Assessing reservoir dam stability using C-band permanent scatterers INSAR

dc.citation.epage14
dc.citation.issue99
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationКраківський університет AGH
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationAGH University of Science and Technology
dc.contributor.authorТретяк, Корнилій
dc.contributor.authorКухтар, Денис
dc.contributor.authorЛіпецкі, Томаш
dc.contributor.authorTretyak, Kornyliy
dc.contributor.authorKukhtar, Denys
dc.contributor.authorLipecki, Tomasz
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-07T08:33:05Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractМетою даної статті є аналіз результатів обробки часових рядів радіолокаційних знімків методом постійних розсіювачів для оцінки стабільності вертикального положення дамби водосховища. Об’єктом дослідження є дамба ставка-охолоджувача Хмельницької атомної електростанції. У зв’язку з виробничою необхідністю постало завдання провести аналіз стійкості дамби у вертикальному положенні незалежним методом за період 2016-2022 рр. Реалізація такого завдання стала можливою лише за рахунок використання бази даних супутникових радіолокаційних знімків зазначеної території. Вхідними даними для аналізу стали 13 радіолокаційних зображень зазначеної місцевості, отриманих із супутника Sentinel-1, що охоплюють період з травня 2016 року по травень 2022 року з інтервалом у шість місяців. Обробка супутникових радіолокаційних даних за алгоритмом StaMPS забезпечила створення карт середніх швидкостей руху поверхні. Після застосування просторово-корельованих і тропосферних поправок діапазон швидкостей розробленої карти деформацій, для досліджуваної території, становив [-9,0; +8,3] мм/рік. В районі проммайданчика середні швидкості вертикальних переміщень близькі до нуля, що свідчить про стабільність зазначеного району за даними спостережень InSAR. Аналізуючи графіки вертикальних переміщень дамби, встановлено, що переміщення мають циклічний характер, який, очевидно, пов’язаний із сезонними впливами на конструкцію. Величина максимальних переміщень за досліджуваний період становила [-10 мм; +10 мм]. Отримані дані свідчать про відсутність небезпечних деформаційних процесів, які могли б вплинути на експлуатаційну надійність дамби водосховища. Виконано порівняльний аналіз результатів з часовими серіями вертикальних рухів дамб водосховищ на території Польщі (Niedzica Dam, Solina Dam, Włocławek Dam). Отримані за даними сервісу European Ground Monitoring Service часові серії підтверджують наявність сезонних циклічних рухів дамб. Практичне значення результатів дослідження полягає в підтвердженні ефективності використання часових рядів радіолокаційних зображень С-діапазону для геодезичного моніторингу стійкості греблі водосховища. Завдяки доступу до існуючої бази даних радіолокаційних знімків супутника Sentinel-1 вирішено завдання оцінки стійкості вертикального положення дамби водойми-охолоджувача Хмельницької АЕС за період з 2016 по 2022 роки.
dc.description.abstractThe purpose of this article is to analyze the results of processing time series of radar images using the Persistent Scatterer method to assess the stability of the vertical position of the reservoir dam. The object of this study is the dam of the cooling pond at the Khmelnytskyi Nuclear Power Plant. Due to production needs, the task arose to analyze the dam's stability in the vertical position using an independent method for the 2016-2022 period. Implementing such a task became possible only by utilizing a satellite radar image database for the specified area. The input data for the analysis consisted of 13 radar images of the specified area obtained from the Sentinel-1 satellite, covering the period from May 2016 to May 2022 with a six-month interval. Processing satellite radar data using the StaMPS algorithm allowed for creation of maps of average surface movement velocities. After applying spatial-correlated and tropospheric corrections, the vertical velocity range of the developed deformation maps for the investigated area was [-9.0; +8.3] mm/year. At the industrial site area, the average velocities of vertical displacements are close to zero, this indicates the stability of the specified area according to InSAR observations. Analyzing the plots of vertical movements of the dam it was observed that the displacements exhibit a cyclic pattern, which is associated with seasonal influences on the structure. The magnitude of maximum displacements during the investigated period ranged from [-10 mm; +10 mm]. The obtained data indicate the absence of hazardous deformation processes that could affect the operational reliability of the reservoir dam. A comparative analysis of the results with time series of vertical movements of reservoir dams in Poland (Niedzica Dam, Solina Dam, Włocławek Dam) was performed. The time series obtained from the European Ground Motion Service data confirm the presence of seasonal cyclic movements of the dams. The practical significance of the research results lies in confirming the effectiveness of using a time series of C-band radar images for geodetic monitoring of reservoir dam stability. Due to access to the existing database of radar images of the Sentinel-1 satellite, the task of assessing the stability of the vertical position of the dam of the cooling reservoir of the Khmelnytsky NPP for the period from 2016 to 2022 was solved.
dc.format.extent5-14
dc.format.pages10
dc.identifier.citationTretyak K. Assessing reservoir dam stability using C-band permanent scatterers INSAR / Kornyliy Tretyak, Denys Kukhtar, Tomasz Lipecki // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2024. — No 99. — P. 5–14.
dc.identifier.citationenTretyak K. Assessing reservoir dam stability using C-band permanent scatterers INSAR / Kornyliy Tretyak, Denys Kukhtar, Tomasz Lipecki // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2024. — No 99. — P. 5–14.
dc.identifier.doidoi.org/10.23939/istcgcap2024.99.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64016
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 99, 2024
dc.relation.ispartofGeodesy, Cartography and Aerial Photography, 99, 2024
dc.relation.referencesBayik, C., Abdikan, S., Arikan, M. (2021). Long term displacement observation of the Atatürk Dam, Turkey by multi-temporal InSAR analysis. Acta Astronautica, 189, 483–491. https://doi.org/10.1016/j.actaastro.2021.09.022.
dc.relation.referencesBlasco, D., Manuel, J., Foumelis, M., Stewart, C. and Hooper, A. (2019). Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAPStaMPS Persistent Scatterer Interferometry. Remote Sensing, 11, No. 2, 129. https://doi.org/10.3390/rs11020129.
dc.relation.referencesCifres, R., Cooksley, G. and Dixon, C. (2018). Space Technologies for Dam Monitoring. Smart Dams and Reservoirs, 411–421.
dc.relation.referencesDai, K., Liu, G., Li, Z., Ma, D., Wang, X., Zhang, B., Tang, J. and Li, G. (2018). Monitoring Highway Stability in Permafrost Regions with X-band Temporary Scatterers Stacking InSAR. Sensors, 18. 1876. https://doi.org/10.3390/s18061876.
dc.relation.referencesDorosh L. I. (2021). Monitorynh tekhnohenno-nebezpechnykh obiektiv zasobamy radiolokatsiinoi interferometrii: avtoref. dys. na zdobuttia nauk. stupenia kand. tekhn. nauk: spets. 05.24.01. Lviv. 23 p. (in Ukrainian).
dc.relation.referencesElias, P., Kontoes, C., Papoutsis, I., Kotsis, I., Marinou, A., Paradissis, D., & Sakellariou, D. (2009). Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth. Sensors (Basel, Switzerland), 9(1), 46–55. https://doi.org/10.3390/s90100046.
dc.relation.referencesKauther, R. & Schulze, R. (2015). Detection of subsidence affecting civil engineering structures by using satellite InSAR. FMGM 2015: Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Australian Centre for Geomechanics, Perth, 207–218. https://doi.org/10.36487/ACG_rep/1508_11_Kauther.
dc.relation.referencesKelevitz, K., Wright, T., Hooper, A. and Selvakumaran, S. (2022). Novel Corner-Reflector Array Application in Essential Infrastructure Monitoring. IEEE transactions on geoscience and remote sensing, Vol. 60.
dc.relation.referencesKopačková, V. (2019). Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkoviˇcky Landslide, Czech Republic. Remote Sensing, Iss. 11. https://doi.org/10.3390/rs11222670.
dc.relation.referencesLiu G. et al. (2011). Exploration of Subsidence Estimation by Persistent Scatterer InSAR on Time Series of High Resolution TerraSAR-X Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 4, No. 1, 159–170. https://doi.org/10.1109/JSTARS.2010.2067446.
dc.relation.referencesMacchiarulo, V., Milillo, P., Blenkinsopp, C., Giardina, G. (2022). Monitoring deformations of infrastructure networks: A fully automated GIS integration and analysis of InSAR time-series. Structural Health Monitoring, 21(4), 1849–1878. https://doi.org/10.1177/14759217211045912.
dc.relation.referencesNesterenko, S., Kliepko A. (2022). Geodetic monitoring of the Kaniv HPP dam using satellite radar. International Conference of Young Professionals “GeoTerrace2022”, 3–5 October 2022, Lviv, Ukraine. https://doi.org/10.3997/2214-4609.2022590018
dc.relation.referencesParcharidis, I., Foumelis, M., Kourkouli, P. and Wegmuller, U. (2009). Persistent Scatterers InSAR to detect ground deformation over Rio-Antirio area (Western Greece) for the period 1992–2000. Journal of Applied Geophysics. Vol. 68, Iss. 3, 348–355. https://doi.org/10.1016/j.jappgeo.2009.02.005.
dc.relation.referencesQiang, X. (2020). Accuracy detection of Satellite and InSAR Technology in the Deformation Monitoring in Civil Engineering. IOP Conference Series Earth and Environmental Science, 580(1):012066. https://doi.org/10.3997/2214-4609.202259001810.1088/1755-1315/580/1/012066.
dc.relation.referencesQiu, Z., Jiao, M., Jiang, T. and Zhou, L. (2020). Dam Structure Deformation Monitoring by GB-InSAR Approach. IEEE Access. Vol. 8. 123287–123296. https://doi.org/10.3997/2214-4609.202259001810.1109/ACCESS.2020.3005343.
dc.relation.referencesSelvakumaran, S., Rossi, C., Marinoni, A., Webb, G., Bennetts, J., Barton, E., Plank, S. and Middleton, C. (2020). Combined InSAR and Terrestrial Structural Monitoring of Bridges. IEEE Transactions on Geoscience and Remote Sensing. PP(99):1–13. DOI: 10.1109/TGRS.2020.2979961.
dc.relation.referencesSelvakumaran, S., Sadeghi, Z., Collings, M., Rossi, C., Wright, T. and Hooper, A. (2022). Comparison of in situ and interferometric synthetic aperture radar monitoring to assess bridge thermal expansion. Smart Infrastructure and Construction. Volume 175, Issue 2. 73–91. https://doi.org/10.1680/jsmic.21.00008.
dc.relation.referencesSerco Italia SPA (2020). StaMPS: Presistent Scatterer Interferometry Processing - Mexico City 2021 (version 1.1). Retrieved from RUS Lectures at https://ruscopernicus.eu/portal/the-ruslibrary/learn-by-yourself.
dc.relation.referencesWempen, J. (2020). Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States. International Journal of Mining Science and Technology. Volume 30, Issue 1. 33–37.
dc.relation.referencesXu, Y., Li, T., Tang, X., Zhang, X., Fan, H., Wang, Y. (2022). Research on the Applicability of DInSAR, Stacking-InSAR and SBAS-InSAR for Mining Region Subsidence Detection in the Datong Coalfield. Remote Sensing. 14. 3314. https://doi.org/10.3390/rs14143314.
dc.relation.referencesYazici, B. and Gormus, E. (2020). Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: a case study in Artvin dam area, in Turkey Geocarto International. 37:8. 2293–2311. https://doi.org/10.1080/10106049.2020.1818854.
dc.relation.referencesZhang, S., Si, J., Xu, Y., Niu, Y. and Fan, Q. (2021). TimeSeries InSAR for Stability Monitoring Research of Ankang Airport with Expansive Soil. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University. 46(10). 1519–1528. https://doi.org/10.13203/j.whugis20210223.
dc.relation.referencesenBayik, C., Abdikan, S., Arikan, M. (2021). Long term displacement observation of the Atatürk Dam, Turkey by multi-temporal InSAR analysis. Acta Astronautica, 189, 483–491. https://doi.org/10.1016/j.actaastro.2021.09.022.
dc.relation.referencesenBlasco, D., Manuel, J., Foumelis, M., Stewart, C. and Hooper, A. (2019). Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAPStaMPS Persistent Scatterer Interferometry. Remote Sensing, 11, No. 2, 129. https://doi.org/10.3390/rs11020129.
dc.relation.referencesenCifres, R., Cooksley, G. and Dixon, C. (2018). Space Technologies for Dam Monitoring. Smart Dams and Reservoirs, 411–421.
dc.relation.referencesenDai, K., Liu, G., Li, Z., Ma, D., Wang, X., Zhang, B., Tang, J. and Li, G. (2018). Monitoring Highway Stability in Permafrost Regions with X-band Temporary Scatterers Stacking InSAR. Sensors, 18. 1876. https://doi.org/10.3390/s18061876.
dc.relation.referencesenDorosh L. I. (2021). Monitorynh tekhnohenno-nebezpechnykh obiektiv zasobamy radiolokatsiinoi interferometrii: avtoref. dys. na zdobuttia nauk. stupenia kand. tekhn. nauk: spets. 05.24.01. Lviv. 23 p. (in Ukrainian).
dc.relation.referencesenElias, P., Kontoes, C., Papoutsis, I., Kotsis, I., Marinou, A., Paradissis, D., & Sakellariou, D. (2009). Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth. Sensors (Basel, Switzerland), 9(1), 46–55. https://doi.org/10.3390/s90100046.
dc.relation.referencesenKauther, R. & Schulze, R. (2015). Detection of subsidence affecting civil engineering structures by using satellite InSAR. FMGM 2015: Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Australian Centre for Geomechanics, Perth, 207–218. https://doi.org/10.36487/ACG_rep/1508_11_Kauther.
dc.relation.referencesenKelevitz, K., Wright, T., Hooper, A. and Selvakumaran, S. (2022). Novel Corner-Reflector Array Application in Essential Infrastructure Monitoring. IEEE transactions on geoscience and remote sensing, Vol. 60.
dc.relation.referencesenKopačková, V. (2019). Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkoviˇcky Landslide, Czech Republic. Remote Sensing, Iss. 11. https://doi.org/10.3390/rs11222670.
dc.relation.referencesenLiu G. et al. (2011). Exploration of Subsidence Estimation by Persistent Scatterer InSAR on Time Series of High Resolution TerraSAR-X Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 4, No. 1, 159–170. https://doi.org/10.1109/JSTARS.2010.2067446.
dc.relation.referencesenMacchiarulo, V., Milillo, P., Blenkinsopp, C., Giardina, G. (2022). Monitoring deformations of infrastructure networks: A fully automated GIS integration and analysis of InSAR time-series. Structural Health Monitoring, 21(4), 1849–1878. https://doi.org/10.1177/14759217211045912.
dc.relation.referencesenNesterenko, S., Kliepko A. (2022). Geodetic monitoring of the Kaniv HPP dam using satellite radar. International Conference of Young Professionals "GeoTerrace2022", 3–5 October 2022, Lviv, Ukraine. https://doi.org/10.3997/2214-4609.2022590018
dc.relation.referencesenParcharidis, I., Foumelis, M., Kourkouli, P. and Wegmuller, U. (2009). Persistent Scatterers InSAR to detect ground deformation over Rio-Antirio area (Western Greece) for the period 1992–2000. Journal of Applied Geophysics. Vol. 68, Iss. 3, 348–355. https://doi.org/10.1016/j.jappgeo.2009.02.005.
dc.relation.referencesenQiang, X. (2020). Accuracy detection of Satellite and InSAR Technology in the Deformation Monitoring in Civil Engineering. IOP Conference Series Earth and Environmental Science, 580(1):012066. https://doi.org/10.3997/2214-4609.202259001810.1088/1755-1315/580/1/012066.
dc.relation.referencesenQiu, Z., Jiao, M., Jiang, T. and Zhou, L. (2020). Dam Structure Deformation Monitoring by GB-InSAR Approach. IEEE Access. Vol. 8. 123287–123296. https://doi.org/10.3997/2214-4609.202259001810.1109/ACCESS.2020.3005343.
dc.relation.referencesenSelvakumaran, S., Rossi, C., Marinoni, A., Webb, G., Bennetts, J., Barton, E., Plank, S. and Middleton, C. (2020). Combined InSAR and Terrestrial Structural Monitoring of Bridges. IEEE Transactions on Geoscience and Remote Sensing. PP(99):1–13. DOI: 10.1109/TGRS.2020.2979961.
dc.relation.referencesenSelvakumaran, S., Sadeghi, Z., Collings, M., Rossi, C., Wright, T. and Hooper, A. (2022). Comparison of in situ and interferometric synthetic aperture radar monitoring to assess bridge thermal expansion. Smart Infrastructure and Construction. Volume 175, Issue 2. 73–91. https://doi.org/10.1680/jsmic.21.00008.
dc.relation.referencesenSerco Italia SPA (2020). StaMPS: Presistent Scatterer Interferometry Processing - Mexico City 2021 (version 1.1). Retrieved from RUS Lectures at https://ruscopernicus.eu/portal/the-ruslibrary/learn-by-yourself.
dc.relation.referencesenWempen, J. (2020). Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States. International Journal of Mining Science and Technology. Volume 30, Issue 1. 33–37.
dc.relation.referencesenXu, Y., Li, T., Tang, X., Zhang, X., Fan, H., Wang, Y. (2022). Research on the Applicability of DInSAR, Stacking-InSAR and SBAS-InSAR for Mining Region Subsidence Detection in the Datong Coalfield. Remote Sensing. 14. 3314. https://doi.org/10.3390/rs14143314.
dc.relation.referencesenYazici, B. and Gormus, E. (2020). Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: a case study in Artvin dam area, in Turkey Geocarto International. 37:8. 2293–2311. https://doi.org/10.1080/10106049.2020.1818854.
dc.relation.referencesenZhang, S., Si, J., Xu, Y., Niu, Y. and Fan, Q. (2021). TimeSeries InSAR for Stability Monitoring Research of Ankang Airport with Expansive Soil. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University. 46(10). 1519–1528. https://doi.org/10.13203/j.whugis20210223.
dc.relation.urihttps://doi.org/10.1016/j.actaastro.2021.09.022
dc.relation.urihttps://doi.org/10.3390/rs11020129
dc.relation.urihttps://doi.org/10.3390/s18061876
dc.relation.urihttps://doi.org/10.3390/s90100046
dc.relation.urihttps://doi.org/10.36487/ACG_rep/1508_11_Kauther
dc.relation.urihttps://doi.org/10.3390/rs11222670
dc.relation.urihttps://doi.org/10.1109/JSTARS.2010.2067446
dc.relation.urihttps://doi.org/10.1177/14759217211045912
dc.relation.urihttps://doi.org/10.3997/2214-4609.2022590018
dc.relation.urihttps://doi.org/10.1016/j.jappgeo.2009.02.005
dc.relation.urihttps://doi.org/10.3997/2214-4609.202259001810.1088/1755-1315/580/1/012066
dc.relation.urihttps://doi.org/10.3997/2214-4609.202259001810.1109/ACCESS.2020.3005343
dc.relation.urihttps://doi.org/10.1680/jsmic.21.00008
dc.relation.urihttps://ruscopernicus.eu/portal/the-ruslibrary/learn-by-yourself
dc.relation.urihttps://doi.org/10.3390/rs14143314
dc.relation.urihttps://doi.org/10.1080/10106049.2020.1818854
dc.relation.urihttps://doi.org/10.13203/j.whugis20210223
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectгеодезичний моніторинг
dc.subjectрадіолокаційні знімки
dc.subjectметод постійних розсіювачів
dc.subjectStaMPS
dc.subjectSentinel-1
dc.subjectEGMS
dc.subjectgeodetic monitoring
dc.subjectSAR images
dc.subjectPersistent Scatterer method
dc.subjectStaMPS
dc.subjectSentinel-1
dc.subjectEGMS
dc.subject.udc528.8.044.2
dc.titleAssessing reservoir dam stability using C-band permanent scatterers INSAR
dc.title.alternativeОцінка стабільності дамби водосховища за допомогою методу постійних розсіювачів INSAR С-діапазону
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024n99_Tretyak_K-Assessing_reservoir_dam_stability_5-14.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024n99_Tretyak_K-Assessing_reservoir_dam_stability_5-14__COVER.png
Size:
1.41 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: