Application of CFD numerical simulations and shape optimization to modify the flow characteristics of throttle valves

dc.citation.epage43
dc.citation.issue1
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage34
dc.contributor.affiliationВроцлавський університет науки і техніки
dc.contributor.affiliationВроцлавський університет науки і техніки
dc.contributor.affiliationWrocław University of Science and Technology
dc.contributor.affiliationWrocław University of Science and Technology
dc.contributor.authorДикас, Аліція
dc.contributor.authorВажинська, Урсула
dc.contributor.authorDykas, Alicja
dc.contributor.authorWarzyńska, Urszula
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-05T08:47:29Z
dc.date.created2025-05-10
dc.date.issued2025-05-10
dc.description.abstractМетою дослідження було виконати числовий аналіз потоку оливи через прохідний отвір гідравлічного клапана за допомогою методу CFD та виконати оптимізацію профілю клапана з метою лінеаризації його характеристик. Проведено аналіз витратних характеристик клапана за допомогою числового моделювання. Це дало змогу розробити характеристики досліджуваного клапана. Процес оптимізації розпочався з аналізу чутливості форми, щоб визначити вплив геометрії на ключові параметри потоку, такі як перепад тиску. Одне з отриманих рішень, вибране на основі його функціональності та технологічної можливості виробництва, було додатково проаналізовано. Характеристики потоку, визначені для оптимізованої конструкції, були порівняні з характеристиками вихідного клапана за допомогою статистичних методів. Було простежено, що оптимізована геометрія досягла більш лінійної характеристики, що дасть можливість забезпечити точніше керування процесом дроселювання за допомогою цього клапана.
dc.description.abstractThe aim of the study was to perform a numerical analysis using the CFD method of oil flow through a hydraulic valve gap and to perform an optimisation of the gap shape with a view to linearising the valve characteristics. As part of the work, a flow analysis of the valve was carried out using numerical simulations. This made it possible to develop the characteristics of the studied valve. The optimisation process started with a shape sensitivity analysis to determine the effect of geometry on key flow parameters such as pressure drop. One of the resulting solutions selected on the basis of its functionality and technological manufacturing possibility was further analysed. The flow characteristics determined for the optimised design were compared with those of the original valve using statistical tools. It was shown that optimised geometry achieved a more linear characteristic, which will enable more precise throttle control using this valve.
dc.format.extent34-43
dc.format.pages10
dc.identifier.citationDykas A. Application of CFD numerical simulations and shape optimization to modify the flow characteristics of throttle valves / Alicja Dykas, Urszula Warzyńska // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 1. — P. 34–43.
dc.identifier.citation2015Dykas A., Warzyńska U. Application of CFD numerical simulations and shape optimization to modify the flow characteristics of throttle valves // Energy Engineering and Control Systems, Lviv. 2025. Vol 11. No 1. P. 34–43.
dc.identifier.citationenAPADykas, A., & Warzyńska, U. (2025). Application of CFD numerical simulations and shape optimization to modify the flow characteristics of throttle valves. Energy Engineering and Control Systems, 11(1), 34-43. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGODykas A., Warzyńska U. (2025) Application of CFD numerical simulations and shape optimization to modify the flow characteristics of throttle valves. Energy Engineering and Control Systems (Lviv), vol. 11, no 1, pp. 34-43.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/123784
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 1 (11), 2025
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (11), 2025
dc.relation.referencesen[1] Wang, B., Zhao, X., Quan, L., Li, Y., Hao, Y., & Ge, L. (2023) A method for improving flow control valve performance based on active differential pressure regulation. Measurement, 219, 113271. https://doi.org/10.1016/j.measurement.2023.113271
dc.relation.referencesen[2] Lisowski, E., & Filo, G. (2017) Analysis of a proportional control valve flow coefficient with the usage of a CFD method. Flow Measurement and Instrumentation, 53 (Part B), 269–278. https://doi.org/10.1016/j.flowmeasinst.2016.12.008
dc.relation.referencesen[3] Zhu, D., Fu, Y., Han, X., & Li, Z. (2020) Design and experimental verification on characteristics of electro-hydraulic pump. Mechanical Systems and Signal Processing, 144, 106771. https://doi.org/10.1016/j.ymssp.2020.106771
dc.relation.referencesen[4] Milani, M., Montorsi, L., & Paltrinieri, F. (2024) Experimental investigation of the suction capabilities of an innovative high speed external gear pump for electro-hydraulic actuated automotive transmissions. International Journal of Fluid Power, 25(2), 243–272. https://doi.org/10.13052/ijfp1439-9776.2527
dc.relation.referencesen[5] Castilla, R., Gamez-Montero, P. J., Ertürk, N., Vernet, A., Coussirat, M., & Codina, E. (2010) Numerical simulation of turbulent flow in the suction chamber of a gear pump using deforming mesh and mesh replacement. International Journal of Mechanical Sciences, 52(10), 1334–1342. https://doi.org/10.1016/j.ijmecsci.2010.06.001
dc.relation.referencesen[6] Pellegri, M., Manne, V. H. B., & Vacca, A. (2020) A simulation model of Gerotor pumps considering fluid–structure interaction effects: Formulation and validation. Mechanical Systems and Signal Processing, 140, 106720. https://doi.org/10.1016/j.ymssp.2020.106720
dc.relation.referencesen[7] Siwulski, T., & Warzyńska, U. (2021) Numerical investigation of the influence of the inlet nozzle diameter on the degree of fluid exchange process in a hydraulic cylinder. Engineering Applications of Computational Fluid Mechanics, 15(1), 1243–1258. https://doi.org/10.1080/19942060.2021.1958379
dc.relation.referencesen[8] Stryczek, J., & Stryczek, P. (2021) Synthetic approach to the design, manufacturing and examination of gerotor and orbital hydraulic machines. Energies, 14(3), 624. https://doi.org/10.3390/en14030624
dc.relation.referencesen[9] Li, R., Wang, Z., Xu, J., Yuan, W., Wang, D., Ji, H., & Chen, S. (2024) Design and optimization of hydraulic slide valve spool structure based on steady state flow force. Flow Measurement and Instrumentation, 96, 102568. https://doi.org/10.1016/j.flowmeasinst.2024.102568
dc.relation.referencesen[10] Zhang, C., Zhao, Y., Jiang, C., Guo, J., & Li, W. (2024) Structure optimization of electromagnetic valve to improve electromagnetic force. Journal of Magnetism and Magnetic Materials. https://doi.org/10.1016/j.jmmm.2024.171600
dc.relation.referencesen[11] Moayedi, H., Chen, Y.-C., Liu, C.-Y., & Weng, C.-I. (2024) Geometry optimization of a vortex tube for use as a throttling device in natural gas liquefaction process. Cryogenics. https://doi.org/10.1016/j.cryogenics.2024.103366
dc.relation.referencesen[12] Meng, H., Zuo, S., Ren, W., & Li, Z. (2024) Multi-objective optimization design of triple-eccentric butterfly valve considering structural safety and sealing performance. Engineering Failure Analysis. https://doi.org/10.1016/j.engfailanal.2024.107280
dc.relation.referencesen[13] Xie, B., Guo, S., Zhang, Q., Zhang, X., & Chen, H. (2025) Multi-objective optimization of Tesla valve channel battery cold plate. Results in Engineering, 100052. https://doi.org/10.1016/j.rineng.2025.1006826
dc.relation.referencesen[14] Stryczek, S. (2017) Hydrostatic drive. Vol. 2: Systems (2nd ed.). Polish Scientific Publishers PWN. (in Polish).
dc.relation.referencesen[15] Danielewska-Tułecka, A., Oprocha, P., & Kusiak, J. (2009). Optimization. Warsaw: Wydawnictwo Naukowe PWN. (in Polish)
dc.relation.referencesen[16] ANSYS Inc. (2017) ANSYS Fluent User’s Guide (Version 18.2). ANSYS Inc.
dc.relation.referencesen[17] https://www.ponar-wadowice.pl/!uploads/attachments_prod/mg_wk496290_pl_11.2020.pdf
dc.relation.referencesen[18] Orlen Oil, “HYDROL L-HL”, Wersja 1 / 2023.07.17.
dc.relation.referencesen[19] Blazek, J. (2005) Computational fluid dynamics: Principles and applications (2nd ed.). Elsevier.
dc.relation.referencesen[20] Zalewski, A., Grzesik, W., Deja, M., et al. (2024) CNC Machine Tools: Fundamentals of Operation and Programming, WNT. Warsaw. (in Polish).
dc.relation.urihttps://doi.org/10.1016/j.measurement.2023.113271
dc.relation.urihttps://doi.org/10.1016/j.flowmeasinst.2016.12.008
dc.relation.urihttps://doi.org/10.1016/j.ymssp.2020.106771
dc.relation.urihttps://doi.org/10.13052/ijfp1439-9776.2527
dc.relation.urihttps://doi.org/10.1016/j.ijmecsci.2010.06.001
dc.relation.urihttps://doi.org/10.1016/j.ymssp.2020.106720
dc.relation.urihttps://doi.org/10.1080/19942060.2021.1958379
dc.relation.urihttps://doi.org/10.3390/en14030624
dc.relation.urihttps://doi.org/10.1016/j.flowmeasinst.2024.102568
dc.relation.urihttps://doi.org/10.1016/j.jmmm.2024.171600
dc.relation.urihttps://doi.org/10.1016/j.cryogenics.2024.103366
dc.relation.urihttps://doi.org/10.1016/j.engfailanal.2024.107280
dc.relation.urihttps://doi.org/10.1016/j.rineng.2025.1006826
dc.relation.urihttps://www.ponar-wadowice.pl/!uploads/attachments_prod/mg_wk496290_pl_11.2020.pdf
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectоптимізація форми
dc.subjectобчислювальна гідродинаміка
dc.subjectнапірний клапан
dc.subjectперепад тиску
dc.subjectхарактеристики потоку
dc.subjectметод скінченних об’ємів
dc.subjectгідравлічні системи
dc.subjectshape optimisation
dc.subjectcomputational fluid dynamics
dc.subjectpressure valve
dc.subjectpressure drop
dc.subjectflow characteristics
dc.subjectfinite volume method
dc.subjecthydraulic systems
dc.titleApplication of CFD numerical simulations and shape optimization to modify the flow characteristics of throttle valves
dc.title.alternativeЗастосування чисельного CFD моделювання та оптимізації форми для модифікації витратних характеристик дросельних клапанів
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v11n1_Dykas_A-Application_of_CFD_numerical_34-43.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: