Процес “Сонопероксат” для окиснювальної деградації метилового оранжевого
dc.citation.epage | 71 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 65 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Сухацький, Ю. В. | |
dc.contributor.author | Шепіда, М. В. | |
dc.contributor.author | Знак, З. О. | |
dc.contributor.author | Sukhatskiy, Yu. | |
dc.contributor.author | Shepida, M. V. | |
dc.contributor.author | Znak, Z. O. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T07:39:20Z | |
dc.date.created | 2005-03-01 | |
dc.date.issued | 2005-03-01 | |
dc.description.abstract | Розглянуто ефективність застосування інноваційних процесів окиснення для вилучення моноазобарвника метилового оранжевого зі стічних вод. Для інтенсивної окиснювальної деградації метилового оранжевого запропоновано використовувати комбінацію ультразвукової кавітації та процесу “Пероксат” – процес “Сонопероксат”. Встановлено раціональні умови окиснювальної деградації метилового оранжевого за його початкової концентрації у водному розчині 25 мг/дм3 (76,5·10–6 моль/дм3): мольне співвідношення метиловий оранжевий: гідрогену пероксид: калію метаперйодат = 1:50:10; pH реакційного середовища – 3; температура – 293 К; питома потужність кавітаційного ультразвукового оброблення – 68 Вт/дм3. За таких умов впродовж 1800 с було досягнуто ступеня деградації метилового оранжевого 89,4 %. | |
dc.description.abstract | The efficiency of application of advanced oxidation processes for removal of methyl orange mono azo dye from wastewater is considered. For intensive oxidative degradation of methyl orange, it was proposed to use a combination of ultrasonic cavitation and “Peroxate” process – the “Sonoperoxate” process. Rational conditions for oxidative degradation of methyl orange at its initial concentration in an aqueous solution of 25 mg/dm3 (76.5·10-6 mol/dm3) were established: the molar ratio of methyl orange:hydrogen pero- xide:potassium metaperiodate = 1:50:10; pH of the reaction medium – 3; temperature – 293 K; specific power of cavitation ultrasonic treatment – 68 W/dm3. Under such conditions, the degradation degree of methyl orange of 89.4 % was achieved for 1800 s. | |
dc.format.extent | 65-71 | |
dc.format.pages | 7 | |
dc.identifier.citation | Сухацький Ю. В. Процес “Сонопероксат” для окиснювальної деградації метилового оранжевого / Ю. В. Сухацький, М. В. Шепіда, З. О. Знак // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 65–71. | |
dc.identifier.citationen | Sukhatskiy Yu. The “Sonoperoxate” process for oxidative degradation of methyl orange / Yu. Sukhatskiy, M. V. Shepida, Z. O. Znak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 65–71. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.02.065 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63665 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (5), 2022 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (5), 2022 | |
dc.relation.references | 1. Petrella, A., Spasiano, D., Cosma, P., Rizzi, V., Race, M., Mascolo, M. C., & Ranieri, E. (2021). Methyl orange photo-degradation by TiO2 in a pilot unit under different chemical, physical, and hydraulic conditions. Processes, 9 (2), 205. DOI: https://doi.org/10.3390/pr9020205 | |
dc.relation.references | 2. Liu, H., & Bi, W. (2022). Degradation of methyl orange by pyrite activated persulfate oxidation: mechanism, pathway and influences of water substrates. Water Science & Technology. DOI: https://doi.org/10.2166/wst.2022.134 | |
dc.relation.references | 3. Azimi, S. C., Shirini, F., & Pendashteh, A. R. (2021). Advanced oxidation process as a green technology for dyes removal from wastewater: a review. Iranian Journal of Chemistry and Chemical Engineering, 40 (5), 1467-1489. DOI: 10.30492/ijcce.2020.43234 | |
dc.relation.references | 4. Labidi, A., Salaberria, A. M., Fernandes, S. C. M., Labidi, J., & Abderrabba, M. (2019). Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous so- lution. Materials, 12 (3), 361. DOI: https://doi.org/10.3390/ma12030361 | |
dc.relation.references | 5. Anwer, M., & Faizi, Y. (2022). A review on types and applications of advanced oxidation processes. International Journal of Advances in Engineering and Management, 4 (2), 1059-1070. DOI: 10.35629/5252- 040210591070 | |
dc.relation.references | 6. Haji, S., Benstaali, B., & Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 168 (1), 134-139. DOI: https://doi.org/10.1016/j.cej.2010.12.050 | |
dc.relation.references | 7. Benredjem, Z., Barbari, K., Chaabna, I., Saaidia, S., Djemel, A., Delimi, R., …Bakhouche, K. (2021). Comparative investigation on the removal of methyl orange from aqueous solution using three different advanced oxidation processes. International Journal of Chemical Reactor Engineering, 19 (6), 597-604. DOI: https://doi.org/10.1515/ijcre-2020-0243 | |
dc.relation.references | 8. Sukhatskiy, Y., Znak, Z., Zin, O., & Chu- pinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. DOI: https://doi.org/10.23939/chcht15.02.284 | |
dc.relation.references | 9. Butt, A. L., & Tichapondwa, S. M. (2020). Catalytic wet peroxide oxidation of methyl orange using naturally-occurring South African ilmenite as a catalyst. Chemical Engineering Transactions, 81, 367-372. DOI: 10.3303/CET2081062 | |
dc.relation.references | 10. Butt, A. L., Mpinga, J. K., & Tichapondwa, S. M. (2021). Photo-Fenton oxidation of methyl orange dye using South African ilmenite sands as a catalyst. Catalysts, 11, 1452. DOI: https://doi.org/10.3390/catal11121452 | |
dc.relation.references | 11. Nabavi, N., Peyda, M., & Sadeghi, G. (2017). The photocatalytic kinetics of the methyl orange degradation in the aqueous suspension of irradiated TiO2. Journal of Human, Environment and Health Promotion, 2 (3), 154-160. DOI: https://doi.org/10.29252/jhehp.2.3.154 | |
dc.relation.references | 12. Rashed, M. N., Eltaher, M. A., & Abdou, A. N. (2017). Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/ sewage sludge-based activated carbon nanocomposites. Royal Society Open Science, 4 (12), 170834. DOI: https://doi.org/10.1098/rsos.170834 | |
dc.relation.references | 13. Hariani, P. L., Said, M., Salni, S., Aprianti, N., & Naibano, Y. A. L. R. (2022). High efficient photo- catalytic degradation of methyl orange dye in an aqueous solution by CoFe2O4-SiO2-TiO2 magnetic catalyst. Journal of Ecological Engineering, 23 (1), 118-128. DOI: https://doi.org/10.12911/22998993/143908 | |
dc.relation.references | 14. Chadi, N. E., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). H2O2/perio- date ( IO- ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environmental Science: Water Research & Technology, 5 (6), 1113-1123. DOI: https://doi.org/10.1039/C9EW00147F | |
dc.relation.references | 15. Chadi, N. E., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). Influence of mineral water constituents, organic matter and water matrices on the performance of H2O2/ IO- -advanced oxidation process. Environmental Science: Water Research & Technology, 5 (11), 1985-1992. DOI: https://doi.org/10.1039/C9EW00329K | |
dc.relation.references | 16. Sukhatskiy, Y., Sozanskyi, M., Shepida, M., Znak, Z., & Gogate, P. R. (2022). Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Separation and Purification Technology, 288, 120651. DOI: https://doi.org/10.1016/j.seppur.2022.120651 | |
dc.relation.references | 17. Znak, Z. O., Sukhatskiy, Y. V., Zin, O. I., Khomyak, S. V., Mnykh, R. V., & Lysenko, A. V. (2018). The decomposition of the benzene in cavitation fields. Voprosy khimii i khimicheskoi tekhnologii (Issues of Chemistry and Chemical Technology), 1 (116), 72-77. | |
dc.relation.referencesen | 1. Petrella, A., Spasiano, D., Cosma, P., Rizzi, V., Race, M., Mascolo, M. C., & Ranieri, E. (2021). Methyl orange photo-degradation by TiO2 in a pilot unit under different chemical, physical, and hydraulic conditions. Processes, 9 (2), 205. DOI: https://doi.org/10.3390/pr9020205 | |
dc.relation.referencesen | 2. Liu, H., & Bi, W. (2022). Degradation of methyl orange by pyrite activated persulfate oxidation: mechanism, pathway and influences of water substrates. Water Science & Technology. DOI: https://doi.org/10.2166/wst.2022.134 | |
dc.relation.referencesen | 3. Azimi, S. C., Shirini, F., & Pendashteh, A. R. (2021). Advanced oxidation process as a green technology for dyes removal from wastewater: a review. Iranian Journal of Chemistry and Chemical Engineering, 40 (5), 1467-1489. DOI: 10.30492/ijcce.2020.43234 | |
dc.relation.referencesen | 4. Labidi, A., Salaberria, A. M., Fernandes, S. C. M., Labidi, J., & Abderrabba, M. (2019). Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous so- lution. Materials, 12 (3), 361. DOI: https://doi.org/10.3390/ma12030361 | |
dc.relation.referencesen | 5. Anwer, M., & Faizi, Y. (2022). A review on types and applications of advanced oxidation processes. International Journal of Advances in Engineering and Management, 4 (2), 1059-1070. DOI: 10.35629/5252- 040210591070 | |
dc.relation.referencesen | 6. Haji, S., Benstaali, B., & Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 168 (1), 134-139. DOI: https://doi.org/10.1016/j.cej.2010.12.050 | |
dc.relation.referencesen | 7. Benredjem, Z., Barbari, K., Chaabna, I., Saaidia, S., Djemel, A., Delimi, R., …Bakhouche, K. (2021). Comparative investigation on the removal of methyl orange from aqueous solution using three different advanced oxidation processes. International Journal of Chemical Reactor Engineering, 19 (6), 597-604. DOI: https://doi.org/10.1515/ijcre-2020-0243 | |
dc.relation.referencesen | 8. Sukhatskiy, Y., Znak, Z., Zin, O., & Chu- pinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. DOI: https://doi.org/10.23939/chcht15.02.284 | |
dc.relation.referencesen | 9. Butt, A. L., & Tichapondwa, S. M. (2020). Catalytic wet peroxide oxidation of methyl orange using naturally-occurring South African ilmenite as a catalyst. Chemical Engineering Transactions, 81, 367-372. DOI: 10.3303/CET2081062 | |
dc.relation.referencesen | 10. Butt, A. L., Mpinga, J. K., & Tichapondwa, S. M. (2021). Photo-Fenton oxidation of methyl orange dye using South African ilmenite sands as a catalyst. Catalysts, 11, 1452. DOI: https://doi.org/10.3390/catal11121452 | |
dc.relation.referencesen | 11. Nabavi, N., Peyda, M., & Sadeghi, G. (2017). The photocatalytic kinetics of the methyl orange degradation in the aqueous suspension of irradiated TiO2. Journal of Human, Environment and Health Promotion, 2 (3), 154-160. DOI: https://doi.org/10.29252/jhehp.2.3.154 | |
dc.relation.referencesen | 12. Rashed, M. N., Eltaher, M. A., & Abdou, A. N. (2017). Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/ sewage sludge-based activated carbon nanocomposites. Royal Society Open Science, 4 (12), 170834. DOI: https://doi.org/10.1098/rsos.170834 | |
dc.relation.referencesen | 13. Hariani, P. L., Said, M., Salni, S., Aprianti, N., & Naibano, Y. A. L. R. (2022). High efficient photo- catalytic degradation of methyl orange dye in an aqueous solution by CoFe2O4-SiO2-TiO2 magnetic catalyst. Journal of Ecological Engineering, 23 (1), 118-128. DOI: https://doi.org/10.12911/22998993/143908 | |
dc.relation.referencesen | 14. Chadi, N. E., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). H2O2/perio- date ( IO- ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environmental Science: Water Research & Technology, 5 (6), 1113-1123. DOI: https://doi.org/10.1039/P.9EW00147F | |
dc.relation.referencesen | 15. Chadi, N. E., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). Influence of mineral water constituents, organic matter and water matrices on the performance of H2O2/ IO- -advanced oxidation process. Environmental Science: Water Research & Technology, 5 (11), 1985-1992. DOI: https://doi.org/10.1039/P.9EW00329K | |
dc.relation.referencesen | 16. Sukhatskiy, Y., Sozanskyi, M., Shepida, M., Znak, Z., & Gogate, P. R. (2022). Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Separation and Purification Technology, 288, 120651. DOI: https://doi.org/10.1016/j.seppur.2022.120651 | |
dc.relation.referencesen | 17. Znak, Z. O., Sukhatskiy, Y. V., Zin, O. I., Khomyak, S. V., Mnykh, R. V., & Lysenko, A. V. (2018). The decomposition of the benzene in cavitation fields. Voprosy khimii i khimicheskoi tekhnologii (Issues of Chemistry and Chemical Technology), 1 (116), 72-77. | |
dc.relation.uri | https://doi.org/10.3390/pr9020205 | |
dc.relation.uri | https://doi.org/10.2166/wst.2022.134 | |
dc.relation.uri | https://doi.org/10.3390/ma12030361 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2010.12.050 | |
dc.relation.uri | https://doi.org/10.1515/ijcre-2020-0243 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.02.284 | |
dc.relation.uri | https://doi.org/10.3390/catal11121452 | |
dc.relation.uri | https://doi.org/10.29252/jhehp.2.3.154 | |
dc.relation.uri | https://doi.org/10.1098/rsos.170834 | |
dc.relation.uri | https://doi.org/10.12911/22998993/143908 | |
dc.relation.uri | https://doi.org/10.1039/C9EW00147F | |
dc.relation.uri | https://doi.org/10.1039/C9EW00329K | |
dc.relation.uri | https://doi.org/10.1016/j.seppur.2022.120651 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | метиловий оранжевий | |
dc.subject | азобарвник | |
dc.subject | гідрогену пероксид | |
dc.subject | калію метаперйодат | |
dc.subject | інноваційні процеси окиснення | |
dc.subject | процес “Сонопероксат” | |
dc.subject | деградація | |
dc.subject | methyl orange | |
dc.subject | azo dye | |
dc.subject | hydrogen peroxide | |
dc.subject | potassium metaperiodate | |
dc.subject | advanced oxidation processes | |
dc.subject | the “Sonoperoxate” process | |
dc.subject | degradation | |
dc.title | Процес “Сонопероксат” для окиснювальної деградації метилового оранжевого | |
dc.title.alternative | The “Sonoperoxate” process for oxidative degradation of methyl orange | |
dc.type | Article |
Files
License bundle
1 - 1 of 1