Synthesis of spinel MgMn2O4 nanoparticles by the co-precipitation method in an ultrasonic field
| dc.citation.epage | 59 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 52 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Сухацький, Ю. В. | |
| dc.contributor.author | Созанський, М. А. | |
| dc.contributor.author | Шепіда, М. В. | |
| dc.contributor.author | Знак, З. О. | |
| dc.contributor.author | Хом’як, С. В. | |
| dc.contributor.author | Sukhatskyi, Yu. V. | |
| dc.contributor.author | Sozanskyi, M. A. | |
| dc.contributor.author | Shepida, M. V. | |
| dc.contributor.author | Znak, Z. O. | |
| dc.contributor.author | Khomyak, S. V. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T08:00:07Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Методом співосадження в ультразвуковому полі синтезовано наночастинки шпінелі MgMn2O4. Встановлено, що за температури кальцинації 200 °С усі піки на дифрактограмі синтезованого матеріалу відповідали шпінелі MgMn2O4 з кубічною решіткою, вираженою кристалічністю та відсутністю інших фаз. З підвищенням температури кальцинації зафіксовано утворення нових фаз – оксидів Mn (відповідно, Mn5O8 і Mn2O3). За дифракційними піками з використанням рівняння Дебая – Шеррера розраховано середній розмір частинок MgMn2O4, який за температури кальцинації 200 °С дорівнював 24,4 нм. Виявлено закономірне збільшення частки аморфної фази і зменшення середнього розміру частинок MgMn2O4 зі збільшенням питомої потужності ультразвукового оброблення реакційного середовища. | |
| dc.description.abstract | Nanoparticles of spinel MgMn2O4 were synthesized using the co-precipitation method in an ultrasonic field. It was established that at a calcination temperature of 200 °C, all peaks on the diffractogram of the synthesized material corresponded to spinel MgMn2O4 with a cubic lattice, pronounced crystallinity, and the absence of other phases. As the calcination temperature increased, the formation of new phases – Mn oxides (respectively, Mn5O8 and Mn2O3) – was recorded. The average size of MgMn2O4 particles was calculated from the diffraction peaks using the Debye-Scherrer equation and equated to 24.4 nm at a calcination temperature of 200 °C. An increase in the specific power of the ultrasonic processing of the reaction medium revealed a natural increase in the proportion of the amorphous phase and a decrease in the average size of MgMn2O4 particles. | |
| dc.format.extent | 52-59 | |
| dc.format.pages | 8 | |
| dc.identifier.citation | Synthesis of spinel MgMn2O4 nanoparticles by the co-precipitation method in an ultrasonic field / Yu. V. Sukhatskyi, M. A. Sozanskyi, M. V. Shepida, Z. O. Znak, S. V. Khomyak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 52–59. | |
| dc.identifier.citationen | Synthesis of spinel MgMn2O4 nanoparticles by the co-precipitation method in an ultrasonic field / Yu. V. Sukhatskyi, M. A. Sozanskyi, M. V. Shepida, Z. O. Znak, S. V. Khomyak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 52–59. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.052 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111758 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Yu, J., Qiu, W., Lin, X., Wang, Y., Lu, X., Yu, Y., …Ma, J. (2023). Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chemical Engineering Journal, 459, 141574. doi: 10.1016/j.cej.2023.141574 | |
| dc.relation.references | 2. Iranmanesh, P., Saeednia, S., Mehran, M., & Rashidi Dafeh, S. (2017). Modified structural and magnetic properties of nanocrystalline MnFe2O4 by pH in capping agent free co-precipitation method. Journal of Magnetism and Magnetic Materials, 425, 31-36. doi: 10.1016/j.jmmm.2016.10.105 | |
| dc.relation.references | 3. Akhlaghi, N., & Najafpour-Darzi, G. (2021). Manganese ferrite (MnFe2O4) nanoparticles: From synthesis to application - A review. Journal of Industrial and Engineering Chemistry, 103, 292-304. doi: 10.1016/j.jiec.2021.07.043 | |
| dc.relation.references | 4. Chaudhari, A., Kaida, T., Desai, H. B., Ghosh, S., Bhatt, R. P., & Tanna, A. R. (2022). Dye degradation and antimicrobial applications of manganese ferrite nanoparticles synthesized by plant extracts. Chemical Physics Impact, 5, 100098. doi: 10.1016/j.chphi.2022.100098 | |
| dc.relation.references | 5. Rodiah, S., & Ramadhani, E. (2022). Highly efficient removal of methylene blue dye from wastewater using CaO-MnFe2O4 nanoparticles prepared with teak leaf extract. Al Kimiya: Jurnal Ilmu Kimia dan Terapan, 9(2), 62-67. doi: 10.15575/ak.v9i2.20068 | |
| dc.relation.references | 6. Thao, L. T., Nguyen, T. V., Nguyen, V. Q., Phan, N. M., Kim, K. J., Huy, N. N., & Dung, N. T. (2023). Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid. Journal of Environmental Sciences, 124, 379-396. doi: 10.1016/j.jes.2021.10.008 | |
| dc.relation.references | 7. Jacintha, A. M., Umapathy, V., Neeraja, P., & Rajkumar, S. R. J. (2017). Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol-gel method: structural, morphological, optical, magnetic, catalytic and biological activities. Journal of Nanostructure in Chemistry, 7, 375-387. doi: 10.1007/s40097-017-0248-z | |
| dc.relation.references | 8. Liu, H., Dai, X., Kong, L., Sui, C., Nie, Z., Liu, Y., ...Zhan, J. (2023). Ball milling treatment of Mn3O4 regulates electron transfer pathway for peroxymonosulfate activation. Chemical Engineering Journal, 467, 143339. doi: 10.1016/j.cej.2023.143339 | |
| dc.relation.references | 9. Sui, C., Nie, Z., Liu, H., Boczkaj, G., Liu, W., Kong, L., & Zhan, J. (2024). Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. Journal of Environmental Sciences, 135, 86-96. doi: 10.1016/j.jes.2023.01.010 | |
| dc.relation.references | 10. Wu, S., Qin, H., Cheng, H., Shi, W., Chen, J., Huang, J., & Li, H. (2022). A novel MnFe2O4-HSO3 nanocatalyst for heterogeneous Fenton degradation of antibiotics. Catalysis Communications, 171, 106522. doi: 10.1016/j.catcom.2022.106522 | |
| dc.relation.references | 11. Qin, H., Yang, Y., Shi, W., & She, Y. (2021). Heterogeneous Fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environmental Science and Pollution Research, 28, 26558-26570. doi: 10.1007/s11356-021-12548-y | |
| dc.relation.references | 12. Junlabhuta, P., Nuthongkuma, P., & Pechrapab, W. (2018). Influences of calcination temperature on structural properties of MnFe2O4 nanopowders synthesized by co-precipitation method for reusable absorbent materials. Materials Today: Proceedings, 5(6), 13857-13864. doi: 10.1016/j.matpr.2018.02.028 | |
| dc.relation.references | 13. Ghatreh-Samani, R., & Mostafaei, A. (2014). Chemical co-precipitation synthesis of spinel manganese ferrite nanoparticles (MnFe2O4): Morphological characterizations and magnetic properties. Journal of Magnetism and Magnetic Materials, 11.005. doi: 10.1016/j.jmmm.2014.11.005 | |
| dc.relation.references | 14. Aghrich, K., Mtougui, S., Goumrhar, F., Abdellaoui, M., Mamouni, N., Fekhaoui, M., …Mounkachi, O. (2022). Experimental and theoretical investigation of the synthesis, electronic and magnetic properties of MnFe2O4 spinel ferrite. Energies, 15, 8386. doi: 10.3390/en15228386 | |
| dc.relation.references | 15. Rafique, M. Y., Li-Qing, P., Javed, Q., Iqbal, M. Z., Hong-Mei, Q., Farooq, M. H., & Tanveer, M. (2013). Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties. Chinese Physics B, 22(10), 107101. doi: 10.1088/1674-1056/22/10/107101 | |
| dc.relation.references | 16. Yavors'kyi, V. T., Znak, Z. O., Sukhats'kyi, Y. V., Mnykh, R. V. (2017). Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Materials Science, 52(4), 595-600. doi: 10.1007/s11003-017-9995-8 | |
| dc.relation.referencesen | 1. Yu, J., Qiu, W., Lin, X., Wang, Y., Lu, X., Yu, Y., …Ma, J. (2023). Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chemical Engineering Journal, 459, 141574. doi: 10.1016/j.cej.2023.141574 | |
| dc.relation.referencesen | 2. Iranmanesh, P., Saeednia, S., Mehran, M., & Rashidi Dafeh, S. (2017). Modified structural and magnetic properties of nanocrystalline MnFe2O4 by pH in capping agent free co-precipitation method. Journal of Magnetism and Magnetic Materials, 425, 31-36. doi: 10.1016/j.jmmm.2016.10.105 | |
| dc.relation.referencesen | 3. Akhlaghi, N., & Najafpour-Darzi, G. (2021). Manganese ferrite (MnFe2O4) nanoparticles: From synthesis to application - A review. Journal of Industrial and Engineering Chemistry, 103, 292-304. doi: 10.1016/j.jiec.2021.07.043 | |
| dc.relation.referencesen | 4. Chaudhari, A., Kaida, T., Desai, H. B., Ghosh, S., Bhatt, R. P., & Tanna, A. R. (2022). Dye degradation and antimicrobial applications of manganese ferrite nanoparticles synthesized by plant extracts. Chemical Physics Impact, 5, 100098. doi: 10.1016/j.chphi.2022.100098 | |
| dc.relation.referencesen | 5. Rodiah, S., & Ramadhani, E. (2022). Highly efficient removal of methylene blue dye from wastewater using CaO-MnFe2O4 nanoparticles prepared with teak leaf extract. Al Kimiya: Jurnal Ilmu Kimia dan Terapan, 9(2), 62-67. doi: 10.15575/ak.v9i2.20068 | |
| dc.relation.referencesen | 6. Thao, L. T., Nguyen, T. V., Nguyen, V. Q., Phan, N. M., Kim, K. J., Huy, N. N., & Dung, N. T. (2023). Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid. Journal of Environmental Sciences, 124, 379-396. doi: 10.1016/j.jes.2021.10.008 | |
| dc.relation.referencesen | 7. Jacintha, A. M., Umapathy, V., Neeraja, P., & Rajkumar, S. R. J. (2017). Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol-gel method: structural, morphological, optical, magnetic, catalytic and biological activities. Journal of Nanostructure in Chemistry, 7, 375-387. doi: 10.1007/s40097-017-0248-z | |
| dc.relation.referencesen | 8. Liu, H., Dai, X., Kong, L., Sui, C., Nie, Z., Liu, Y., ...Zhan, J. (2023). Ball milling treatment of Mn3O4 regulates electron transfer pathway for peroxymonosulfate activation. Chemical Engineering Journal, 467, 143339. doi: 10.1016/j.cej.2023.143339 | |
| dc.relation.referencesen | 9. Sui, C., Nie, Z., Liu, H., Boczkaj, G., Liu, W., Kong, L., & Zhan, J. (2024). Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. Journal of Environmental Sciences, 135, 86-96. doi: 10.1016/j.jes.2023.01.010 | |
| dc.relation.referencesen | 10. Wu, S., Qin, H., Cheng, H., Shi, W., Chen, J., Huang, J., & Li, H. (2022). A novel MnFe2O4-HSO3 nanocatalyst for heterogeneous Fenton degradation of antibiotics. Catalysis Communications, 171, 106522. doi: 10.1016/j.catcom.2022.106522 | |
| dc.relation.referencesen | 11. Qin, H., Yang, Y., Shi, W., & She, Y. (2021). Heterogeneous Fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environmental Science and Pollution Research, 28, 26558-26570. doi: 10.1007/s11356-021-12548-y | |
| dc.relation.referencesen | 12. Junlabhuta, P., Nuthongkuma, P., & Pechrapab, W. (2018). Influences of calcination temperature on structural properties of MnFe2O4 nanopowders synthesized by co-precipitation method for reusable absorbent materials. Materials Today: Proceedings, 5(6), 13857-13864. doi: 10.1016/j.matpr.2018.02.028 | |
| dc.relation.referencesen | 13. Ghatreh-Samani, R., & Mostafaei, A. (2014). Chemical co-precipitation synthesis of spinel manganese ferrite nanoparticles (MnFe2O4): Morphological characterizations and magnetic properties. Journal of Magnetism and Magnetic Materials, 11.005. doi: 10.1016/j.jmmm.2014.11.005 | |
| dc.relation.referencesen | 14. Aghrich, K., Mtougui, S., Goumrhar, F., Abdellaoui, M., Mamouni, N., Fekhaoui, M., …Mounkachi, O. (2022). Experimental and theoretical investigation of the synthesis, electronic and magnetic properties of MnFe2O4 spinel ferrite. Energies, 15, 8386. doi: 10.3390/en15228386 | |
| dc.relation.referencesen | 15. Rafique, M. Y., Li-Qing, P., Javed, Q., Iqbal, M. Z., Hong-Mei, Q., Farooq, M. H., & Tanveer, M. (2013). Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties. Chinese Physics B, 22(10), 107101. doi: 10.1088/1674-1056/22/10/107101 | |
| dc.relation.referencesen | 16. Yavors'kyi, V. T., Znak, Z. O., Sukhats'kyi, Y. V., Mnykh, R. V. (2017). Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Materials Science, 52(4), 595-600. doi: 10.1007/s11003-017-9995-8 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | шпінель | |
| dc.subject | наночастинки | |
| dc.subject | метод співосадження | |
| dc.subject | ультразвукове поле | |
| dc.subject | рівняння Дебая – Шеррера | |
| dc.subject | середній розмір кристаліту | |
| dc.subject | spinel | |
| dc.subject | nanoparticles | |
| dc.subject | co-precipitation method | |
| dc.subject | ultrasonic field | |
| dc.subject | Debye-Scherrer equation | |
| dc.subject | average crystallite size | |
| dc.title | Synthesis of spinel MgMn2O4 nanoparticles by the co-precipitation method in an ultrasonic field | |
| dc.title.alternative | Синтез наночастинок шпінелі MgMn2O4 методом співосадження в ультразвуковому полі | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1