Індукування системної стійкості рослин та перспективи використання Streptomyces як агентів біоконтролю інфекційних захворювань

dc.citation.epage116
dc.citation.issue1
dc.citation.spage102
dc.contributor.affiliationЛьвівський національний університет ветеринарної медицини та біотехнологій ім. С. З. Ґжицького
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv National Stepan Gzhytsky University of Veterinary Medicine and Biotechnology
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШемедюк, Н. П.
dc.contributor.authorРомашко, І. С.
dc.contributor.authorБуцяк, В. І.
dc.contributor.authorДвилюк, І. І.
dc.contributor.authorШвед, О. В.
dc.contributor.authorShemedyuk, N. P.
dc.contributor.authorRomashko, I. S.
dc.contributor.authorButsiak, V. I.
dc.contributor.authorDvylyuk, I. I.
dc.contributor.authorShved, O. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T09:22:46Z
dc.date.available2024-01-22T09:22:46Z
dc.date.created2020-02-21
dc.date.issued2020-02-21
dc.description.abstractВикористання мікроорганізмів для профілактики, лікування інфекційних захворювань рослин і підвищення врожайності все більше цікавить людство як альтернатива хімічним засобам захисту, зокрема сільськогосподарських культур. У статті охарактеризовано Streptomyces як агенти біоконтролю та ризобактерії, які стимулюють ріст рослин, і також механізми, сигнальні шляхи індукованого ними системного захисту рослини. Нове, сучасне бачення у вивчення цих питань привносять проаналізовані світові наукові дослідження останніх років, які все більше доводять перспективність Streptomyces у створенні біобезпечних біотехнологічних засобів захисту рослин. Експериментально доведено антифунгальну, антибактерійну активність Streptomyces, одержаних із біогумусу.
dc.description.abstractMicroorganisms are used for the prevention, treatment of infectious diseases of plants and increasing yields. Products based on a culture of microorganisms mankind use as an alternative to chemical pesticides and fungicides. In this work we consider Streptomyces as agents of biocontrol and plant growth stimulator as well as induced by their mechanisms, metabolic pathways. We experimentally proved antifungal, the antibacterial activity of Streptomyces isolates obtained from compost.
dc.format.extent102-116
dc.format.pages15
dc.identifier.citationІндукування системної стійкості рослин та перспективи використання Streptomyces як агентів біоконтролю інфекційних захворювань / Н. П. Шемедюк, І. С. Ромашко, В. І. Буцяк, І. І. Двилюк, О. В. Швед // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 102–116.
dc.identifier.citationenThe development of systemic plant stability and the prospects of using Streptomyces as biocontrol agents / N. P. Shemedyuk, I. S. Romashko, V. I. Butsiak, I. I. Dvylyuk, O. V. Shved // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 102–116.
dc.identifier.doidoi.org/10.23939/ctas2022.01.102
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60919
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (5), 2022
dc.relation.references1. Barka, E. A., Vatsa, P., Sanchez, L. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 80, 1–43.
dc.relation.references2. Beneduzi, А., Ambrosini, А. & Passaglia, M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 4, 1044–1051.
dc.relation.references3. Castañeda-Novoa1, C. D., Vinchira-Villarraga, D. M., García Romero, I. A. & Sarmiento, N. M. (2021). Evaluation of the production of antifungal metabolites against Colletotrichum gloeosporioides in Streptomyces 5.1 by random mutagenesis. Acta Scientiarum. Biological Sciences, 43, e54709. https://doi:10.4025/actascibiolsci.v43i1.54709.
dc.relation.references4. Claessen, D., Errington, J. (2019). Cell wall deficiency as a coping strategy for stress.Trends in Microbiology, 5, 12, 1025–1033.
dc.relation.references5. Enebe, M. Ch. & Babalola, O. O. (2019). The impact of microbes in the orchestration of plants’ resistanceto biotic stress: a disease management approach. Applied Microbiol Biotechnol, 103, 9–25. https://doi.org/10.1007/s00253-018-9433-3.
dc.relation.references6. Evangelista-Martínez, Z., Contreras-Leal, E. A., Corona-Pedraza, L. F. & Gastélum-Martínez, É. (2020). Biocontrol potential of Streptomyces sp. CACIS-1.5CA against phytopathogenic fungi causing postharvest fruit diseases. Egyptian Journal of Biological Pest Control, 30:117. https://doi:10.1186/s41938-020-00319-9.
dc.relation.references7. González-Franco, A. C. & Robles-Hernández, L. (2009). Actinomycetes as biological control agents of phytopathogenic fungi. TecnocienciaChihuahua. 3, 2, 64–73.
dc.relation.references8. Hossain, A. (2021). Actinobacteria: Potential Candidate as Plant Growth Promoters, Plant Stress Physiology. https://doi:10.5772/intechopen.93272.
dc.relation.references9. Kannojia, P., Sharma, P. K., Kashyap, K. A., Manzar, N., Singh, U. B., Chaudhary, K., Malviya, D., Singh, Sh. & Sharma, S. K. (2017). Microbe-Mediated Biotic Stress Management in Plants Plant-Microbe. Interactions in Agro-Ecological, 26, 627–648. https://doi:10.1007/978-981-10-6593-4_26.
dc.relation.references10. Li, Y., Liu, J., Díaz-Cruz, G., Cheng, Z. & Li, B. (2019). Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiology, 165, 1025–1040. https://doi:10.1099/mic.0.000818.
dc.relation.references11. Liotti, R. G., Silva Figueiredo, М. І., Soares, М. А. (2019). Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biological сontrol, 138. https://doi.org/10.1016/j.biocontrol.2019.104065.
dc.relation.references12. Lіorens, Е., García-Agustín, Р., Lapeña, L. (2017). Advances in induced resistance by natural compounds: towards new options for woody crop protection. Sci. Agric. 74, 1, 90–100. http://dx.doi.org/10.1590/1678-992X-2016-0012.
dc.relation.references13. Mudgett, M. B. (2005). New Insights to the Function of Phytopathogenic Bacterial Type III Effectors in Plants. Annu. Rev. Plant Biol. 56:509–31. https://doi:10.1146/annurev.arplant.56.032604.144218.
dc.relation.references14. Newitt, J. T., Prudence, S. M. M., Hutchings, M. I., Worsley, S. F. (2019). Biocontrol of Cereal Crop Diseases Using Streptomycetes.Pathogens, 8, 78. https://doi:10.3390/pathogens8020078.
dc.relation.references15. Pacios-Michelena, S., Aguilar González, C. N., Alvarez-Perez, O. B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdés, R., Ascacio Valdés, J. A., Govea Salas, M. & Ilyina, A. (2021) Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. Front. Sustain. Food Syst., 5:696518. https://doi.org/10.3389/fsufs.2021.696518.
dc.relation.references16. Palmer, І. А., Shang, Z., Fu, Zh. Q. (2017). Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. Front. Biol., 12, 4, 258–270. https://doi:10.1007/s11515-017-1460-4.
dc.relation.references17. Patel, J. K., Madaan, Sh., Archana, G. (2018) Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogenchallenged cereal crops. Microbiological Research, 215, 36–45.
dc.relation.references18. Pérez-Corral, D. A., Jesús Ornelas-Paz, J., Olivas-Orozco, G. I., Acosta-Muñiz, C. H., Salas-Marina, M. A., Ruiz-Cisneros, M. F., Molina-Corra, F. J., Fernández-Pavía, S. P., Rios-Velasco, C. (2020). Antagonistic effect of volatile and non-volatile compounds from Streptomyces strains on cultures of several phytopathogenic fungi. Emirates Journal of Food and Agriculture, 32, 12, 879–889. https://doi:10.9755/ejfa.2020.v32.i12.2222.
dc.relation.references19. Sari, М., Nawangsih, А. А., Wahyudі, А. Т. (2021). Rhizosphere Streptomyces formulas as the biological control agent of phytopathogenic fungi Fusarium oxysporum and plant growth promoter of soybean. Вiodiversitas, 22, 6, 3015–3023.
dc.relation.references20. Sousa, J. A. & Olivares, F. L. (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem. Biol. Technol. Agric., 3, 24. https://doi:10.1186/s40538-016-0073-5.
dc.relation.references21. Viaene, Т., Langendries, S., Beirinck, S., Maes, М. & Goormachtig, S. (2016) Streptomyces as a plant’s best friend? FEMS Microbiology Ecology, 92, 8. https://doi:10.1093/femsec/fiw119.
dc.relation.references22. Vijayabharathi R., Gopalakrishnan S., Sathya A., Kumar M. V., Srinivas V. & Mamta Sh. (2018) Streptomyces sp. аs plant growth-promoters and hostplant resistance inducers against Botrytiscinerea in chickpea. Biocontrol Science and Technology. https://doi:10.1080/09583157.2018.1515890
dc.relation.references23. Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes, Int. J. Mol. Sci., 19, 952, 2–26. https://doi:10.3390/ijms19040952.
dc.relation.references24. Wang, N., Liu, M., Guo, L., Yang, X., Qiu, D. (2016). А novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in Tobacco. Int J Biol Sci, 12, 6, 757–767. DOI: 10.7150/ijbs.14333. Available from https://www.ijbs.com/v12p0757.htm.
dc.relation.references25. Kozyrovsʹka, N. O. (2006). Mekhanizmy pryrodnoyi imunnosti roslyny. Biopolimery i klityna, 22, 2, 91–101.
dc.relation.references26. Kolomiyetsʹ, Yu. V., Hryhoryuk, I. P., Butsenko, L. M. (2018) Rolʹ pryrodnykh induktoriv u formuvanni stiykosti roslyn tomativ do zbudnykiv bakterialʹnykh khvorob. Nauk. zap. Ternop. nats. ped. untu. Ser. Biol., 1, 72, 75–81.
dc.relation.references27. Nykolaychyk, E. A., Lahonenko, A. L., Valentovych, L. N., Leshkovych, Y. Y., Ovchynnykova, T. V., Prysyazhnenko, O. K., Doruzhynskaya, N. H., Lymorova, Y. M., Evtushenkov, A. N. (2006). Molekulyarnye mekhanyzmy vzaymodeystvyya fytopatohennykh bakteryy Erwinia s rastenyyamy. Vestnyk BHU, 2, 3, 60–64.
dc.relation.references28. Panyuta, O. O., Shabliy, V. A., Belava, V. N. (2009). Zhasmonova kyslota ta yiyi uchastʹ u zakhysnykh reaktsiyakh roslynnoho orhanizmu. Ukr. biokhim. zhurn., 81, 2, 14–26.
dc.relation.references29. Shylina, Yu. V., Hushcha, M. I., Molozhava, O. S., Shevchenko, Yu. I., Dmytriyev, O. P. (2017). Imunomodulyuvalʹni vlastyvosti bakterialʹnykh lipopolisakharydiv u roslyn Arabidopsis thaliana ta yikh modyfikatsiya. Fyzyolohyya rastenyy y henetyka, 49, 2, 121–128.
dc.relation.referencesen1. Barka, E. A., Vatsa, P., Sanchez, L. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 80, 1–43.
dc.relation.referencesen2. Beneduzi, A., Ambrosini, A. & Passaglia, M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 4, 1044–1051.
dc.relation.referencesen3. Castañeda-Novoa1, C. D., Vinchira-Villarraga, D. M., García Romero, I. A. & Sarmiento, N. M. (2021). Evaluation of the production of antifungal metabolites against Colletotrichum gloeosporioides in Streptomyces 5.1 by random mutagenesis. Acta Scientiarum. Biological Sciences, 43, e54709. https://doi:10.4025/actascibiolsci.v43i1.54709.
dc.relation.referencesen4. Claessen, D., Errington, J. (2019). Cell wall deficiency as a coping strategy for stress.Trends in Microbiology, 5, 12, 1025–1033.
dc.relation.referencesen5. Enebe, M. Ch. & Babalola, O. O. (2019). The impact of microbes in the orchestration of plants’ resistanceto biotic stress: a disease management approach. Applied Microbiol Biotechnol, 103, 9–25. https://doi.org/10.1007/s00253-018-9433-3.
dc.relation.referencesen6. Evangelista-Martínez, Z., Contreras-Leal, E. A., Corona-Pedraza, L. F. & Gastélum-Martínez, É. (2020). Biocontrol potential of Streptomyces sp. CACIS-1.5CA against phytopathogenic fungi causing postharvest fruit diseases. Egyptian Journal of Biological Pest Control, 30:117. https://doi:10.1186/s41938-020-00319-9.
dc.relation.referencesen7. González-Franco, A. C. & Robles-Hernández, L. (2009). Actinomycetes as biological control agents of phytopathogenic fungi. TecnocienciaChihuahua. 3, 2, 64–73.
dc.relation.referencesen8. Hossain, A. (2021). Actinobacteria: Potential Candidate as Plant Growth Promoters, Plant Stress Physiology. https://doi:10.5772/intechopen.93272.
dc.relation.referencesen9. Kannojia, P., Sharma, P. K., Kashyap, K. A., Manzar, N., Singh, U. B., Chaudhary, K., Malviya, D., Singh, Sh. & Sharma, S. K. (2017). Microbe-Mediated Biotic Stress Management in Plants Plant-Microbe. Interactions in Agro-Ecological, 26, 627–648. https://doi:10.1007/978-981-10-6593-4_26.
dc.relation.referencesen10. Li, Y., Liu, J., Díaz-Cruz, G., Cheng, Z. & Li, B. (2019). Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiology, 165, 1025–1040. https://doi:10.1099/mic.0.000818.
dc.relation.referencesen11. Liotti, R. G., Silva Figueiredo, M. I., Soares, M. A. (2019). Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biological sontrol, 138. https://doi.org/10.1016/j.biocontrol.2019.104065.
dc.relation.referencesen12. Liorens, E., García-Agustín, R., Lapeña, L. (2017). Advances in induced resistance by natural compounds: towards new options for woody crop protection. Sci. Agric. 74, 1, 90–100. http://dx.doi.org/10.1590/1678-992X-2016-0012.
dc.relation.referencesen13. Mudgett, M. B. (2005). New Insights to the Function of Phytopathogenic Bacterial Type III Effectors in Plants. Annu. Rev. Plant Biol. 56:509–31. https://doi:10.1146/annurev.arplant.56.032604.144218.
dc.relation.referencesen14. Newitt, J. T., Prudence, S. M. M., Hutchings, M. I., Worsley, S. F. (2019). Biocontrol of Cereal Crop Diseases Using Streptomycetes.Pathogens, 8, 78. https://doi:10.3390/pathogens8020078.
dc.relation.referencesen15. Pacios-Michelena, S., Aguilar González, C. N., Alvarez-Perez, O. B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdés, R., Ascacio Valdés, J. A., Govea Salas, M. & Ilyina, A. (2021) Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. Front. Sustain. Food Syst., 5:696518. https://doi.org/10.3389/fsufs.2021.696518.
dc.relation.referencesen16. Palmer, I. A., Shang, Z., Fu, Zh. Q. (2017). Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. Front. Biol., 12, 4, 258–270. https://doi:10.1007/s11515-017-1460-4.
dc.relation.referencesen17. Patel, J. K., Madaan, Sh., Archana, G. (2018) Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogenchallenged cereal crops. Microbiological Research, 215, 36–45.
dc.relation.referencesen18. Pérez-Corral, D. A., Jesús Ornelas-Paz, J., Olivas-Orozco, G. I., Acosta-Muñiz, C. H., Salas-Marina, M. A., Ruiz-Cisneros, M. F., Molina-Corra, F. J., Fernández-Pavía, S. P., Rios-Velasco, C. (2020). Antagonistic effect of volatile and non-volatile compounds from Streptomyces strains on cultures of several phytopathogenic fungi. Emirates Journal of Food and Agriculture, 32, 12, 879–889. https://doi:10.9755/ejfa.2020.v32.i12.2222.
dc.relation.referencesen19. Sari, M., Nawangsih, A. A., Wahyudi, A. T. (2021). Rhizosphere Streptomyces formulas as the biological control agent of phytopathogenic fungi Fusarium oxysporum and plant growth promoter of soybean. Viodiversitas, 22, 6, 3015–3023.
dc.relation.referencesen20. Sousa, J. A. & Olivares, F. L. (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem. Biol. Technol. Agric., 3, 24. https://doi:10.1186/s40538-016-0073-5.
dc.relation.referencesen21. Viaene, T., Langendries, S., Beirinck, S., Maes, M. & Goormachtig, S. (2016) Streptomyces as a plant’s best friend? FEMS Microbiology Ecology, 92, 8. https://doi:10.1093/femsec/fiw119.
dc.relation.referencesen22. Vijayabharathi R., Gopalakrishnan S., Sathya A., Kumar M. V., Srinivas V. & Mamta Sh. (2018) Streptomyces sp. as plant growth-promoters and hostplant resistance inducers against Botrytiscinerea in chickpea. Biocontrol Science and Technology. https://doi:10.1080/09583157.2018.1515890
dc.relation.referencesen23. Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes, Int. J. Mol. Sci., 19, 952, 2–26. https://doi:10.3390/ijms19040952.
dc.relation.referencesen24. Wang, N., Liu, M., Guo, L., Yang, X., Qiu, D. (2016). A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in Tobacco. Int J Biol Sci, 12, 6, 757–767. DOI: 10.7150/ijbs.14333. Available from https://www.ijbs.com/v12p0757.htm.
dc.relation.referencesen25. Kozyrovsʹka, N. O. (2006). Mekhanizmy pryrodnoyi imunnosti roslyny. Biopolimery i klityna, 22, 2, 91–101.
dc.relation.referencesen26. Kolomiyetsʹ, Yu. V., Hryhoryuk, I. P., Butsenko, L. M. (2018) Rolʹ pryrodnykh induktoriv u formuvanni stiykosti roslyn tomativ do zbudnykiv bakterialʹnykh khvorob. Nauk. zap. Ternop. nats. ped. untu. Ser. Biol., 1, 72, 75–81.
dc.relation.referencesen27. Nykolaychyk, E. A., Lahonenko, A. L., Valentovych, L. N., Leshkovych, Y. Y., Ovchynnykova, T. V., Prysyazhnenko, O. K., Doruzhynskaya, N. H., Lymorova, Y. M., Evtushenkov, A. N. (2006). Molekulyarnye mekhanyzmy vzaymodeystvyya fytopatohennykh bakteryy Erwinia s rastenyyamy. Vestnyk BHU, 2, 3, 60–64.
dc.relation.referencesen28. Panyuta, O. O., Shabliy, V. A., Belava, V. N. (2009). Zhasmonova kyslota ta yiyi uchastʹ u zakhysnykh reaktsiyakh roslynnoho orhanizmu. Ukr. biokhim. zhurn., 81, 2, 14–26.
dc.relation.referencesen29. Shylina, Yu. V., Hushcha, M. I., Molozhava, O. S., Shevchenko, Yu. I., Dmytriyev, O. P. (2017). Imunomodulyuvalʹni vlastyvosti bakterialʹnykh lipopolisakharydiv u roslyn Arabidopsis thaliana ta yikh modyfikatsiya. Fyzyolohyya rastenyy y henetyka, 49, 2, 121–128.
dc.relation.urihttps://doi:10.4025/actascibiolsci.v43i1.54709
dc.relation.urihttps://doi.org/10.1007/s00253-018-9433-3
dc.relation.urihttps://doi:10.1186/s41938-020-00319-9
dc.relation.urihttps://doi:10.5772/intechopen.93272
dc.relation.urihttps://doi:10.1007/978-981-10-6593-4_26
dc.relation.urihttps://doi:10.1099/mic.0.000818
dc.relation.urihttps://doi.org/10.1016/j.biocontrol.2019.104065
dc.relation.urihttp://dx.doi.org/10.1590/1678-992X-2016-0012
dc.relation.urihttps://doi:10.1146/annurev.arplant.56.032604.144218
dc.relation.urihttps://doi:10.3390/pathogens8020078
dc.relation.urihttps://doi.org/10.3389/fsufs.2021.696518
dc.relation.urihttps://doi:10.1007/s11515-017-1460-4
dc.relation.urihttps://doi:10.9755/ejfa.2020.v32.i12.2222
dc.relation.urihttps://doi:10.1186/s40538-016-0073-5
dc.relation.urihttps://doi:10.1093/femsec/fiw119
dc.relation.urihttps://doi:10.1080/09583157.2018.1515890
dc.relation.urihttps://doi:10.3390/ijms19040952
dc.relation.urihttps://www.ijbs.com/v12p0757.htm
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectStreptomyces
dc.subjectфітопатогени
dc.subjectіндукована системна резистентність
dc.subjectнабута системна резистентність
dc.subjectбіотехнологічні засоби захисту рослин
dc.subjectсигнальні шляхи
dc.subjectвторинні метаболіти
dc.subjectензими
dc.subjectStreptomyces
dc.subjectphytopathogens
dc.subjectinduced system resistance
dc.subjectresistance
dc.subjectbiotechnological tools for plant protection
dc.subjectsignal path
dc.subjectsecondary metabolism
dc.subjectenzyme
dc.titleІндукування системної стійкості рослин та перспективи використання Streptomyces як агентів біоконтролю інфекційних захворювань
dc.title.alternativeThe development of systemic plant stability and the prospects of using Streptomyces as biocontrol agents
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v5n1_Shemedyuk_N_P-The_development_of_102-116.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v5n1_Shemedyuk_N_P-The_development_of_102-116__COVER.png
Size:
475.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: