., Ismail, C. (2019). Recycled concrete aggregate as a road base material. IOP Conference Series: Materials Science and Engineering. 527. 012061. 10.1088/1757-899X/527/1/012061.
dc.relation.referencesenDing, L., Zhang, J., Feng, B., Li, C. (2020). Performance Evaluation of Recycled Asphalt Mixtures Containing Construction and Demolition Waste Applicated as Pavement Base. Advances in Civil Engineering. 2020. 1-11. 10.1155/2020/8875402.
dc.relation.referencesenXiao, F., Yao, S., Wang, J., Li, X., Amirkhanian, S. (2018). A literature review on cold recycling technology of asphalt pavement. Construction and Building Materials. 180. 579-604. 10.1016/j.conbuildmat.2018.06.006.
dc.relation.referencesenBuczyński, P., Krasowski, J. (2024). Optimisation and Composition of the Recycled Cold Mix with a High Content of Waste Materials. Sustainability, 16(22), 9624. https://doi.org/10.3390/su16229624
dc.relation.referencesenAlmusawi, A., Jaleel, M., Shoman, S., Lupanov, A. (2024). Enhancing waste asphalt durability through cold recycling and additive integration. Functional Composite Materials. 5. 1-9. 10.1186/s42252-024-00061-7.
dc.relation.referencesenKopić, M., Milović, T., Matić, B., Jovanović, S., Marinković, M. (2022). Optimum Fluid Content in Pavement Cold In-Place Recycling Containing Waste Materials. Sustainability, 14(24), 16691. https://doi.org/10.3390/su142416691
dc.relation.referencesenWang, Y., Leng, Z., Li, Xi, Hu, Ch. (2017). Cold recycling of reclaimed asphalt pavement towards improved engineering performance. Journal of Cleaner Production. 171. 10.1016/j.jclepro.2017.10.132.
dc.relation.referencesenBidos, V., Sidun, Y. (2024). Bituminous cationic emulsions for the technology of cold recycling of road pavement, Youth - drivers of the country's renewal: collection of abstracts of the reports of the third All-Ukrainian scientific conference of young scientists, May 15, 2024, Kyiv. https://doi.org/10.36100/conference2024.01
dc.relation.referencesenGómez-Meijide, B., Pérez Pérez, I. (2017). Properties of cold asphalt mixtures containing recycled aggregates from construction and demolition waste. Carreteras. 4. 1-11.
dc.relation.referencesenZou, G., Zhang, J., Liu, X., Lin, Y., Yu, H. (2020). Design and performance of emulsified asphalt mixtures containing construction and demolition waste. Construction and Building Materials. 239. 117846. 10.1016/j.conbuildmat.2019.117846.
dc.relation.referencesenGedik, A. (2020). A review on the evaluation of the potential utilization of construction and demolition waste in hot mix asphalt pavements. Resources, Conservation and Recycling. 161. 104956. 10.1016/j.resconrec.2020.104956.
dc.relation.referencesenArulrajah, A., Jegatheesan, P., Aatheesan, T. (2011). Geotechnical Properties of Recycled Crushed Brick in Pavement Applications. Journal of Materials in Civil Engineering. 23. 1444 - 1452. 10.1061/(ASCE)MT.1943-5533.0000319.
dc.relation.referencesenGómez Meijide, B., Pérez Pérez, I. (2016). Recycled construction and demolition waste in Cold Asphalt Mixtures: Evolutionary properties. Journal of Cleaner Production. 112. 588-598. 10.1016/j.jclepro.2015.08.038
dc.relation.urihttps://doi.org/10.1002/cepa.2896
dc.relation.urihttps://doi.org/10.3390/su16229624
dc.relation.urihttps://doi.org/10.3390/su142416691
dc.relation.urihttps://doi.org/10.36100/conference2024.01
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Bidos V., Petrovska N., Sidun Iu.,Turok I., 2025
dc.subjectхолодний ресайклінг
dc.subjectпортландцемент
dc.subjectцегла
dc.subjectскло
dc.subjectазбестовий шифер
dc.subjectподрібнений бетон
dc.subjectcold recycling
dc.subjectportland cement
dc.subjectbrick
dc.subjectglass
dc.subjectasbestos-cement slate
dc.subjectcrushed concrete
dc.titleThe possibility of using materials from demolished buildings in cold recycling technology for road base layers
dc.title.alternativeМожливість використання матеріалів із зруйнованих будівель у технології холодного ресайклінгу для шарів основи дорожнього одягу
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v7n1_Bidos_V-The_possibility_of_using_materials_8-12.pdf
Size:
393.49 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v7n1_Bidos_V-The_possibility_of_using_materials_8-12__COVER.png
Size:
432.27 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: