Recurrence and structuring of sequences of transformations 3n + 1 as arguments for confirmation of the collatz hypothesis
dc.citation.epage | 33 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика. | |
dc.citation.spage | 28 | |
dc.citation.volume | 5 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кособуцький, Петро | |
dc.contributor.author | Каркульовський, Володимир | |
dc.contributor.author | Kosobutskyy, Petro | |
dc.contributor.author | Karkulovskyy, Volodymyr | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-23T06:35:29Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Показано, що необмеженість підпослідовності непарних чисел не контраргумент порушення гіпотези Коллатца, а універсальна характеристика перетворень натуральних чисел за алгоритмом 3n+1. Встановлений рекурентний зв’язок між параметрами послідовності Коллатца перетворень довільної пари натуральних чисел n і 2n . | |
dc.description.abstract | It is shown that infinites of the subsequence of odd numbers is not a counterargument of the violation of the Collatz hypothesis, but a universal characteristic of transformations of natural numbers by the 3n + 1 algorithm. A recurrent relationship is established between the parameters of the sequence of Collatz transformations of an arbitrary pair of natural numbers n and 2n. | |
dc.format.extent | 28-33 | |
dc.format.pages | 6 | |
dc.identifier.citation | Kosobutskyy P. Recurrence and structuring of sequences of transformations 3n + 1 as arguments for confirmation of the collatz hypothesis / Petro Kosobutskyy, Volodymyr Karkulovskyy // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 28–33. | |
dc.identifier.citationen | Kosobutskyy P. Recurrence and structuring of sequences of transformations 3n + 1 as arguments for confirmation of the collatz hypothesis / Petro Kosobutskyy, Volodymyr Karkulovskyy // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 28–33. | |
dc.identifier.doi | doi.org/10.23939/cds2023.01.028 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111492 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика., 1 (5), 2023 | |
dc.relation.ispartof | Computer Design Systems. Theory and Practice, 1 (5), 2023 | |
dc.relation.references | 1.L. Collatz On the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition,1986, 12(3), 9–11. | |
dc.relation.references | 2. The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users Recurrence and Structuring of Sequences of Transformations 3n+1 as Arguments… 33 of the OEIS and by a grant from the Simons Foundation, https://oeis.org/A002450 | |
dc.relation.references | 3. R. Terras. A stopping time problem on the positive integers. Acta Arith. 1976, 30, 241–252. https://doi.org/10.4064/aa-30-3-241-252 | |
dc.relation.references | 4. Terras, R. On the Existence of a Density. Acta Arith. 1979, 35, 101–102. https://doi.org/10.4064/aa-35-1-101-102 | |
dc.relation.references | 5. T. Tao. Almost all orbits of the Collatz map attain almost bounded values, 2020. | |
dc.relation.references | 6. A. Rahn, E. Sultanow, M. Henkel, S. Ghosh, I. Aberkane. An Algorithm for Linearizing the Collatz Convergence.Mathematics 2021, 9(16), 1898; https://doi.org/10.3390/math9161898 | |
dc.relation.references | 7. Collatz conjucture. Collatz best results, https://www.dcode.fr/collatz-conjecture | |
dc.relation.references | 8. J. Kleinnijenhuis, A. Kleinnijenhuis, M. Aydogan. The Collatz tree as a Hilbert hotel: a proof of the 3x + 1 conjecture/arXiv:2008.13643v3 [math.GM] 17 Jan 2021 | |
dc.relation.references | 9. М. Ahmed Maya. Two different scenarios when the Collatz Conjecture fails, arXiv:2001.04976v1 [math.GM] | |
dc.relation.references | 10. L. Green. LOG book, http://lesliegreen.byethost3.com/publications.html | |
dc.relation.references | 11. Collatz Conjucture, https://www.dcode.fr/collatz-conjecture. | |
dc.relation.references | 12. C.Сadogan C. A Solution to the 3x + 1 Problem Charles Cadogan.юCaribb. J. Math. Comput. Sci. — 2006. — 13, p. 1-11 | |
dc.relation.references | 13. И.Рысцов. Замечание по поводу доказательства гипотезы Коллатца. Украинский математический конгресс – 2009. (UKRAINIAN MATHEMATICAL CONGRESS − 2009 (Dedicated to the Centennial of Nikolai N. Bogoliubov), Kyiv, Institute of Mathematics of NASU, August 27−29, 2009). https://www.imath.kiev.ua/~congress2009/Abstracts/Rystcov.pdf | |
dc.relation.references | 14. P.Catarino, H.Campos, P.Vasco. On the Mersenne sequence. Annales Mathematicae et Informaticae, vol.46 (2016), 37-53. | |
dc.relation.referencesen | 1.L. Collatz On the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition,1986, 12(3), 9–11. | |
dc.relation.referencesen | 2. The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users Recurrence and Structuring of Sequences of Transformations 3n+1 as Arguments… 33 of the OEIS and by a grant from the Simons Foundation, https://oeis.org/A002450 | |
dc.relation.referencesen | 3. R. Terras. A stopping time problem on the positive integers. Acta Arith. 1976, 30, 241–252. https://doi.org/10.4064/aa-30-3-241-252 | |
dc.relation.referencesen | 4. Terras, R. On the Existence of a Density. Acta Arith. 1979, 35, 101–102. https://doi.org/10.4064/aa-35-1-101-102 | |
dc.relation.referencesen | 5. T. Tao. Almost all orbits of the Collatz map attain almost bounded values, 2020. | |
dc.relation.referencesen | 6. A. Rahn, E. Sultanow, M. Henkel, S. Ghosh, I. Aberkane. An Algorithm for Linearizing the Collatz Convergence.Mathematics 2021, 9(16), 1898; https://doi.org/10.3390/math9161898 | |
dc.relation.referencesen | 7. Collatz conjucture. Collatz best results, https://www.dcode.fr/collatz-conjecture | |
dc.relation.referencesen | 8. J. Kleinnijenhuis, A. Kleinnijenhuis, M. Aydogan. The Collatz tree as a Hilbert hotel: a proof of the 3x + 1 conjecture/arXiv:2008.13643v3 [math.GM] 17 Jan 2021 | |
dc.relation.referencesen | 9. M. Ahmed Maya. Two different scenarios when the Collatz Conjecture fails, arXiv:2001.04976v1 [math.GM] | |
dc.relation.referencesen | 10. L. Green. LOG book, http://lesliegreen.byethost3.com/publications.html | |
dc.relation.referencesen | 11. Collatz Conjucture, https://www.dcode.fr/collatz-conjecture. | |
dc.relation.referencesen | 12. C.Sadogan C. A Solution to the 3x + 1 Problem Charles Cadogan.iuCaribb. J. Math. Comput. Sci, 2006, 13, p. 1-11 | |
dc.relation.referencesen | 13. I.Rystsov. Zamechanie po povodu dokazatelstva hipotezy Kollattsa. Ukrainskii matematicheskii konhress – 2009. (UKRAINIAN MATHEMATICAL CONGRESS − 2009 (Dedicated to the Centennial of Nikolai N. Bogoliubov), Kyiv, Institute of Mathematics of NASU, August 27−29, 2009). https://www.imath.kiev.ua/~congress2009/Abstracts/Rystcov.pdf | |
dc.relation.referencesen | 14. P.Catarino, H.Campos, P.Vasco. On the Mersenne sequence. Annales Mathematicae et Informaticae, vol.46 (2016), 37-53. | |
dc.relation.uri | https://oeis.org/A002450 | |
dc.relation.uri | https://doi.org/10.4064/aa-30-3-241-252 | |
dc.relation.uri | https://doi.org/10.4064/aa-35-1-101-102 | |
dc.relation.uri | https://doi.org/10.3390/math9161898 | |
dc.relation.uri | https://www.dcode.fr/collatz-conjecture | |
dc.relation.uri | http://lesliegreen.byethost3.com/publications.html | |
dc.relation.uri | https://www.imath.kiev.ua/~congress2009/Abstracts/Rystcov.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kособуцький П., Kаркульовський В., 2023 | |
dc.subject | гіпотеза Коллатца | |
dc.subject | послідовність | |
dc.subject | перетворення 3n+1 | |
dc.subject | натуральні числа | |
dc.subject | Collatz conjecture | |
dc.subject | recurrent sequence | |
dc.subject | transformation 3n + 1 | |
dc.subject | natural numbers | |
dc.title | Recurrence and structuring of sequences of transformations 3n + 1 as arguments for confirmation of the collatz hypothesis | |
dc.title.alternative | Закономірності формування послідовностей 3n+1 перетворень як аргумент підтвердження гіпотези Коллатца | |
dc.type | Article |
Files
License bundle
1 - 1 of 1