Improving the energy efficiency of thermoelectric energy converters – review

dc.citation.epage18
dc.citation.issue2
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage7
dc.citation.volume6
dc.contributor.affiliationСумський національний аграрний університет
dc.contributor.affiliationХарківський національний університет міського господарства імені О.М. Бекетова
dc.contributor.affiliationУкраїнський державний університет залізничного транспорту
dc.contributor.affiliationSumy National Agrarian University
dc.contributor.affiliationO. M. Beketov National University of Urban Economy in Kharkiv
dc.contributor.affiliationUkrainian state university of railway transport
dc.contributor.authorРедько, А. О.
dc.contributor.authorРедько, О. Ф.
dc.contributor.authorРедько, І. О.
dc.contributor.authorГвоздецький, О. В.
dc.contributor.authorКраснопольський, Д. І.
dc.contributor.authorЗаіка, В. Ю.
dc.contributor.authorRedko, Andriy
dc.contributor.authorRedko, Oleksandr
dc.contributor.authorRedko, Ihor
dc.contributor.authorGvozdeckyi, Oleksandr
dc.contributor.authorKrasnopolskyi, Denys
dc.contributor.authorZaika, Vitalii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-04T09:42:46Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractПредставлено результати аналітичного огляду великої кількості публікацій з проблеми підвищення ефективності термоелектричних генераторів (ТЕГ) за останнє десятиліття. Представлено аналіз історичних даних щодо термодинамічного обґрунтування ефективності термоелектричних генераторів. Проаналізовано такі напрямки: проблема підвищення добротності Z шляхом створення нових матеріалівознавчих технологій та нових матеріалів, створення багатосегментних термоелектричних елементів для широкого діапазону температур (300 ÷ 1200 K), ефективність теплопідведення до ТЕГ та охолодження. Представлено методи розрахунку термодинамічного ККД ТЕГ. Показано, що ККД ТЕГ обмежений ½ значення Карно для значень ZT 1-3. Сучасні матеріали дозволяють виробляти ТЕГ зі значеннями ZT менше 1. Однак застосування ТЕГ має багатообіцяючі перспективи зі збільшенням інтенсивності процесів теплопостачання та охолодження. Визначено основні напрямки та тенденції (фізичні, хімічні, технологічні) у створенні та вдосконаленні ТЕГ. Показано деякі практичні рішення, представлені в літературі, а також запропоноване авторами рішення щодо підвищення термодинамічної ефективності котлоагрегатів з використанням ТРГ.
dc.description.abstractThe results of an analytical review of a large number of publications on the problem of improving the efficiency of thermoelectric generators (TEG) over the past decade are presented. An analysis of historical data on the thermodynamic justification of the efficiency of thermoelectric generators is presented. The following areas are analyzed: the problem of increasing the figure of merit Z through the creation of new material science technologies and new materials, the creation of multi-segment thermoelectric elements for a wide temperature range (300 ÷ 1200 K), the efficiency of heat supply to the TEG and cooling. The methods for calculating the thermodynamic efficiency of TEG are presented. It is shown that the efficiency of TEG is limited to ½ of the Carnot value for ZT values of 1-3. Modern materials allow the production of TEG with ZT values less than 1. However, the application of TEG has promising prospects with the increase in the intensity of heat supply and cooling processes. The main directions and trends (physical, chemical, technological) in the creation and improvement of TEG are identified. Some practical solutions presented in the literature, as well as the authors' solution for improving the thermodynamic efficiency of boiler units using TEG, are shown.
dc.format.extent7-18
dc.format.pages12
dc.identifier.citationImproving the energy efficiency of thermoelectric energy converters – review / Andriy Redko, Oleksandr Redko, Ihor Redko, Oleksandr Gvozdeckyi, Denys Krasnopolskyi, Vitalii Zaika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 7–18.
dc.identifier.citationenImproving the energy efficiency of thermoelectric energy converters – review / Andriy Redko, Oleksandr Redko, Ihor Redko, Oleksandr Gvozdeckyi, Denys Krasnopolskyi, Vitalii Zaika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 7–18.
dc.identifier.doidoi.org/10.23939/jtbp2024.02.007
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117196
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 2 (6), 2024
dc.relation.ispartofTheory and Building Practice, 2 (6), 2024
dc.relation.referencesClausius, R. (1867). The Mechanical Theory of Heat, With its Applications to the Steam-Engine and Physical Properties of Bodies. London, UK: John Van Voorst.
dc.relation.referencesClausius, R. (1879). The Mechanical Theory of Heat. London: Macmilan.
dc.relation.referencesThomson, W. (1857). On a mechanical theory of thermo-electric currents. Edinb.: Proc. R. Soc,. 3.
dc.relation.referencesThomson, W. (1856) On the dynamical theory of heat - Part VI. Thermoelectric currents. Loud. Edinb. Dublin Philos. Mag. J. Sci. 11.
dc.relation.referencesXue, T.-W., Guo, Z.-Y. (2023). Thermoelectric Cycle and the Second Law of Thermodynamics. Entropy, 25(1), 155. https://doi.org/10.3390/e25010155
dc.relation.referencesZhao, Y., Li, W., Zhao, X., Wang, Y., Luo, D., Li, Y., Ge, M. (2024). Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery. Applied Thermal Engineering, vol. 239, https://doi.org/10.1016/j.applthermaleng.2023.122180
dc.relation.referencesTohidi, F., Holagh, S., Chitsaz, A., (2022). Thermoelectric Generators: A comprehensive review of characteristics andapplications. Applied Thermal Engineering. vol. 201, Part A. https://doi.org/10.1016/j.applthermaleng.2021.117793
dc.relation.referencesLupu, A., Homutescu, V., Balanescu, D., Popescu, A., (2018). Efficiency of solar collectors - a review. The 8th International Conference on Advanced Concepts in Mechanical Engineering. https://iopscience.iop.org/article/10.1088/1757-899X/444/8/082015
dc.relation.referencesSamoylovich, A., Korenblit, L. (1953). .Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, № 2, pp. 243-272.
dc.relation.referencesSamoylovich, A., Korenblit, L. (1953). Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, № 3, pp. 337-383.
dc.relation.referencesShafey, H., Ismail, I. (1990). Thermodynamics of the Conversion of Solar Radiation. J. Sol. Energy Eng., 112(2), pp. 140-145. https://doi.org/10.1115/1.2929646
dc.relation.referencesSmets, A., Jager, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. England: UIT Cambridge Ltd.
dc.relation.referencesRosa, A. (2012). Fundamentals of Renewable Energy Processes (3rd ed.). Academic Press.
dc.relation.referencesGoldsmid, H. (2010). Introduction to Thermoelectricity. Berlin: Springer. https://doi.org/10.1007/978-3-642-00716-3
dc.relation.referencesKondepudi, D., Prigogine, I. (1998). Modern Thermodynamics. From Heat Engines to Dissipative Structures. Hoboken, NJ, USA: John Wiley and Sons.
dc.relation.referencesBergman, T., Lavine, A., Incopera, F., DeWitt, D. (2011). Introduction to Heat Transfer. (6th ed.). NJ: John Wiley & Sons.
dc.relation.referencesZebarjadi, M. (2015). Electronic cooling using thermoelectric devices. Appl. Phys. Lett. 106. 203506 https://doi.org/10.1063/1.4921457
dc.relation.referencesNolas, G., Sharp, J., Goldsmid, J. (2001). Thermoelectrics. Basic Principles and New Materials Developments. New York: Springer-Verlag. https://doi.org/10.1007/978-3-662-04569-5
dc.relation.referencesAnatichuk, L. (1979). Termoelementy i termoelektrichni prylady: Spravochnik. Thermal elements and thermal and electrical apparatus. Reference book. K. : Naukova Dumka.
dc.relation.referencesAnatichuk, L., Mocherniuk, Y., Prybyla, A. (2013). Solar thermoelectrical convertors. Termoelektryka, № 4, pp. 72-79.
dc.relation.referencesChampier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, pp. 167-181. https://doi.org/10.1016/j.enconman.2017.02.070
dc.relation.referencesShi, XL., Zou, J., Chen, ZG. (2020). Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev., 120 (15), pp. 7399-7515. https://doi.org/10.1021/acs.chemrev.0c00026
dc.relation.referencesGupta, M., Kaushik, S., Ranjan, K., Panwar, N., Reddy, V., Tyagi, S. (2015). Thermodynamic performance evaluation of solar and other thermal power generation systems: A review. Renewable and Sustainable Energy Reviews, 50, pp. 567-582. https://doi.org/10.1016/j.rser.2015.05.034
dc.relation.referencesFreire, L., Navarette, L., Corrales, B., Castillo, J. (2021). Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 7(3), pp. 355-361. https://doi.org/10.1016/j.egyr.2021.08.099
dc.relation.referencesBayrak, F., Abu-Hamdeh, N., Alnefaie, K., Öztop, H. (2017). A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews, 74, pp. 755-770. https://doi.org/10.1016/j.rser.2017.03.012
dc.relation.referencesRawat, R., Lamba, R., Kaushik, S. (2017). Thermodynamic study of solar photovoltaic energy conversion: An overview. Renewable and Sustainable Energy Reviews, 71, pp.630-638. https://doi.org/10.1016/j.rser.2016.12.089
dc.relation.referencesDe Vos, A., Pauwels, H. (1981). On the thermodynamic limit of photovoltaic energy conversion. Applied physics, 25. pp. 119-125. https://doi.org/10.1007/BF00901283
dc.relation.referencesXiao, H. (2024). Derivation of generalized thermoelectric energy equations and the study of thermoelectric irreversible processes based on energy, exergy, and entransy analysis. Energy Science & Engineering, 12 (1), 39-51. https://doi.org/10.1002/ese3.161
dc.relation.referencesTiwari, G., Dubey, S. (2010). Fundamentals of Photovoltaic Modules and Their Applications. Cambridge, UK: RSC Publishers. https://doi.org/10.1039/9781849730952
dc.relation.referencesBeretta, D., Neophytou, N., Hodges, J., Kanatzidis, M., Narducci, D., Martin-Gonzalez, M., Beekman, M., Balke, B., Cerretti, G.,Tremel, W., Zevalkink, A., Hofmann, A., Müller, C., Dörling, B., Campoy-Quiles, M., Caironi, M. (2019). Thermoelectrics: From history, a window to the future. Materials Science and Engineering: R: Reports, 138. https://doi.org/10.1016/j.mser.2018.09.001
dc.relation.referencesSmets, A., Jäger, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. England: UIT Cambridge.
dc.relation.referencesGribik, J., Osterle, J. (1984). The Second Law Efficiency of Solar Energy Conversion. J. Sol. Energy Eng., 106(1), pp. 16-21. https://doi.org/10.1115/1.3267555
dc.relation.referencesJeter, S. (1981). Maximum conversion efficiency for the utilization of direct solar radiation. Solar Energy, 26(3), pp. 231-236. https://doi.org/10.1016/0038-092X(81)90207-3
dc.relation.referencesPetela, R. (1964). Exergy of Heat Radiation. J. Heat Transfer, 86(2), pp. 187-192. https://doi.org/10.1115/1.3687092
dc.relation.referencesLandsberg, P. (1977). A Note on the Thermodynamics of Energy Conversion in Plants. Photochemistry and Photobiology, 26(3), pp. 313-314. https://doi.org/10.1111/j.1751-1097.1977.tb07491.x
dc.relation.referencesAlsaghir, A., Bahk, J. (2023). Performance Optimization and Exergy Analysis of Thermoelectric Heat Recovery System for Gas Turbine Power Plants. Entropy 2023, 25(12), 1583. https://doi.org/10.3390/e25121583
dc.relation.referencesDmitriev, A., Zvyagin, I. (2010). Current trends in the physics of thermoelectric materials. Phys.-Usp., 53(8), pp. 789-803. https://iopscience.iop.org/article/10.3367/UFNe.0180.201008b.0821
dc.relation.referencesTelkes, M. (1947). The Efficiency of the Thermoelectric Generators - I. J. Appl. Phys. 18, pp. 1116-1127 https://doi.org/10.1063/1.1697593
dc.relation.referencesIoffe, A. (1957). Semiconductor Thermoelements, and Thermoelectric Cooling, London: Infosearch Lim.
dc.relation.referencesZhou, Y., Zhang, T., Wang, F., Yu, Y. (2018). Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system. Energy, 162, pp. 299-308. https://doi.org/10.1016/j.energy.2018.08.013
dc.relation.referencesLiu, Z., Zhang, Y., Zhang, L., Luo, Y., Wu, Z., Wu, J., Yin, Y., Hou, G. (2018). Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system. Applied Energy, 228, pp. 1887-1900. https://doi.org/10.1016/j.apenergy.2018.07.006
dc.relation.referencesLiu, Z., Zhang, L., Gong, G. (2014). Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Conversion and Management, 87, pp. 559-565. https://doi.org/10.1016/j.enconman.2014.07.051
dc.relation.referencesBaru, S., Bhatia, S. (2020). A review on thermoelectric cooling technology and its applications. IOP Conf. Ser.: Mater. Sci. Eng., 912(042004). https://iopscience.iop.org/article/10.1088/1757-899X/912/4/042004
dc.relation.referencesSripadmanabhan Indira, S., Vaithilingam, C., Chong, K., Saidur, R., Faizal, M., Abubakar, S., Paiman, S. (2020). A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system. Solar Energy, 201, pp. 122-148. https://doi.org/10.1016/j.solener.2020.02.090
dc.relation.referencesBabu, C., Ponnambalam, P. (2017). The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Conversion and Management, 151, pp. 368-385. https://doi.org/10.1016/j.enconman.2017.08.060
dc.relation.referencesChang, Y., Chang, C., Ke, M., Chen, S. (2009). Thermoelectric air-cooling module for electronic devices. Applied Thermal Engineering, 29(13), pp. 2731-2737. https://doi.org/10.1016/j.applthermaleng.2009.01.004
dc.relation.referencesThilak Raj, N., Iniyan, S., Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15(8), pp. 3640-3648. https://doi.org/10.1016/j.rser.2011.06.003
dc.relation.referencesBell, L. (2008). Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321(5895), pp. 1457-1461. https://www.science.org/doi/10.1126/science.1158899
dc.relation.referencesenClausius, R. (1867). The Mechanical Theory of Heat, With its Applications to the Steam-Engine and Physical Properties of Bodies. London, UK: John Van Voorst.
dc.relation.referencesenClausius, R. (1879). The Mechanical Theory of Heat. London: Macmilan.
dc.relation.referencesenThomson, W. (1857). On a mechanical theory of thermo-electric currents. Edinb., Proc. R. Soc,. 3.
dc.relation.referencesenThomson, W. (1856) On the dynamical theory of heat - Part VI. Thermoelectric currents. Loud. Edinb. Dublin Philos. Mag. J. Sci. 11.
dc.relation.referencesenXue, T.-W., Guo, Z.-Y. (2023). Thermoelectric Cycle and the Second Law of Thermodynamics. Entropy, 25(1), 155. https://doi.org/10.3390/e25010155
dc.relation.referencesenZhao, Y., Li, W., Zhao, X., Wang, Y., Luo, D., Li, Y., Ge, M. (2024). Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery. Applied Thermal Engineering, vol. 239, https://doi.org/10.1016/j.applthermaleng.2023.122180
dc.relation.referencesenTohidi, F., Holagh, S., Chitsaz, A., (2022). Thermoelectric Generators: A comprehensive review of characteristics andapplications. Applied Thermal Engineering. vol. 201, Part A. https://doi.org/10.1016/j.applthermaleng.2021.117793
dc.relation.referencesenLupu, A., Homutescu, V., Balanescu, D., Popescu, A., (2018). Efficiency of solar collectors - a review. The 8th International Conference on Advanced Concepts in Mechanical Engineering. https://iopscience.iop.org/article/10.1088/1757-899X/444/8/082015
dc.relation.referencesenSamoylovich, A., Korenblit, L. (1953). .Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, No 2, pp. 243-272.
dc.relation.referencesenSamoylovich, A., Korenblit, L. (1953). Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, No 3, pp. 337-383.
dc.relation.referencesenShafey, H., Ismail, I. (1990). Thermodynamics of the Conversion of Solar Radiation. J. Sol. Energy Eng., 112(2), pp. 140-145. https://doi.org/10.1115/1.2929646
dc.relation.referencesenSmets, A., Jager, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. England: UIT Cambridge Ltd.
dc.relation.referencesenRosa, A. (2012). Fundamentals of Renewable Energy Processes (3rd ed.). Academic Press.
dc.relation.referencesenGoldsmid, H. (2010). Introduction to Thermoelectricity. Berlin: Springer. https://doi.org/10.1007/978-3-642-00716-3
dc.relation.referencesenKondepudi, D., Prigogine, I. (1998). Modern Thermodynamics. From Heat Engines to Dissipative Structures. Hoboken, NJ, USA: John Wiley and Sons.
dc.relation.referencesenBergman, T., Lavine, A., Incopera, F., DeWitt, D. (2011). Introduction to Heat Transfer. (6th ed.). NJ: John Wiley & Sons.
dc.relation.referencesenZebarjadi, M. (2015). Electronic cooling using thermoelectric devices. Appl. Phys. Lett. 106. 203506 https://doi.org/10.1063/1.4921457
dc.relation.referencesenNolas, G., Sharp, J., Goldsmid, J. (2001). Thermoelectrics. Basic Principles and New Materials Developments. New York: Springer-Verlag. https://doi.org/10.1007/978-3-662-04569-5
dc.relation.referencesenAnatichuk, L. (1979). Termoelementy i termoelektrichni prylady: Spravochnik. Thermal elements and thermal and electrical apparatus. Reference book. K. : Naukova Dumka.
dc.relation.referencesenAnatichuk, L., Mocherniuk, Y., Prybyla, A. (2013). Solar thermoelectrical convertors. Termoelektryka, No 4, pp. 72-79.
dc.relation.referencesenChampier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, pp. 167-181. https://doi.org/10.1016/j.enconman.2017.02.070
dc.relation.referencesenShi, XL., Zou, J., Chen, ZG. (2020). Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev., 120 (15), pp. 7399-7515. https://doi.org/10.1021/acs.chemrev.0c00026
dc.relation.referencesenGupta, M., Kaushik, S., Ranjan, K., Panwar, N., Reddy, V., Tyagi, S. (2015). Thermodynamic performance evaluation of solar and other thermal power generation systems: A review. Renewable and Sustainable Energy Reviews, 50, pp. 567-582. https://doi.org/10.1016/j.rser.2015.05.034
dc.relation.referencesenFreire, L., Navarette, L., Corrales, B., Castillo, J. (2021). Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 7(3), pp. 355-361. https://doi.org/10.1016/j.egyr.2021.08.099
dc.relation.referencesenBayrak, F., Abu-Hamdeh, N., Alnefaie, K., Öztop, H. (2017). A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews, 74, pp. 755-770. https://doi.org/10.1016/j.rser.2017.03.012
dc.relation.referencesenRawat, R., Lamba, R., Kaushik, S. (2017). Thermodynamic study of solar photovoltaic energy conversion: An overview. Renewable and Sustainable Energy Reviews, 71, pp.630-638. https://doi.org/10.1016/j.rser.2016.12.089
dc.relation.referencesenDe Vos, A., Pauwels, H. (1981). On the thermodynamic limit of photovoltaic energy conversion. Applied physics, 25. pp. 119-125. https://doi.org/10.1007/BF00901283
dc.relation.referencesenXiao, H. (2024). Derivation of generalized thermoelectric energy equations and the study of thermoelectric irreversible processes based on energy, exergy, and entransy analysis. Energy Science & Engineering, 12 (1), 39-51. https://doi.org/10.1002/ese3.161
dc.relation.referencesenTiwari, G., Dubey, S. (2010). Fundamentals of Photovoltaic Modules and Their Applications. Cambridge, UK: RSC Publishers. https://doi.org/10.1039/9781849730952
dc.relation.referencesenBeretta, D., Neophytou, N., Hodges, J., Kanatzidis, M., Narducci, D., Martin-Gonzalez, M., Beekman, M., Balke, B., Cerretti, G.,Tremel, W., Zevalkink, A., Hofmann, A., Müller, C., Dörling, B., Campoy-Quiles, M., Caironi, M. (2019). Thermoelectrics: From history, a window to the future. Materials Science and Engineering: R: Reports, 138. https://doi.org/10.1016/j.mser.2018.09.001
dc.relation.referencesenSmets, A., Jäger, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. England: UIT Cambridge.
dc.relation.referencesenGribik, J., Osterle, J. (1984). The Second Law Efficiency of Solar Energy Conversion. J. Sol. Energy Eng., 106(1), pp. 16-21. https://doi.org/10.1115/1.3267555
dc.relation.referencesenJeter, S. (1981). Maximum conversion efficiency for the utilization of direct solar radiation. Solar Energy, 26(3), pp. 231-236. https://doi.org/10.1016/0038-092X(81)90207-3
dc.relation.referencesenPetela, R. (1964). Exergy of Heat Radiation. J. Heat Transfer, 86(2), pp. 187-192. https://doi.org/10.1115/1.3687092
dc.relation.referencesenLandsberg, P. (1977). A Note on the Thermodynamics of Energy Conversion in Plants. Photochemistry and Photobiology, 26(3), pp. 313-314. https://doi.org/10.1111/j.1751-1097.1977.tb07491.x
dc.relation.referencesenAlsaghir, A., Bahk, J. (2023). Performance Optimization and Exergy Analysis of Thermoelectric Heat Recovery System for Gas Turbine Power Plants. Entropy 2023, 25(12), 1583. https://doi.org/10.3390/e25121583
dc.relation.referencesenDmitriev, A., Zvyagin, I. (2010). Current trends in the physics of thermoelectric materials. Phys.-Usp., 53(8), pp. 789-803. https://iopscience.iop.org/article/10.3367/UFNe.0180.201008b.0821
dc.relation.referencesenTelkes, M. (1947). The Efficiency of the Thermoelectric Generators - I. J. Appl. Phys. 18, pp. 1116-1127 https://doi.org/10.1063/1.1697593
dc.relation.referencesenIoffe, A. (1957). Semiconductor Thermoelements, and Thermoelectric Cooling, London: Infosearch Lim.
dc.relation.referencesenZhou, Y., Zhang, T., Wang, F., Yu, Y. (2018). Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system. Energy, 162, pp. 299-308. https://doi.org/10.1016/j.energy.2018.08.013
dc.relation.referencesenLiu, Z., Zhang, Y., Zhang, L., Luo, Y., Wu, Z., Wu, J., Yin, Y., Hou, G. (2018). Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system. Applied Energy, 228, pp. 1887-1900. https://doi.org/10.1016/j.apenergy.2018.07.006
dc.relation.referencesenLiu, Z., Zhang, L., Gong, G. (2014). Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Conversion and Management, 87, pp. 559-565. https://doi.org/10.1016/j.enconman.2014.07.051
dc.relation.referencesenBaru, S., Bhatia, S. (2020). A review on thermoelectric cooling technology and its applications. IOP Conf. Ser., Mater. Sci. Eng., 912(042004). https://iopscience.iop.org/article/10.1088/1757-899X/912/4/042004
dc.relation.referencesenSripadmanabhan Indira, S., Vaithilingam, C., Chong, K., Saidur, R., Faizal, M., Abubakar, S., Paiman, S. (2020). A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system. Solar Energy, 201, pp. 122-148. https://doi.org/10.1016/j.solener.2020.02.090
dc.relation.referencesenBabu, C., Ponnambalam, P. (2017). The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Conversion and Management, 151, pp. 368-385. https://doi.org/10.1016/j.enconman.2017.08.060
dc.relation.referencesenChang, Y., Chang, C., Ke, M., Chen, S. (2009). Thermoelectric air-cooling module for electronic devices. Applied Thermal Engineering, 29(13), pp. 2731-2737. https://doi.org/10.1016/j.applthermaleng.2009.01.004
dc.relation.referencesenThilak Raj, N., Iniyan, S., Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15(8), pp. 3640-3648. https://doi.org/10.1016/j.rser.2011.06.003
dc.relation.referencesenBell, L. (2008). Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321(5895), pp. 1457-1461. https://www.science.org/doi/10.1126/science.1158899
dc.relation.urihttps://doi.org/10.3390/e25010155
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2023.122180
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2021.117793
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1757-899X/444/8/082015
dc.relation.urihttps://doi.org/10.1115/1.2929646
dc.relation.urihttps://doi.org/10.1007/978-3-642-00716-3
dc.relation.urihttps://doi.org/10.1063/1.4921457
dc.relation.urihttps://doi.org/10.1007/978-3-662-04569-5
dc.relation.urihttps://doi.org/10.1016/j.enconman.2017.02.070
dc.relation.urihttps://doi.org/10.1021/acs.chemrev.0c00026
dc.relation.urihttps://doi.org/10.1016/j.rser.2015.05.034
dc.relation.urihttps://doi.org/10.1016/j.egyr.2021.08.099
dc.relation.urihttps://doi.org/10.1016/j.rser.2017.03.012
dc.relation.urihttps://doi.org/10.1016/j.rser.2016.12.089
dc.relation.urihttps://doi.org/10.1007/BF00901283
dc.relation.urihttps://doi.org/10.1002/ese3.161
dc.relation.urihttps://doi.org/10.1039/9781849730952
dc.relation.urihttps://doi.org/10.1016/j.mser.2018.09.001
dc.relation.urihttps://doi.org/10.1115/1.3267555
dc.relation.urihttps://doi.org/10.1016/0038-092X(81)90207-3
dc.relation.urihttps://doi.org/10.1115/1.3687092
dc.relation.urihttps://doi.org/10.1111/j.1751-1097.1977.tb07491.x
dc.relation.urihttps://doi.org/10.3390/e25121583
dc.relation.urihttps://iopscience.iop.org/article/10.3367/UFNe.0180.201008b.0821
dc.relation.urihttps://doi.org/10.1063/1.1697593
dc.relation.urihttps://doi.org/10.1016/j.energy.2018.08.013
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2018.07.006
dc.relation.urihttps://doi.org/10.1016/j.enconman.2014.07.051
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1757-899X/912/4/042004
dc.relation.urihttps://doi.org/10.1016/j.solener.2020.02.090
dc.relation.urihttps://doi.org/10.1016/j.enconman.2017.08.060
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2009.01.004
dc.relation.urihttps://doi.org/10.1016/j.rser.2011.06.003
dc.relation.urihttps://www.science.org/doi/10.1126/science.1158899
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Redko A., Redko O., Redko I., Gvozdeckyi O., Krasnopolskyi D., Zaika V. 2024
dc.subjectтермоелектричні перетворювачі
dc.subjectохолоджувачі
dc.subjectгенератори
dc.subjectенергоефективність
dc.subjectенергетичний та ексергетичний аналіз
dc.subjectпрактичне застосування
dc.subjectthermoelectric converters
dc.subjectcoolers
dc.subjectgenerators
dc.subjectenergy efficiency
dc.subjectenergy and exergy analysis
dc.subjectpractical applications
dc.titleImproving the energy efficiency of thermoelectric energy converters – review
dc.title.alternativeПідвищення енергоефективності термоелектричних перетворювачів енергії – огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n2_Redko_A-Improving_the_energy_efficiency_7-18.pdf
Size:
8.66 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n2_Redko_A-Improving_the_energy_efficiency_7-18__COVER.png
Size:
463.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: