Improving the energy efficiency of thermoelectric energy converters – review
| dc.citation.epage | 18 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 7 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Сумський національний аграрний університет | |
| dc.contributor.affiliation | Харківський національний університет міського господарства імені О.М. Бекетова | |
| dc.contributor.affiliation | Український державний університет залізничного транспорту | |
| dc.contributor.affiliation | Sumy National Agrarian University | |
| dc.contributor.affiliation | O. M. Beketov National University of Urban Economy in Kharkiv | |
| dc.contributor.affiliation | Ukrainian state university of railway transport | |
| dc.contributor.author | Редько, А. О. | |
| dc.contributor.author | Редько, О. Ф. | |
| dc.contributor.author | Редько, І. О. | |
| dc.contributor.author | Гвоздецький, О. В. | |
| dc.contributor.author | Краснопольський, Д. І. | |
| dc.contributor.author | Заіка, В. Ю. | |
| dc.contributor.author | Redko, Andriy | |
| dc.contributor.author | Redko, Oleksandr | |
| dc.contributor.author | Redko, Ihor | |
| dc.contributor.author | Gvozdeckyi, Oleksandr | |
| dc.contributor.author | Krasnopolskyi, Denys | |
| dc.contributor.author | Zaika, Vitalii | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-04T09:42:46Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Представлено результати аналітичного огляду великої кількості публікацій з проблеми підвищення ефективності термоелектричних генераторів (ТЕГ) за останнє десятиліття. Представлено аналіз історичних даних щодо термодинамічного обґрунтування ефективності термоелектричних генераторів. Проаналізовано такі напрямки: проблема підвищення добротності Z шляхом створення нових матеріалівознавчих технологій та нових матеріалів, створення багатосегментних термоелектричних елементів для широкого діапазону температур (300 ÷ 1200 K), ефективність теплопідведення до ТЕГ та охолодження. Представлено методи розрахунку термодинамічного ККД ТЕГ. Показано, що ККД ТЕГ обмежений ½ значення Карно для значень ZT 1-3. Сучасні матеріали дозволяють виробляти ТЕГ зі значеннями ZT менше 1. Однак застосування ТЕГ має багатообіцяючі перспективи зі збільшенням інтенсивності процесів теплопостачання та охолодження. Визначено основні напрямки та тенденції (фізичні, хімічні, технологічні) у створенні та вдосконаленні ТЕГ. Показано деякі практичні рішення, представлені в літературі, а також запропоноване авторами рішення щодо підвищення термодинамічної ефективності котлоагрегатів з використанням ТРГ. | |
| dc.description.abstract | The results of an analytical review of a large number of publications on the problem of improving the efficiency of thermoelectric generators (TEG) over the past decade are presented. An analysis of historical data on the thermodynamic justification of the efficiency of thermoelectric generators is presented. The following areas are analyzed: the problem of increasing the figure of merit Z through the creation of new material science technologies and new materials, the creation of multi-segment thermoelectric elements for a wide temperature range (300 ÷ 1200 K), the efficiency of heat supply to the TEG and cooling. The methods for calculating the thermodynamic efficiency of TEG are presented. It is shown that the efficiency of TEG is limited to ½ of the Carnot value for ZT values of 1-3. Modern materials allow the production of TEG with ZT values less than 1. However, the application of TEG has promising prospects with the increase in the intensity of heat supply and cooling processes. The main directions and trends (physical, chemical, technological) in the creation and improvement of TEG are identified. Some practical solutions presented in the literature, as well as the authors' solution for improving the thermodynamic efficiency of boiler units using TEG, are shown. | |
| dc.format.extent | 7-18 | |
| dc.format.pages | 12 | |
| dc.identifier.citation | Improving the energy efficiency of thermoelectric energy converters – review / Andriy Redko, Oleksandr Redko, Ihor Redko, Oleksandr Gvozdeckyi, Denys Krasnopolskyi, Vitalii Zaika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 7–18. | |
| dc.identifier.citationen | Improving the energy efficiency of thermoelectric energy converters – review / Andriy Redko, Oleksandr Redko, Ihor Redko, Oleksandr Gvozdeckyi, Denys Krasnopolskyi, Vitalii Zaika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 7–18. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2024.02.007 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/117196 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 2 (6), 2024 | |
| dc.relation.ispartof | Theory and Building Practice, 2 (6), 2024 | |
| dc.relation.references | Clausius, R. (1867). The Mechanical Theory of Heat, With its Applications to the Steam-Engine and Physical Properties of Bodies. London, UK: John Van Voorst. | |
| dc.relation.references | Clausius, R. (1879). The Mechanical Theory of Heat. London: Macmilan. | |
| dc.relation.references | Thomson, W. (1857). On a mechanical theory of thermo-electric currents. Edinb.: Proc. R. Soc,. 3. | |
| dc.relation.references | Thomson, W. (1856) On the dynamical theory of heat - Part VI. Thermoelectric currents. Loud. Edinb. Dublin Philos. Mag. J. Sci. 11. | |
| dc.relation.references | Xue, T.-W., Guo, Z.-Y. (2023). Thermoelectric Cycle and the Second Law of Thermodynamics. Entropy, 25(1), 155. https://doi.org/10.3390/e25010155 | |
| dc.relation.references | Zhao, Y., Li, W., Zhao, X., Wang, Y., Luo, D., Li, Y., Ge, M. (2024). Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery. Applied Thermal Engineering, vol. 239, https://doi.org/10.1016/j.applthermaleng.2023.122180 | |
| dc.relation.references | Tohidi, F., Holagh, S., Chitsaz, A., (2022). Thermoelectric Generators: A comprehensive review of characteristics andapplications. Applied Thermal Engineering. vol. 201, Part A. https://doi.org/10.1016/j.applthermaleng.2021.117793 | |
| dc.relation.references | Lupu, A., Homutescu, V., Balanescu, D., Popescu, A., (2018). Efficiency of solar collectors - a review. The 8th International Conference on Advanced Concepts in Mechanical Engineering. https://iopscience.iop.org/article/10.1088/1757-899X/444/8/082015 | |
| dc.relation.references | Samoylovich, A., Korenblit, L. (1953). .Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, № 2, pp. 243-272. | |
| dc.relation.references | Samoylovich, A., Korenblit, L. (1953). Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, № 3, pp. 337-383. | |
| dc.relation.references | Shafey, H., Ismail, I. (1990). Thermodynamics of the Conversion of Solar Radiation. J. Sol. Energy Eng., 112(2), pp. 140-145. https://doi.org/10.1115/1.2929646 | |
| dc.relation.references | Smets, A., Jager, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. England: UIT Cambridge Ltd. | |
| dc.relation.references | Rosa, A. (2012). Fundamentals of Renewable Energy Processes (3rd ed.). Academic Press. | |
| dc.relation.references | Goldsmid, H. (2010). Introduction to Thermoelectricity. Berlin: Springer. https://doi.org/10.1007/978-3-642-00716-3 | |
| dc.relation.references | Kondepudi, D., Prigogine, I. (1998). Modern Thermodynamics. From Heat Engines to Dissipative Structures. Hoboken, NJ, USA: John Wiley and Sons. | |
| dc.relation.references | Bergman, T., Lavine, A., Incopera, F., DeWitt, D. (2011). Introduction to Heat Transfer. (6th ed.). NJ: John Wiley & Sons. | |
| dc.relation.references | Zebarjadi, M. (2015). Electronic cooling using thermoelectric devices. Appl. Phys. Lett. 106. 203506 https://doi.org/10.1063/1.4921457 | |
| dc.relation.references | Nolas, G., Sharp, J., Goldsmid, J. (2001). Thermoelectrics. Basic Principles and New Materials Developments. New York: Springer-Verlag. https://doi.org/10.1007/978-3-662-04569-5 | |
| dc.relation.references | Anatichuk, L. (1979). Termoelementy i termoelektrichni prylady: Spravochnik. Thermal elements and thermal and electrical apparatus. Reference book. K. : Naukova Dumka. | |
| dc.relation.references | Anatichuk, L., Mocherniuk, Y., Prybyla, A. (2013). Solar thermoelectrical convertors. Termoelektryka, № 4, pp. 72-79. | |
| dc.relation.references | Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, pp. 167-181. https://doi.org/10.1016/j.enconman.2017.02.070 | |
| dc.relation.references | Shi, XL., Zou, J., Chen, ZG. (2020). Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev., 120 (15), pp. 7399-7515. https://doi.org/10.1021/acs.chemrev.0c00026 | |
| dc.relation.references | Gupta, M., Kaushik, S., Ranjan, K., Panwar, N., Reddy, V., Tyagi, S. (2015). Thermodynamic performance evaluation of solar and other thermal power generation systems: A review. Renewable and Sustainable Energy Reviews, 50, pp. 567-582. https://doi.org/10.1016/j.rser.2015.05.034 | |
| dc.relation.references | Freire, L., Navarette, L., Corrales, B., Castillo, J. (2021). Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 7(3), pp. 355-361. https://doi.org/10.1016/j.egyr.2021.08.099 | |
| dc.relation.references | Bayrak, F., Abu-Hamdeh, N., Alnefaie, K., Öztop, H. (2017). A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews, 74, pp. 755-770. https://doi.org/10.1016/j.rser.2017.03.012 | |
| dc.relation.references | Rawat, R., Lamba, R., Kaushik, S. (2017). Thermodynamic study of solar photovoltaic energy conversion: An overview. Renewable and Sustainable Energy Reviews, 71, pp.630-638. https://doi.org/10.1016/j.rser.2016.12.089 | |
| dc.relation.references | De Vos, A., Pauwels, H. (1981). On the thermodynamic limit of photovoltaic energy conversion. Applied physics, 25. pp. 119-125. https://doi.org/10.1007/BF00901283 | |
| dc.relation.references | Xiao, H. (2024). Derivation of generalized thermoelectric energy equations and the study of thermoelectric irreversible processes based on energy, exergy, and entransy analysis. Energy Science & Engineering, 12 (1), 39-51. https://doi.org/10.1002/ese3.161 | |
| dc.relation.references | Tiwari, G., Dubey, S. (2010). Fundamentals of Photovoltaic Modules and Their Applications. Cambridge, UK: RSC Publishers. https://doi.org/10.1039/9781849730952 | |
| dc.relation.references | Beretta, D., Neophytou, N., Hodges, J., Kanatzidis, M., Narducci, D., Martin-Gonzalez, M., Beekman, M., Balke, B., Cerretti, G.,Tremel, W., Zevalkink, A., Hofmann, A., Müller, C., Dörling, B., Campoy-Quiles, M., Caironi, M. (2019). Thermoelectrics: From history, a window to the future. Materials Science and Engineering: R: Reports, 138. https://doi.org/10.1016/j.mser.2018.09.001 | |
| dc.relation.references | Smets, A., Jäger, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. England: UIT Cambridge. | |
| dc.relation.references | Gribik, J., Osterle, J. (1984). The Second Law Efficiency of Solar Energy Conversion. J. Sol. Energy Eng., 106(1), pp. 16-21. https://doi.org/10.1115/1.3267555 | |
| dc.relation.references | Jeter, S. (1981). Maximum conversion efficiency for the utilization of direct solar radiation. Solar Energy, 26(3), pp. 231-236. https://doi.org/10.1016/0038-092X(81)90207-3 | |
| dc.relation.references | Petela, R. (1964). Exergy of Heat Radiation. J. Heat Transfer, 86(2), pp. 187-192. https://doi.org/10.1115/1.3687092 | |
| dc.relation.references | Landsberg, P. (1977). A Note on the Thermodynamics of Energy Conversion in Plants. Photochemistry and Photobiology, 26(3), pp. 313-314. https://doi.org/10.1111/j.1751-1097.1977.tb07491.x | |
| dc.relation.references | Alsaghir, A., Bahk, J. (2023). Performance Optimization and Exergy Analysis of Thermoelectric Heat Recovery System for Gas Turbine Power Plants. Entropy 2023, 25(12), 1583. https://doi.org/10.3390/e25121583 | |
| dc.relation.references | Dmitriev, A., Zvyagin, I. (2010). Current trends in the physics of thermoelectric materials. Phys.-Usp., 53(8), pp. 789-803. https://iopscience.iop.org/article/10.3367/UFNe.0180.201008b.0821 | |
| dc.relation.references | Telkes, M. (1947). The Efficiency of the Thermoelectric Generators - I. J. Appl. Phys. 18, pp. 1116-1127 https://doi.org/10.1063/1.1697593 | |
| dc.relation.references | Ioffe, A. (1957). Semiconductor Thermoelements, and Thermoelectric Cooling, London: Infosearch Lim. | |
| dc.relation.references | Zhou, Y., Zhang, T., Wang, F., Yu, Y. (2018). Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system. Energy, 162, pp. 299-308. https://doi.org/10.1016/j.energy.2018.08.013 | |
| dc.relation.references | Liu, Z., Zhang, Y., Zhang, L., Luo, Y., Wu, Z., Wu, J., Yin, Y., Hou, G. (2018). Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system. Applied Energy, 228, pp. 1887-1900. https://doi.org/10.1016/j.apenergy.2018.07.006 | |
| dc.relation.references | Liu, Z., Zhang, L., Gong, G. (2014). Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Conversion and Management, 87, pp. 559-565. https://doi.org/10.1016/j.enconman.2014.07.051 | |
| dc.relation.references | Baru, S., Bhatia, S. (2020). A review on thermoelectric cooling technology and its applications. IOP Conf. Ser.: Mater. Sci. Eng., 912(042004). https://iopscience.iop.org/article/10.1088/1757-899X/912/4/042004 | |
| dc.relation.references | Sripadmanabhan Indira, S., Vaithilingam, C., Chong, K., Saidur, R., Faizal, M., Abubakar, S., Paiman, S. (2020). A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system. Solar Energy, 201, pp. 122-148. https://doi.org/10.1016/j.solener.2020.02.090 | |
| dc.relation.references | Babu, C., Ponnambalam, P. (2017). The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Conversion and Management, 151, pp. 368-385. https://doi.org/10.1016/j.enconman.2017.08.060 | |
| dc.relation.references | Chang, Y., Chang, C., Ke, M., Chen, S. (2009). Thermoelectric air-cooling module for electronic devices. Applied Thermal Engineering, 29(13), pp. 2731-2737. https://doi.org/10.1016/j.applthermaleng.2009.01.004 | |
| dc.relation.references | Thilak Raj, N., Iniyan, S., Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15(8), pp. 3640-3648. https://doi.org/10.1016/j.rser.2011.06.003 | |
| dc.relation.references | Bell, L. (2008). Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321(5895), pp. 1457-1461. https://www.science.org/doi/10.1126/science.1158899 | |
| dc.relation.referencesen | Clausius, R. (1867). The Mechanical Theory of Heat, With its Applications to the Steam-Engine and Physical Properties of Bodies. London, UK: John Van Voorst. | |
| dc.relation.referencesen | Clausius, R. (1879). The Mechanical Theory of Heat. London: Macmilan. | |
| dc.relation.referencesen | Thomson, W. (1857). On a mechanical theory of thermo-electric currents. Edinb., Proc. R. Soc,. 3. | |
| dc.relation.referencesen | Thomson, W. (1856) On the dynamical theory of heat - Part VI. Thermoelectric currents. Loud. Edinb. Dublin Philos. Mag. J. Sci. 11. | |
| dc.relation.referencesen | Xue, T.-W., Guo, Z.-Y. (2023). Thermoelectric Cycle and the Second Law of Thermodynamics. Entropy, 25(1), 155. https://doi.org/10.3390/e25010155 | |
| dc.relation.referencesen | Zhao, Y., Li, W., Zhao, X., Wang, Y., Luo, D., Li, Y., Ge, M. (2024). Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery. Applied Thermal Engineering, vol. 239, https://doi.org/10.1016/j.applthermaleng.2023.122180 | |
| dc.relation.referencesen | Tohidi, F., Holagh, S., Chitsaz, A., (2022). Thermoelectric Generators: A comprehensive review of characteristics andapplications. Applied Thermal Engineering. vol. 201, Part A. https://doi.org/10.1016/j.applthermaleng.2021.117793 | |
| dc.relation.referencesen | Lupu, A., Homutescu, V., Balanescu, D., Popescu, A., (2018). Efficiency of solar collectors - a review. The 8th International Conference on Advanced Concepts in Mechanical Engineering. https://iopscience.iop.org/article/10.1088/1757-899X/444/8/082015 | |
| dc.relation.referencesen | Samoylovich, A., Korenblit, L. (1953). .Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, No 2, pp. 243-272. | |
| dc.relation.referencesen | Samoylovich, A., Korenblit, L. (1953). Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, No 3, pp. 337-383. | |
| dc.relation.referencesen | Shafey, H., Ismail, I. (1990). Thermodynamics of the Conversion of Solar Radiation. J. Sol. Energy Eng., 112(2), pp. 140-145. https://doi.org/10.1115/1.2929646 | |
| dc.relation.referencesen | Smets, A., Jager, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. England: UIT Cambridge Ltd. | |
| dc.relation.referencesen | Rosa, A. (2012). Fundamentals of Renewable Energy Processes (3rd ed.). Academic Press. | |
| dc.relation.referencesen | Goldsmid, H. (2010). Introduction to Thermoelectricity. Berlin: Springer. https://doi.org/10.1007/978-3-642-00716-3 | |
| dc.relation.referencesen | Kondepudi, D., Prigogine, I. (1998). Modern Thermodynamics. From Heat Engines to Dissipative Structures. Hoboken, NJ, USA: John Wiley and Sons. | |
| dc.relation.referencesen | Bergman, T., Lavine, A., Incopera, F., DeWitt, D. (2011). Introduction to Heat Transfer. (6th ed.). NJ: John Wiley & Sons. | |
| dc.relation.referencesen | Zebarjadi, M. (2015). Electronic cooling using thermoelectric devices. Appl. Phys. Lett. 106. 203506 https://doi.org/10.1063/1.4921457 | |
| dc.relation.referencesen | Nolas, G., Sharp, J., Goldsmid, J. (2001). Thermoelectrics. Basic Principles and New Materials Developments. New York: Springer-Verlag. https://doi.org/10.1007/978-3-662-04569-5 | |
| dc.relation.referencesen | Anatichuk, L. (1979). Termoelementy i termoelektrichni prylady: Spravochnik. Thermal elements and thermal and electrical apparatus. Reference book. K. : Naukova Dumka. | |
| dc.relation.referencesen | Anatichuk, L., Mocherniuk, Y., Prybyla, A. (2013). Solar thermoelectrical convertors. Termoelektryka, No 4, pp. 72-79. | |
| dc.relation.referencesen | Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, pp. 167-181. https://doi.org/10.1016/j.enconman.2017.02.070 | |
| dc.relation.referencesen | Shi, XL., Zou, J., Chen, ZG. (2020). Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev., 120 (15), pp. 7399-7515. https://doi.org/10.1021/acs.chemrev.0c00026 | |
| dc.relation.referencesen | Gupta, M., Kaushik, S., Ranjan, K., Panwar, N., Reddy, V., Tyagi, S. (2015). Thermodynamic performance evaluation of solar and other thermal power generation systems: A review. Renewable and Sustainable Energy Reviews, 50, pp. 567-582. https://doi.org/10.1016/j.rser.2015.05.034 | |
| dc.relation.referencesen | Freire, L., Navarette, L., Corrales, B., Castillo, J. (2021). Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 7(3), pp. 355-361. https://doi.org/10.1016/j.egyr.2021.08.099 | |
| dc.relation.referencesen | Bayrak, F., Abu-Hamdeh, N., Alnefaie, K., Öztop, H. (2017). A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews, 74, pp. 755-770. https://doi.org/10.1016/j.rser.2017.03.012 | |
| dc.relation.referencesen | Rawat, R., Lamba, R., Kaushik, S. (2017). Thermodynamic study of solar photovoltaic energy conversion: An overview. Renewable and Sustainable Energy Reviews, 71, pp.630-638. https://doi.org/10.1016/j.rser.2016.12.089 | |
| dc.relation.referencesen | De Vos, A., Pauwels, H. (1981). On the thermodynamic limit of photovoltaic energy conversion. Applied physics, 25. pp. 119-125. https://doi.org/10.1007/BF00901283 | |
| dc.relation.referencesen | Xiao, H. (2024). Derivation of generalized thermoelectric energy equations and the study of thermoelectric irreversible processes based on energy, exergy, and entransy analysis. Energy Science & Engineering, 12 (1), 39-51. https://doi.org/10.1002/ese3.161 | |
| dc.relation.referencesen | Tiwari, G., Dubey, S. (2010). Fundamentals of Photovoltaic Modules and Their Applications. Cambridge, UK: RSC Publishers. https://doi.org/10.1039/9781849730952 | |
| dc.relation.referencesen | Beretta, D., Neophytou, N., Hodges, J., Kanatzidis, M., Narducci, D., Martin-Gonzalez, M., Beekman, M., Balke, B., Cerretti, G.,Tremel, W., Zevalkink, A., Hofmann, A., Müller, C., Dörling, B., Campoy-Quiles, M., Caironi, M. (2019). Thermoelectrics: From history, a window to the future. Materials Science and Engineering: R: Reports, 138. https://doi.org/10.1016/j.mser.2018.09.001 | |
| dc.relation.referencesen | Smets, A., Jäger, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. England: UIT Cambridge. | |
| dc.relation.referencesen | Gribik, J., Osterle, J. (1984). The Second Law Efficiency of Solar Energy Conversion. J. Sol. Energy Eng., 106(1), pp. 16-21. https://doi.org/10.1115/1.3267555 | |
| dc.relation.referencesen | Jeter, S. (1981). Maximum conversion efficiency for the utilization of direct solar radiation. Solar Energy, 26(3), pp. 231-236. https://doi.org/10.1016/0038-092X(81)90207-3 | |
| dc.relation.referencesen | Petela, R. (1964). Exergy of Heat Radiation. J. Heat Transfer, 86(2), pp. 187-192. https://doi.org/10.1115/1.3687092 | |
| dc.relation.referencesen | Landsberg, P. (1977). A Note on the Thermodynamics of Energy Conversion in Plants. Photochemistry and Photobiology, 26(3), pp. 313-314. https://doi.org/10.1111/j.1751-1097.1977.tb07491.x | |
| dc.relation.referencesen | Alsaghir, A., Bahk, J. (2023). Performance Optimization and Exergy Analysis of Thermoelectric Heat Recovery System for Gas Turbine Power Plants. Entropy 2023, 25(12), 1583. https://doi.org/10.3390/e25121583 | |
| dc.relation.referencesen | Dmitriev, A., Zvyagin, I. (2010). Current trends in the physics of thermoelectric materials. Phys.-Usp., 53(8), pp. 789-803. https://iopscience.iop.org/article/10.3367/UFNe.0180.201008b.0821 | |
| dc.relation.referencesen | Telkes, M. (1947). The Efficiency of the Thermoelectric Generators - I. J. Appl. Phys. 18, pp. 1116-1127 https://doi.org/10.1063/1.1697593 | |
| dc.relation.referencesen | Ioffe, A. (1957). Semiconductor Thermoelements, and Thermoelectric Cooling, London: Infosearch Lim. | |
| dc.relation.referencesen | Zhou, Y., Zhang, T., Wang, F., Yu, Y. (2018). Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system. Energy, 162, pp. 299-308. https://doi.org/10.1016/j.energy.2018.08.013 | |
| dc.relation.referencesen | Liu, Z., Zhang, Y., Zhang, L., Luo, Y., Wu, Z., Wu, J., Yin, Y., Hou, G. (2018). Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system. Applied Energy, 228, pp. 1887-1900. https://doi.org/10.1016/j.apenergy.2018.07.006 | |
| dc.relation.referencesen | Liu, Z., Zhang, L., Gong, G. (2014). Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Conversion and Management, 87, pp. 559-565. https://doi.org/10.1016/j.enconman.2014.07.051 | |
| dc.relation.referencesen | Baru, S., Bhatia, S. (2020). A review on thermoelectric cooling technology and its applications. IOP Conf. Ser., Mater. Sci. Eng., 912(042004). https://iopscience.iop.org/article/10.1088/1757-899X/912/4/042004 | |
| dc.relation.referencesen | Sripadmanabhan Indira, S., Vaithilingam, C., Chong, K., Saidur, R., Faizal, M., Abubakar, S., Paiman, S. (2020). A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system. Solar Energy, 201, pp. 122-148. https://doi.org/10.1016/j.solener.2020.02.090 | |
| dc.relation.referencesen | Babu, C., Ponnambalam, P. (2017). The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Conversion and Management, 151, pp. 368-385. https://doi.org/10.1016/j.enconman.2017.08.060 | |
| dc.relation.referencesen | Chang, Y., Chang, C., Ke, M., Chen, S. (2009). Thermoelectric air-cooling module for electronic devices. Applied Thermal Engineering, 29(13), pp. 2731-2737. https://doi.org/10.1016/j.applthermaleng.2009.01.004 | |
| dc.relation.referencesen | Thilak Raj, N., Iniyan, S., Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15(8), pp. 3640-3648. https://doi.org/10.1016/j.rser.2011.06.003 | |
| dc.relation.referencesen | Bell, L. (2008). Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321(5895), pp. 1457-1461. https://www.science.org/doi/10.1126/science.1158899 | |
| dc.relation.uri | https://doi.org/10.3390/e25010155 | |
| dc.relation.uri | https://doi.org/10.1016/j.applthermaleng.2023.122180 | |
| dc.relation.uri | https://doi.org/10.1016/j.applthermaleng.2021.117793 | |
| dc.relation.uri | https://iopscience.iop.org/article/10.1088/1757-899X/444/8/082015 | |
| dc.relation.uri | https://doi.org/10.1115/1.2929646 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-642-00716-3 | |
| dc.relation.uri | https://doi.org/10.1063/1.4921457 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-662-04569-5 | |
| dc.relation.uri | https://doi.org/10.1016/j.enconman.2017.02.070 | |
| dc.relation.uri | https://doi.org/10.1021/acs.chemrev.0c00026 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2015.05.034 | |
| dc.relation.uri | https://doi.org/10.1016/j.egyr.2021.08.099 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2017.03.012 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2016.12.089 | |
| dc.relation.uri | https://doi.org/10.1007/BF00901283 | |
| dc.relation.uri | https://doi.org/10.1002/ese3.161 | |
| dc.relation.uri | https://doi.org/10.1039/9781849730952 | |
| dc.relation.uri | https://doi.org/10.1016/j.mser.2018.09.001 | |
| dc.relation.uri | https://doi.org/10.1115/1.3267555 | |
| dc.relation.uri | https://doi.org/10.1016/0038-092X(81)90207-3 | |
| dc.relation.uri | https://doi.org/10.1115/1.3687092 | |
| dc.relation.uri | https://doi.org/10.1111/j.1751-1097.1977.tb07491.x | |
| dc.relation.uri | https://doi.org/10.3390/e25121583 | |
| dc.relation.uri | https://iopscience.iop.org/article/10.3367/UFNe.0180.201008b.0821 | |
| dc.relation.uri | https://doi.org/10.1063/1.1697593 | |
| dc.relation.uri | https://doi.org/10.1016/j.energy.2018.08.013 | |
| dc.relation.uri | https://doi.org/10.1016/j.apenergy.2018.07.006 | |
| dc.relation.uri | https://doi.org/10.1016/j.enconman.2014.07.051 | |
| dc.relation.uri | https://iopscience.iop.org/article/10.1088/1757-899X/912/4/042004 | |
| dc.relation.uri | https://doi.org/10.1016/j.solener.2020.02.090 | |
| dc.relation.uri | https://doi.org/10.1016/j.enconman.2017.08.060 | |
| dc.relation.uri | https://doi.org/10.1016/j.applthermaleng.2009.01.004 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2011.06.003 | |
| dc.relation.uri | https://www.science.org/doi/10.1126/science.1158899 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Redko A., Redko O., Redko I., Gvozdeckyi O., Krasnopolskyi D., Zaika V. 2024 | |
| dc.subject | термоелектричні перетворювачі | |
| dc.subject | охолоджувачі | |
| dc.subject | генератори | |
| dc.subject | енергоефективність | |
| dc.subject | енергетичний та ексергетичний аналіз | |
| dc.subject | практичне застосування | |
| dc.subject | thermoelectric converters | |
| dc.subject | coolers | |
| dc.subject | generators | |
| dc.subject | energy efficiency | |
| dc.subject | energy and exergy analysis | |
| dc.subject | practical applications | |
| dc.title | Improving the energy efficiency of thermoelectric energy converters – review | |
| dc.title.alternative | Підвищення енергоефективності термоелектричних перетворювачів енергії – огляд | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1