Процес “Сонопероксат” для окиснювальної деградації метилового оранжевого

dc.citation.epage71
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage65
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorШепіда, М. В.
dc.contributor.authorЗнак, З. О.
dc.contributor.authorSukhatskiy, Yu.
dc.contributor.authorShepida, M. V.
dc.contributor.authorZnak, Z. O.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:20Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractРозглянуто ефективність застосування інноваційних процесів окиснення для вилучення моноазобарвника метилового оранжевого зі стічних вод. Для інтенсивної окиснювальної деградації метилового оранжевого запропоновано використовувати комбінацію ультразвукової кавітації та процесу “Пероксат” – процес “Сонопероксат”. Встановлено раціональні умови окиснювальної деградації метилового оранжевого за його початкової концентрації у водному розчині 25 мг/дм3 (76,5·10–6 моль/дм3): мольне співвідношення метиловий оранжевий: гідрогену пероксид: калію метаперйодат = 1:50:10; pH реакційного середовища – 3; температура – 293 К; питома потужність кавітаційного ультразвукового оброблення – 68 Вт/дм3. За таких умов впродовж 1800 с було досягнуто ступеня деградації метилового оранжевого 89,4 %.
dc.description.abstractThe efficiency of application of advanced oxidation processes for removal of methyl orange mono azo dye from wastewater is considered. For intensive oxidative degradation of methyl orange, it was proposed to use a combination of ultrasonic cavitation and “Peroxate” process – the “Sonoperoxate” process. Rational conditions for oxidative degradation of methyl orange at its initial concentration in an aqueous solution of 25 mg/dm3 (76.5·10-6 mol/dm3) were established: the molar ratio of methyl orange:hydrogen pero- xide:potassium metaperiodate = 1:50:10; pH of the reaction medium – 3; temperature – 293 K; specific power of cavitation ultrasonic treatment – 68 W/dm3. Under such conditions, the degradation degree of methyl orange of 89.4 % was achieved for 1800 s.
dc.format.extent65-71
dc.format.pages7
dc.identifier.citationСухацький Ю. В. Процес “Сонопероксат” для окиснювальної деградації метилового оранжевого / Ю. В. Сухацький, М. В. Шепіда, З. О. Знак // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 65–71.
dc.identifier.citationenSukhatskiy Yu. The “Sonoperoxate” process for oxidative degradation of methyl orange / Yu. Sukhatskiy, M. V. Shepida, Z. O. Znak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 65–71.
dc.identifier.doidoi.org/10.23939/ctas2022.02.065
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63665
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Petrella, A., Spasiano, D., Cosma, P., Rizzi, V., Race, M., Mascolo, M. C., & Ranieri, E. (2021). Methyl orange photo-degradation by TiO2 in a pilot unit under different chemical, physical, and hydraulic conditions. Processes, 9 (2), 205. DOI: https://doi.org/10.3390/pr9020205
dc.relation.references2. Liu, H., & Bi, W. (2022). Degradation of methyl orange by pyrite activated persulfate oxidation: mechanism, pathway and influences of water substrates. Water Science & Technology. DOI: https://doi.org/10.2166/wst.2022.134
dc.relation.references3. Azimi, S. C., Shirini, F., & Pendashteh, A. R. (2021). Advanced oxidation process as a green technology for dyes removal from wastewater: a review. Iranian Journal of Chemistry and Chemical Engineering, 40 (5), 1467-1489. DOI: 10.30492/ijcce.2020.43234
dc.relation.references4. Labidi, A., Salaberria, A. M., Fernandes, S. C. M., Labidi, J., & Abderrabba, M. (2019). Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous so- lution. Materials, 12 (3), 361. DOI: https://doi.org/10.3390/ma12030361
dc.relation.references5. Anwer, M., & Faizi, Y. (2022). A review on types and applications of advanced oxidation processes. International Journal of Advances in Engineering and Management, 4 (2), 1059-1070. DOI: 10.35629/5252- 040210591070
dc.relation.references6. Haji, S., Benstaali, B., & Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 168 (1), 134-139. DOI: https://doi.org/10.1016/j.cej.2010.12.050
dc.relation.references7. Benredjem, Z., Barbari, K., Chaabna, I., Saaidia, S., Djemel, A., Delimi, R., …Bakhouche, K. (2021). Comparative investigation on the removal of methyl orange from aqueous solution using three different advanced oxidation processes. International Journal of Chemical Reactor Engineering, 19 (6), 597-604. DOI: https://doi.org/10.1515/ijcre-2020-0243
dc.relation.references8. Sukhatskiy, Y., Znak, Z., Zin, O., & Chu- pinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. DOI: https://doi.org/10.23939/chcht15.02.284
dc.relation.references9. Butt, A. L., & Tichapondwa, S. M. (2020). Catalytic wet peroxide oxidation of methyl orange using naturally-occurring South African ilmenite as a catalyst. Chemical Engineering Transactions, 81, 367-372. DOI: 10.3303/CET2081062
dc.relation.references10. Butt, A. L., Mpinga, J. K., & Tichapondwa, S. M. (2021). Photo-Fenton oxidation of methyl orange dye using South African ilmenite sands as a catalyst. Catalysts, 11, 1452. DOI: https://doi.org/10.3390/catal11121452
dc.relation.references11. Nabavi, N., Peyda, M., & Sadeghi, G. (2017). The photocatalytic kinetics of the methyl orange degradation in the aqueous suspension of irradiated TiO2. Journal of Human, Environment and Health Promotion, 2 (3), 154-160. DOI: https://doi.org/10.29252/jhehp.2.3.154
dc.relation.references12. Rashed, M. N., Eltaher, M. A., & Abdou, A. N. (2017). Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/ sewage sludge-based activated carbon nanocomposites. Royal Society Open Science, 4 (12), 170834. DOI: https://doi.org/10.1098/rsos.170834
dc.relation.references13. Hariani, P. L., Said, M., Salni, S., Aprianti, N., & Naibano, Y. A. L. R. (2022). High efficient photo- catalytic degradation of methyl orange dye in an aqueous solution by CoFe2O4-SiO2-TiO2 magnetic catalyst. Journal of Ecological Engineering, 23 (1), 118-128. DOI: https://doi.org/10.12911/22998993/143908
dc.relation.references14. Chadi, N. E., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). H2O2/perio- date ( IO- ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environmental Science: Water Research & Technology, 5 (6), 1113-1123. DOI: https://doi.org/10.1039/C9EW00147F
dc.relation.references15. Chadi, N. E., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). Influence of mineral water constituents, organic matter and water matrices on the performance of H2O2/ IO- -advanced oxidation process. Environmental Science: Water Research & Technology, 5 (11), 1985-1992. DOI: https://doi.org/10.1039/C9EW00329K
dc.relation.references16. Sukhatskiy, Y., Sozanskyi, M., Shepida, M., Znak, Z., & Gogate, P. R. (2022). Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Separation and Purification Technology, 288, 120651. DOI: https://doi.org/10.1016/j.seppur.2022.120651
dc.relation.references17. Znak, Z. O., Sukhatskiy, Y. V., Zin, O. I., Khomyak, S. V., Mnykh, R. V., & Lysenko, A. V. (2018). The decomposition of the benzene in cavitation fields. Voprosy khimii i khimicheskoi tekhnologii (Issues of Chemistry and Chemical Technology), 1 (116), 72-77.
dc.relation.referencesen1. Petrella, A., Spasiano, D., Cosma, P., Rizzi, V., Race, M., Mascolo, M. C., & Ranieri, E. (2021). Methyl orange photo-degradation by TiO2 in a pilot unit under different chemical, physical, and hydraulic conditions. Processes, 9 (2), 205. DOI: https://doi.org/10.3390/pr9020205
dc.relation.referencesen2. Liu, H., & Bi, W. (2022). Degradation of methyl orange by pyrite activated persulfate oxidation: mechanism, pathway and influences of water substrates. Water Science & Technology. DOI: https://doi.org/10.2166/wst.2022.134
dc.relation.referencesen3. Azimi, S. C., Shirini, F., & Pendashteh, A. R. (2021). Advanced oxidation process as a green technology for dyes removal from wastewater: a review. Iranian Journal of Chemistry and Chemical Engineering, 40 (5), 1467-1489. DOI: 10.30492/ijcce.2020.43234
dc.relation.referencesen4. Labidi, A., Salaberria, A. M., Fernandes, S. C. M., Labidi, J., & Abderrabba, M. (2019). Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous so- lution. Materials, 12 (3), 361. DOI: https://doi.org/10.3390/ma12030361
dc.relation.referencesen5. Anwer, M., & Faizi, Y. (2022). A review on types and applications of advanced oxidation processes. International Journal of Advances in Engineering and Management, 4 (2), 1059-1070. DOI: 10.35629/5252- 040210591070
dc.relation.referencesen6. Haji, S., Benstaali, B., & Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 168 (1), 134-139. DOI: https://doi.org/10.1016/j.cej.2010.12.050
dc.relation.referencesen7. Benredjem, Z., Barbari, K., Chaabna, I., Saaidia, S., Djemel, A., Delimi, R., …Bakhouche, K. (2021). Comparative investigation on the removal of methyl orange from aqueous solution using three different advanced oxidation processes. International Journal of Chemical Reactor Engineering, 19 (6), 597-604. DOI: https://doi.org/10.1515/ijcre-2020-0243
dc.relation.referencesen8. Sukhatskiy, Y., Znak, Z., Zin, O., & Chu- pinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. DOI: https://doi.org/10.23939/chcht15.02.284
dc.relation.referencesen9. Butt, A. L., & Tichapondwa, S. M. (2020). Catalytic wet peroxide oxidation of methyl orange using naturally-occurring South African ilmenite as a catalyst. Chemical Engineering Transactions, 81, 367-372. DOI: 10.3303/CET2081062
dc.relation.referencesen10. Butt, A. L., Mpinga, J. K., & Tichapondwa, S. M. (2021). Photo-Fenton oxidation of methyl orange dye using South African ilmenite sands as a catalyst. Catalysts, 11, 1452. DOI: https://doi.org/10.3390/catal11121452
dc.relation.referencesen11. Nabavi, N., Peyda, M., & Sadeghi, G. (2017). The photocatalytic kinetics of the methyl orange degradation in the aqueous suspension of irradiated TiO2. Journal of Human, Environment and Health Promotion, 2 (3), 154-160. DOI: https://doi.org/10.29252/jhehp.2.3.154
dc.relation.referencesen12. Rashed, M. N., Eltaher, M. A., & Abdou, A. N. (2017). Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/ sewage sludge-based activated carbon nanocomposites. Royal Society Open Science, 4 (12), 170834. DOI: https://doi.org/10.1098/rsos.170834
dc.relation.referencesen13. Hariani, P. L., Said, M., Salni, S., Aprianti, N., & Naibano, Y. A. L. R. (2022). High efficient photo- catalytic degradation of methyl orange dye in an aqueous solution by CoFe2O4-SiO2-TiO2 magnetic catalyst. Journal of Ecological Engineering, 23 (1), 118-128. DOI: https://doi.org/10.12911/22998993/143908
dc.relation.referencesen14. Chadi, N. E., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). H2O2/perio- date ( IO- ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environmental Science: Water Research & Technology, 5 (6), 1113-1123. DOI: https://doi.org/10.1039/P.9EW00147F
dc.relation.referencesen15. Chadi, N. E., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). Influence of mineral water constituents, organic matter and water matrices on the performance of H2O2/ IO- -advanced oxidation process. Environmental Science: Water Research & Technology, 5 (11), 1985-1992. DOI: https://doi.org/10.1039/P.9EW00329K
dc.relation.referencesen16. Sukhatskiy, Y., Sozanskyi, M., Shepida, M., Znak, Z., & Gogate, P. R. (2022). Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Separation and Purification Technology, 288, 120651. DOI: https://doi.org/10.1016/j.seppur.2022.120651
dc.relation.referencesen17. Znak, Z. O., Sukhatskiy, Y. V., Zin, O. I., Khomyak, S. V., Mnykh, R. V., & Lysenko, A. V. (2018). The decomposition of the benzene in cavitation fields. Voprosy khimii i khimicheskoi tekhnologii (Issues of Chemistry and Chemical Technology), 1 (116), 72-77.
dc.relation.urihttps://doi.org/10.3390/pr9020205
dc.relation.urihttps://doi.org/10.2166/wst.2022.134
dc.relation.urihttps://doi.org/10.3390/ma12030361
dc.relation.urihttps://doi.org/10.1016/j.cej.2010.12.050
dc.relation.urihttps://doi.org/10.1515/ijcre-2020-0243
dc.relation.urihttps://doi.org/10.23939/chcht15.02.284
dc.relation.urihttps://doi.org/10.3390/catal11121452
dc.relation.urihttps://doi.org/10.29252/jhehp.2.3.154
dc.relation.urihttps://doi.org/10.1098/rsos.170834
dc.relation.urihttps://doi.org/10.12911/22998993/143908
dc.relation.urihttps://doi.org/10.1039/C9EW00147F
dc.relation.urihttps://doi.org/10.1039/C9EW00329K
dc.relation.urihttps://doi.org/10.1016/j.seppur.2022.120651
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectметиловий оранжевий
dc.subjectазобарвник
dc.subjectгідрогену пероксид
dc.subjectкалію метаперйодат
dc.subjectінноваційні процеси окиснення
dc.subjectпроцес “Сонопероксат”
dc.subjectдеградація
dc.subjectmethyl orange
dc.subjectazo dye
dc.subjecthydrogen peroxide
dc.subjectpotassium metaperiodate
dc.subjectadvanced oxidation processes
dc.subjectthe “Sonoperoxate” process
dc.subjectdegradation
dc.titleПроцес “Сонопероксат” для окиснювальної деградації метилового оранжевого
dc.title.alternativeThe “Sonoperoxate” process for oxidative degradation of methyl orange
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Sukhatskiy_Yu-The_Sonoperoxate_process_65-71.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Sukhatskiy_Yu-The_Sonoperoxate_process_65-71__COVER.png
Size:
492.53 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: