Індукування системної стійкості рослин та перспективи використання Streptomyces як агентів біоконтролю інфекційних захворювань
dc.citation.epage | 116 | |
dc.citation.issue | 1 | |
dc.citation.spage | 102 | |
dc.contributor.affiliation | Львівський національний університет ветеринарної медицини та біотехнологій ім. С. З. Ґжицького | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv National Stepan Gzhytsky University of Veterinary Medicine and Biotechnology | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Шемедюк, Н. П. | |
dc.contributor.author | Ромашко, І. С. | |
dc.contributor.author | Буцяк, В. І. | |
dc.contributor.author | Двилюк, І. І. | |
dc.contributor.author | Швед, О. В. | |
dc.contributor.author | Shemedyuk, N. P. | |
dc.contributor.author | Romashko, I. S. | |
dc.contributor.author | Butsiak, V. I. | |
dc.contributor.author | Dvylyuk, I. I. | |
dc.contributor.author | Shved, O. V. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:46Z | |
dc.date.available | 2024-01-22T09:22:46Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Використання мікроорганізмів для профілактики, лікування інфекційних захворювань рослин і підвищення врожайності все більше цікавить людство як альтернатива хімічним засобам захисту, зокрема сільськогосподарських культур. У статті охарактеризовано Streptomyces як агенти біоконтролю та ризобактерії, які стимулюють ріст рослин, і також механізми, сигнальні шляхи індукованого ними системного захисту рослини. Нове, сучасне бачення у вивчення цих питань привносять проаналізовані світові наукові дослідження останніх років, які все більше доводять перспективність Streptomyces у створенні біобезпечних біотехнологічних засобів захисту рослин. Експериментально доведено антифунгальну, антибактерійну активність Streptomyces, одержаних із біогумусу. | |
dc.description.abstract | Microorganisms are used for the prevention, treatment of infectious diseases of plants and increasing yields. Products based on a culture of microorganisms mankind use as an alternative to chemical pesticides and fungicides. In this work we consider Streptomyces as agents of biocontrol and plant growth stimulator as well as induced by their mechanisms, metabolic pathways. We experimentally proved antifungal, the antibacterial activity of Streptomyces isolates obtained from compost. | |
dc.format.extent | 102-116 | |
dc.format.pages | 15 | |
dc.identifier.citation | Індукування системної стійкості рослин та перспективи використання Streptomyces як агентів біоконтролю інфекційних захворювань / Н. П. Шемедюк, І. С. Ромашко, В. І. Буцяк, І. І. Двилюк, О. В. Швед // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 102–116. | |
dc.identifier.citationen | The development of systemic plant stability and the prospects of using Streptomyces as biocontrol agents / N. P. Shemedyuk, I. S. Romashko, V. I. Butsiak, I. I. Dvylyuk, O. V. Shved // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 102–116. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.102 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60919 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Barka, E. A., Vatsa, P., Sanchez, L. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 80, 1–43. | |
dc.relation.references | 2. Beneduzi, А., Ambrosini, А. & Passaglia, M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 4, 1044–1051. | |
dc.relation.references | 3. Castañeda-Novoa1, C. D., Vinchira-Villarraga, D. M., García Romero, I. A. & Sarmiento, N. M. (2021). Evaluation of the production of antifungal metabolites against Colletotrichum gloeosporioides in Streptomyces 5.1 by random mutagenesis. Acta Scientiarum. Biological Sciences, 43, e54709. https://doi:10.4025/actascibiolsci.v43i1.54709. | |
dc.relation.references | 4. Claessen, D., Errington, J. (2019). Cell wall deficiency as a coping strategy for stress.Trends in Microbiology, 5, 12, 1025–1033. | |
dc.relation.references | 5. Enebe, M. Ch. & Babalola, O. O. (2019). The impact of microbes in the orchestration of plants’ resistanceto biotic stress: a disease management approach. Applied Microbiol Biotechnol, 103, 9–25. https://doi.org/10.1007/s00253-018-9433-3. | |
dc.relation.references | 6. Evangelista-Martínez, Z., Contreras-Leal, E. A., Corona-Pedraza, L. F. & Gastélum-Martínez, É. (2020). Biocontrol potential of Streptomyces sp. CACIS-1.5CA against phytopathogenic fungi causing postharvest fruit diseases. Egyptian Journal of Biological Pest Control, 30:117. https://doi:10.1186/s41938-020-00319-9. | |
dc.relation.references | 7. González-Franco, A. C. & Robles-Hernández, L. (2009). Actinomycetes as biological control agents of phytopathogenic fungi. TecnocienciaChihuahua. 3, 2, 64–73. | |
dc.relation.references | 8. Hossain, A. (2021). Actinobacteria: Potential Candidate as Plant Growth Promoters, Plant Stress Physiology. https://doi:10.5772/intechopen.93272. | |
dc.relation.references | 9. Kannojia, P., Sharma, P. K., Kashyap, K. A., Manzar, N., Singh, U. B., Chaudhary, K., Malviya, D., Singh, Sh. & Sharma, S. K. (2017). Microbe-Mediated Biotic Stress Management in Plants Plant-Microbe. Interactions in Agro-Ecological, 26, 627–648. https://doi:10.1007/978-981-10-6593-4_26. | |
dc.relation.references | 10. Li, Y., Liu, J., Díaz-Cruz, G., Cheng, Z. & Li, B. (2019). Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiology, 165, 1025–1040. https://doi:10.1099/mic.0.000818. | |
dc.relation.references | 11. Liotti, R. G., Silva Figueiredo, М. І., Soares, М. А. (2019). Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biological сontrol, 138. https://doi.org/10.1016/j.biocontrol.2019.104065. | |
dc.relation.references | 12. Lіorens, Е., García-Agustín, Р., Lapeña, L. (2017). Advances in induced resistance by natural compounds: towards new options for woody crop protection. Sci. Agric. 74, 1, 90–100. http://dx.doi.org/10.1590/1678-992X-2016-0012. | |
dc.relation.references | 13. Mudgett, M. B. (2005). New Insights to the Function of Phytopathogenic Bacterial Type III Effectors in Plants. Annu. Rev. Plant Biol. 56:509–31. https://doi:10.1146/annurev.arplant.56.032604.144218. | |
dc.relation.references | 14. Newitt, J. T., Prudence, S. M. M., Hutchings, M. I., Worsley, S. F. (2019). Biocontrol of Cereal Crop Diseases Using Streptomycetes.Pathogens, 8, 78. https://doi:10.3390/pathogens8020078. | |
dc.relation.references | 15. Pacios-Michelena, S., Aguilar González, C. N., Alvarez-Perez, O. B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdés, R., Ascacio Valdés, J. A., Govea Salas, M. & Ilyina, A. (2021) Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. Front. Sustain. Food Syst., 5:696518. https://doi.org/10.3389/fsufs.2021.696518. | |
dc.relation.references | 16. Palmer, І. А., Shang, Z., Fu, Zh. Q. (2017). Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. Front. Biol., 12, 4, 258–270. https://doi:10.1007/s11515-017-1460-4. | |
dc.relation.references | 17. Patel, J. K., Madaan, Sh., Archana, G. (2018) Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogenchallenged cereal crops. Microbiological Research, 215, 36–45. | |
dc.relation.references | 18. Pérez-Corral, D. A., Jesús Ornelas-Paz, J., Olivas-Orozco, G. I., Acosta-Muñiz, C. H., Salas-Marina, M. A., Ruiz-Cisneros, M. F., Molina-Corra, F. J., Fernández-Pavía, S. P., Rios-Velasco, C. (2020). Antagonistic effect of volatile and non-volatile compounds from Streptomyces strains on cultures of several phytopathogenic fungi. Emirates Journal of Food and Agriculture, 32, 12, 879–889. https://doi:10.9755/ejfa.2020.v32.i12.2222. | |
dc.relation.references | 19. Sari, М., Nawangsih, А. А., Wahyudі, А. Т. (2021). Rhizosphere Streptomyces formulas as the biological control agent of phytopathogenic fungi Fusarium oxysporum and plant growth promoter of soybean. Вiodiversitas, 22, 6, 3015–3023. | |
dc.relation.references | 20. Sousa, J. A. & Olivares, F. L. (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem. Biol. Technol. Agric., 3, 24. https://doi:10.1186/s40538-016-0073-5. | |
dc.relation.references | 21. Viaene, Т., Langendries, S., Beirinck, S., Maes, М. & Goormachtig, S. (2016) Streptomyces as a plant’s best friend? FEMS Microbiology Ecology, 92, 8. https://doi:10.1093/femsec/fiw119. | |
dc.relation.references | 22. Vijayabharathi R., Gopalakrishnan S., Sathya A., Kumar M. V., Srinivas V. & Mamta Sh. (2018) Streptomyces sp. аs plant growth-promoters and hostplant resistance inducers against Botrytiscinerea in chickpea. Biocontrol Science and Technology. https://doi:10.1080/09583157.2018.1515890 | |
dc.relation.references | 23. Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes, Int. J. Mol. Sci., 19, 952, 2–26. https://doi:10.3390/ijms19040952. | |
dc.relation.references | 24. Wang, N., Liu, M., Guo, L., Yang, X., Qiu, D. (2016). А novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in Tobacco. Int J Biol Sci, 12, 6, 757–767. DOI: 10.7150/ijbs.14333. Available from https://www.ijbs.com/v12p0757.htm. | |
dc.relation.references | 25. Kozyrovsʹka, N. O. (2006). Mekhanizmy pryrodnoyi imunnosti roslyny. Biopolimery i klityna, 22, 2, 91–101. | |
dc.relation.references | 26. Kolomiyetsʹ, Yu. V., Hryhoryuk, I. P., Butsenko, L. M. (2018) Rolʹ pryrodnykh induktoriv u formuvanni stiykosti roslyn tomativ do zbudnykiv bakterialʹnykh khvorob. Nauk. zap. Ternop. nats. ped. untu. Ser. Biol., 1, 72, 75–81. | |
dc.relation.references | 27. Nykolaychyk, E. A., Lahonenko, A. L., Valentovych, L. N., Leshkovych, Y. Y., Ovchynnykova, T. V., Prysyazhnenko, O. K., Doruzhynskaya, N. H., Lymorova, Y. M., Evtushenkov, A. N. (2006). Molekulyarnye mekhanyzmy vzaymodeystvyya fytopatohennykh bakteryy Erwinia s rastenyyamy. Vestnyk BHU, 2, 3, 60–64. | |
dc.relation.references | 28. Panyuta, O. O., Shabliy, V. A., Belava, V. N. (2009). Zhasmonova kyslota ta yiyi uchastʹ u zakhysnykh reaktsiyakh roslynnoho orhanizmu. Ukr. biokhim. zhurn., 81, 2, 14–26. | |
dc.relation.references | 29. Shylina, Yu. V., Hushcha, M. I., Molozhava, O. S., Shevchenko, Yu. I., Dmytriyev, O. P. (2017). Imunomodulyuvalʹni vlastyvosti bakterialʹnykh lipopolisakharydiv u roslyn Arabidopsis thaliana ta yikh modyfikatsiya. Fyzyolohyya rastenyy y henetyka, 49, 2, 121–128. | |
dc.relation.referencesen | 1. Barka, E. A., Vatsa, P., Sanchez, L. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 80, 1–43. | |
dc.relation.referencesen | 2. Beneduzi, A., Ambrosini, A. & Passaglia, M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 4, 1044–1051. | |
dc.relation.referencesen | 3. Castañeda-Novoa1, C. D., Vinchira-Villarraga, D. M., García Romero, I. A. & Sarmiento, N. M. (2021). Evaluation of the production of antifungal metabolites against Colletotrichum gloeosporioides in Streptomyces 5.1 by random mutagenesis. Acta Scientiarum. Biological Sciences, 43, e54709. https://doi:10.4025/actascibiolsci.v43i1.54709. | |
dc.relation.referencesen | 4. Claessen, D., Errington, J. (2019). Cell wall deficiency as a coping strategy for stress.Trends in Microbiology, 5, 12, 1025–1033. | |
dc.relation.referencesen | 5. Enebe, M. Ch. & Babalola, O. O. (2019). The impact of microbes in the orchestration of plants’ resistanceto biotic stress: a disease management approach. Applied Microbiol Biotechnol, 103, 9–25. https://doi.org/10.1007/s00253-018-9433-3. | |
dc.relation.referencesen | 6. Evangelista-Martínez, Z., Contreras-Leal, E. A., Corona-Pedraza, L. F. & Gastélum-Martínez, É. (2020). Biocontrol potential of Streptomyces sp. CACIS-1.5CA against phytopathogenic fungi causing postharvest fruit diseases. Egyptian Journal of Biological Pest Control, 30:117. https://doi:10.1186/s41938-020-00319-9. | |
dc.relation.referencesen | 7. González-Franco, A. C. & Robles-Hernández, L. (2009). Actinomycetes as biological control agents of phytopathogenic fungi. TecnocienciaChihuahua. 3, 2, 64–73. | |
dc.relation.referencesen | 8. Hossain, A. (2021). Actinobacteria: Potential Candidate as Plant Growth Promoters, Plant Stress Physiology. https://doi:10.5772/intechopen.93272. | |
dc.relation.referencesen | 9. Kannojia, P., Sharma, P. K., Kashyap, K. A., Manzar, N., Singh, U. B., Chaudhary, K., Malviya, D., Singh, Sh. & Sharma, S. K. (2017). Microbe-Mediated Biotic Stress Management in Plants Plant-Microbe. Interactions in Agro-Ecological, 26, 627–648. https://doi:10.1007/978-981-10-6593-4_26. | |
dc.relation.referencesen | 10. Li, Y., Liu, J., Díaz-Cruz, G., Cheng, Z. & Li, B. (2019). Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiology, 165, 1025–1040. https://doi:10.1099/mic.0.000818. | |
dc.relation.referencesen | 11. Liotti, R. G., Silva Figueiredo, M. I., Soares, M. A. (2019). Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biological sontrol, 138. https://doi.org/10.1016/j.biocontrol.2019.104065. | |
dc.relation.referencesen | 12. Liorens, E., García-Agustín, R., Lapeña, L. (2017). Advances in induced resistance by natural compounds: towards new options for woody crop protection. Sci. Agric. 74, 1, 90–100. http://dx.doi.org/10.1590/1678-992X-2016-0012. | |
dc.relation.referencesen | 13. Mudgett, M. B. (2005). New Insights to the Function of Phytopathogenic Bacterial Type III Effectors in Plants. Annu. Rev. Plant Biol. 56:509–31. https://doi:10.1146/annurev.arplant.56.032604.144218. | |
dc.relation.referencesen | 14. Newitt, J. T., Prudence, S. M. M., Hutchings, M. I., Worsley, S. F. (2019). Biocontrol of Cereal Crop Diseases Using Streptomycetes.Pathogens, 8, 78. https://doi:10.3390/pathogens8020078. | |
dc.relation.referencesen | 15. Pacios-Michelena, S., Aguilar González, C. N., Alvarez-Perez, O. B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdés, R., Ascacio Valdés, J. A., Govea Salas, M. & Ilyina, A. (2021) Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. Front. Sustain. Food Syst., 5:696518. https://doi.org/10.3389/fsufs.2021.696518. | |
dc.relation.referencesen | 16. Palmer, I. A., Shang, Z., Fu, Zh. Q. (2017). Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. Front. Biol., 12, 4, 258–270. https://doi:10.1007/s11515-017-1460-4. | |
dc.relation.referencesen | 17. Patel, J. K., Madaan, Sh., Archana, G. (2018) Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogenchallenged cereal crops. Microbiological Research, 215, 36–45. | |
dc.relation.referencesen | 18. Pérez-Corral, D. A., Jesús Ornelas-Paz, J., Olivas-Orozco, G. I., Acosta-Muñiz, C. H., Salas-Marina, M. A., Ruiz-Cisneros, M. F., Molina-Corra, F. J., Fernández-Pavía, S. P., Rios-Velasco, C. (2020). Antagonistic effect of volatile and non-volatile compounds from Streptomyces strains on cultures of several phytopathogenic fungi. Emirates Journal of Food and Agriculture, 32, 12, 879–889. https://doi:10.9755/ejfa.2020.v32.i12.2222. | |
dc.relation.referencesen | 19. Sari, M., Nawangsih, A. A., Wahyudi, A. T. (2021). Rhizosphere Streptomyces formulas as the biological control agent of phytopathogenic fungi Fusarium oxysporum and plant growth promoter of soybean. Viodiversitas, 22, 6, 3015–3023. | |
dc.relation.referencesen | 20. Sousa, J. A. & Olivares, F. L. (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem. Biol. Technol. Agric., 3, 24. https://doi:10.1186/s40538-016-0073-5. | |
dc.relation.referencesen | 21. Viaene, T., Langendries, S., Beirinck, S., Maes, M. & Goormachtig, S. (2016) Streptomyces as a plant’s best friend? FEMS Microbiology Ecology, 92, 8. https://doi:10.1093/femsec/fiw119. | |
dc.relation.referencesen | 22. Vijayabharathi R., Gopalakrishnan S., Sathya A., Kumar M. V., Srinivas V. & Mamta Sh. (2018) Streptomyces sp. as plant growth-promoters and hostplant resistance inducers against Botrytiscinerea in chickpea. Biocontrol Science and Technology. https://doi:10.1080/09583157.2018.1515890 | |
dc.relation.referencesen | 23. Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes, Int. J. Mol. Sci., 19, 952, 2–26. https://doi:10.3390/ijms19040952. | |
dc.relation.referencesen | 24. Wang, N., Liu, M., Guo, L., Yang, X., Qiu, D. (2016). A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in Tobacco. Int J Biol Sci, 12, 6, 757–767. DOI: 10.7150/ijbs.14333. Available from https://www.ijbs.com/v12p0757.htm. | |
dc.relation.referencesen | 25. Kozyrovsʹka, N. O. (2006). Mekhanizmy pryrodnoyi imunnosti roslyny. Biopolimery i klityna, 22, 2, 91–101. | |
dc.relation.referencesen | 26. Kolomiyetsʹ, Yu. V., Hryhoryuk, I. P., Butsenko, L. M. (2018) Rolʹ pryrodnykh induktoriv u formuvanni stiykosti roslyn tomativ do zbudnykiv bakterialʹnykh khvorob. Nauk. zap. Ternop. nats. ped. untu. Ser. Biol., 1, 72, 75–81. | |
dc.relation.referencesen | 27. Nykolaychyk, E. A., Lahonenko, A. L., Valentovych, L. N., Leshkovych, Y. Y., Ovchynnykova, T. V., Prysyazhnenko, O. K., Doruzhynskaya, N. H., Lymorova, Y. M., Evtushenkov, A. N. (2006). Molekulyarnye mekhanyzmy vzaymodeystvyya fytopatohennykh bakteryy Erwinia s rastenyyamy. Vestnyk BHU, 2, 3, 60–64. | |
dc.relation.referencesen | 28. Panyuta, O. O., Shabliy, V. A., Belava, V. N. (2009). Zhasmonova kyslota ta yiyi uchastʹ u zakhysnykh reaktsiyakh roslynnoho orhanizmu. Ukr. biokhim. zhurn., 81, 2, 14–26. | |
dc.relation.referencesen | 29. Shylina, Yu. V., Hushcha, M. I., Molozhava, O. S., Shevchenko, Yu. I., Dmytriyev, O. P. (2017). Imunomodulyuvalʹni vlastyvosti bakterialʹnykh lipopolisakharydiv u roslyn Arabidopsis thaliana ta yikh modyfikatsiya. Fyzyolohyya rastenyy y henetyka, 49, 2, 121–128. | |
dc.relation.uri | https://doi:10.4025/actascibiolsci.v43i1.54709 | |
dc.relation.uri | https://doi.org/10.1007/s00253-018-9433-3 | |
dc.relation.uri | https://doi:10.1186/s41938-020-00319-9 | |
dc.relation.uri | https://doi:10.5772/intechopen.93272 | |
dc.relation.uri | https://doi:10.1007/978-981-10-6593-4_26 | |
dc.relation.uri | https://doi:10.1099/mic.0.000818 | |
dc.relation.uri | https://doi.org/10.1016/j.biocontrol.2019.104065 | |
dc.relation.uri | http://dx.doi.org/10.1590/1678-992X-2016-0012 | |
dc.relation.uri | https://doi:10.1146/annurev.arplant.56.032604.144218 | |
dc.relation.uri | https://doi:10.3390/pathogens8020078 | |
dc.relation.uri | https://doi.org/10.3389/fsufs.2021.696518 | |
dc.relation.uri | https://doi:10.1007/s11515-017-1460-4 | |
dc.relation.uri | https://doi:10.9755/ejfa.2020.v32.i12.2222 | |
dc.relation.uri | https://doi:10.1186/s40538-016-0073-5 | |
dc.relation.uri | https://doi:10.1093/femsec/fiw119 | |
dc.relation.uri | https://doi:10.1080/09583157.2018.1515890 | |
dc.relation.uri | https://doi:10.3390/ijms19040952 | |
dc.relation.uri | https://www.ijbs.com/v12p0757.htm | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | Streptomyces | |
dc.subject | фітопатогени | |
dc.subject | індукована системна резистентність | |
dc.subject | набута системна резистентність | |
dc.subject | біотехнологічні засоби захисту рослин | |
dc.subject | сигнальні шляхи | |
dc.subject | вторинні метаболіти | |
dc.subject | ензими | |
dc.subject | Streptomyces | |
dc.subject | phytopathogens | |
dc.subject | induced system resistance | |
dc.subject | resistance | |
dc.subject | biotechnological tools for plant protection | |
dc.subject | signal path | |
dc.subject | secondary metabolism | |
dc.subject | enzyme | |
dc.title | Індукування системної стійкості рослин та перспективи використання Streptomyces як агентів біоконтролю інфекційних захворювань | |
dc.title.alternative | The development of systemic plant stability and the prospects of using Streptomyces as biocontrol agents | |
dc.type | Article |
Files
License bundle
1 - 1 of 1