Synthesis of spinel MgMn2O4 nanoparticles by the co-precipitation method in an ultrasonic field

dc.citation.epage59
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage52
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorСозанський, М. А.
dc.contributor.authorШепіда, М. В.
dc.contributor.authorЗнак, З. О.
dc.contributor.authorХом’як, С. В.
dc.contributor.authorSukhatskyi, Yu. V.
dc.contributor.authorSozanskyi, M. A.
dc.contributor.authorShepida, M. V.
dc.contributor.authorZnak, Z. O.
dc.contributor.authorKhomyak, S. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T08:00:07Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractМетодом співосадження в ультразвуковому полі синтезовано наночастинки шпінелі MgMn2O4. Встановлено, що за температури кальцинації 200 °С усі піки на дифрактограмі синтезованого матеріалу відповідали шпінелі MgMn2O4 з кубічною решіткою, вираженою кристалічністю та відсутністю інших фаз. З підвищенням температури кальцинації зафіксовано утворення нових фаз – оксидів Mn (відповідно, Mn5O8 і Mn2O3). За дифракційними піками з використанням рівняння Дебая – Шеррера розраховано середній розмір частинок MgMn2O4, який за температури кальцинації 200 °С дорівнював 24,4 нм. Виявлено закономірне збільшення частки аморфної фази і зменшення середнього розміру частинок MgMn2O4 зі збільшенням питомої потужності ультразвукового оброблення реакційного середовища.
dc.description.abstractNanoparticles of spinel MgMn2O4 were synthesized using the co-precipitation method in an ultrasonic field. It was established that at a calcination temperature of 200 °C, all peaks on the diffractogram of the synthesized material corresponded to spinel MgMn2O4 with a cubic lattice, pronounced crystallinity, and the absence of other phases. As the calcination temperature increased, the formation of new phases – Mn oxides (respectively, Mn5O8 and Mn2O3) – was recorded. The average size of MgMn2O4 particles was calculated from the diffraction peaks using the Debye-Scherrer equation and equated to 24.4 nm at a calcination temperature of 200 °C. An increase in the specific power of the ultrasonic processing of the reaction medium revealed a natural increase in the proportion of the amorphous phase and a decrease in the average size of MgMn2O4 particles.
dc.format.extent52-59
dc.format.pages8
dc.identifier.citationSynthesis of spinel MgMn2O4 nanoparticles by the co-precipitation method in an ultrasonic field / Yu. V. Sukhatskyi, M. A. Sozanskyi, M. V. Shepida, Z. O. Znak, S. V. Khomyak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 52–59.
dc.identifier.citationenSynthesis of spinel MgMn2O4 nanoparticles by the co-precipitation method in an ultrasonic field / Yu. V. Sukhatskyi, M. A. Sozanskyi, M. V. Shepida, Z. O. Znak, S. V. Khomyak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 52–59.
dc.identifier.doidoi.org/10.23939/ctas2024.01.052
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111758
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Yu, J., Qiu, W., Lin, X., Wang, Y., Lu, X., Yu, Y., …Ma, J. (2023). Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chemical Engineering Journal, 459, 141574. doi: 10.1016/j.cej.2023.141574
dc.relation.references2. Iranmanesh, P., Saeednia, S., Mehran, M., & Rashidi Dafeh, S. (2017). Modified structural and magnetic properties of nanocrystalline MnFe2O4 by pH in capping agent free co-precipitation method. Journal of Magnetism and Magnetic Materials, 425, 31-36. doi: 10.1016/j.jmmm.2016.10.105
dc.relation.references3. Akhlaghi, N., & Najafpour-Darzi, G. (2021). Manganese ferrite (MnFe2O4) nanoparticles: From synthesis to application - A review. Journal of Industrial and Engineering Chemistry, 103, 292-304. doi: 10.1016/j.jiec.2021.07.043
dc.relation.references4. Chaudhari, A., Kaida, T., Desai, H. B., Ghosh, S., Bhatt, R. P., & Tanna, A. R. (2022). Dye degradation and antimicrobial applications of manganese ferrite nanoparticles synthesized by plant extracts. Chemical Physics Impact, 5, 100098. doi: 10.1016/j.chphi.2022.100098
dc.relation.references5. Rodiah, S., & Ramadhani, E. (2022). Highly efficient removal of methylene blue dye from wastewater using CaO-MnFe2O4 nanoparticles prepared with teak leaf extract. Al Kimiya: Jurnal Ilmu Kimia dan Terapan, 9(2), 62-67. doi: 10.15575/ak.v9i2.20068
dc.relation.references6. Thao, L. T., Nguyen, T. V., Nguyen, V. Q., Phan, N. M., Kim, K. J., Huy, N. N., & Dung, N. T. (2023). Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid. Journal of Environmental Sciences, 124, 379-396. doi: 10.1016/j.jes.2021.10.008
dc.relation.references7. Jacintha, A. M., Umapathy, V., Neeraja, P., & Rajkumar, S. R. J. (2017). Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol-gel method: structural, morphological, optical, magnetic, catalytic and biological activities. Journal of Nanostructure in Chemistry, 7, 375-387. doi: 10.1007/s40097-017-0248-z
dc.relation.references8. Liu, H., Dai, X., Kong, L., Sui, C., Nie, Z., Liu, Y., ...Zhan, J. (2023). Ball milling treatment of Mn3O4 regulates electron transfer pathway for peroxymonosulfate activation. Chemical Engineering Journal, 467, 143339. doi: 10.1016/j.cej.2023.143339
dc.relation.references9. Sui, C., Nie, Z., Liu, H., Boczkaj, G., Liu, W., Kong, L., & Zhan, J. (2024). Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. Journal of Environmental Sciences, 135, 86-96. doi: 10.1016/j.jes.2023.01.010
dc.relation.references10. Wu, S., Qin, H., Cheng, H., Shi, W., Chen, J., Huang, J., & Li, H. (2022). A novel MnFe2O4-HSO3 nanocatalyst for heterogeneous Fenton degradation of antibiotics. Catalysis Communications, 171, 106522. doi: 10.1016/j.catcom.2022.106522
dc.relation.references11. Qin, H., Yang, Y., Shi, W., & She, Y. (2021). Heterogeneous Fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environmental Science and Pollution Research, 28, 26558-26570. doi: 10.1007/s11356-021-12548-y
dc.relation.references12. Junlabhuta, P., Nuthongkuma, P., & Pechrapab, W. (2018). Influences of calcination temperature on structural properties of MnFe2O4 nanopowders synthesized by co-precipitation method for reusable absorbent materials. Materials Today: Proceedings, 5(6), 13857-13864. doi: 10.1016/j.matpr.2018.02.028
dc.relation.references13. Ghatreh-Samani, R., & Mostafaei, A. (2014). Chemical co-precipitation synthesis of spinel manganese ferrite nanoparticles (MnFe2O4): Morphological characterizations and magnetic properties. Journal of Magnetism and Magnetic Materials, 11.005. doi: 10.1016/j.jmmm.2014.11.005
dc.relation.references14. Aghrich, K., Mtougui, S., Goumrhar, F., Abdellaoui, M., Mamouni, N., Fekhaoui, M., …Mounkachi, O. (2022). Experimental and theoretical investigation of the synthesis, electronic and magnetic properties of MnFe2O4 spinel ferrite. Energies, 15, 8386. doi: 10.3390/en15228386
dc.relation.references15. Rafique, M. Y., Li-Qing, P., Javed, Q., Iqbal, M. Z., Hong-Mei, Q., Farooq, M. H., & Tanveer, M. (2013). Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties. Chinese Physics B, 22(10), 107101. doi: 10.1088/1674-1056/22/10/107101
dc.relation.references16. Yavors'kyi, V. T., Znak, Z. O., Sukhats'kyi, Y. V., Mnykh, R. V. (2017). Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Materials Science, 52(4), 595-600. doi: 10.1007/s11003-017-9995-8
dc.relation.referencesen1. Yu, J., Qiu, W., Lin, X., Wang, Y., Lu, X., Yu, Y., …Ma, J. (2023). Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chemical Engineering Journal, 459, 141574. doi: 10.1016/j.cej.2023.141574
dc.relation.referencesen2. Iranmanesh, P., Saeednia, S., Mehran, M., & Rashidi Dafeh, S. (2017). Modified structural and magnetic properties of nanocrystalline MnFe2O4 by pH in capping agent free co-precipitation method. Journal of Magnetism and Magnetic Materials, 425, 31-36. doi: 10.1016/j.jmmm.2016.10.105
dc.relation.referencesen3. Akhlaghi, N., & Najafpour-Darzi, G. (2021). Manganese ferrite (MnFe2O4) nanoparticles: From synthesis to application - A review. Journal of Industrial and Engineering Chemistry, 103, 292-304. doi: 10.1016/j.jiec.2021.07.043
dc.relation.referencesen4. Chaudhari, A., Kaida, T., Desai, H. B., Ghosh, S., Bhatt, R. P., & Tanna, A. R. (2022). Dye degradation and antimicrobial applications of manganese ferrite nanoparticles synthesized by plant extracts. Chemical Physics Impact, 5, 100098. doi: 10.1016/j.chphi.2022.100098
dc.relation.referencesen5. Rodiah, S., & Ramadhani, E. (2022). Highly efficient removal of methylene blue dye from wastewater using CaO-MnFe2O4 nanoparticles prepared with teak leaf extract. Al Kimiya: Jurnal Ilmu Kimia dan Terapan, 9(2), 62-67. doi: 10.15575/ak.v9i2.20068
dc.relation.referencesen6. Thao, L. T., Nguyen, T. V., Nguyen, V. Q., Phan, N. M., Kim, K. J., Huy, N. N., & Dung, N. T. (2023). Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid. Journal of Environmental Sciences, 124, 379-396. doi: 10.1016/j.jes.2021.10.008
dc.relation.referencesen7. Jacintha, A. M., Umapathy, V., Neeraja, P., & Rajkumar, S. R. J. (2017). Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol-gel method: structural, morphological, optical, magnetic, catalytic and biological activities. Journal of Nanostructure in Chemistry, 7, 375-387. doi: 10.1007/s40097-017-0248-z
dc.relation.referencesen8. Liu, H., Dai, X., Kong, L., Sui, C., Nie, Z., Liu, Y., ...Zhan, J. (2023). Ball milling treatment of Mn3O4 regulates electron transfer pathway for peroxymonosulfate activation. Chemical Engineering Journal, 467, 143339. doi: 10.1016/j.cej.2023.143339
dc.relation.referencesen9. Sui, C., Nie, Z., Liu, H., Boczkaj, G., Liu, W., Kong, L., & Zhan, J. (2024). Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. Journal of Environmental Sciences, 135, 86-96. doi: 10.1016/j.jes.2023.01.010
dc.relation.referencesen10. Wu, S., Qin, H., Cheng, H., Shi, W., Chen, J., Huang, J., & Li, H. (2022). A novel MnFe2O4-HSO3 nanocatalyst for heterogeneous Fenton degradation of antibiotics. Catalysis Communications, 171, 106522. doi: 10.1016/j.catcom.2022.106522
dc.relation.referencesen11. Qin, H., Yang, Y., Shi, W., & She, Y. (2021). Heterogeneous Fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environmental Science and Pollution Research, 28, 26558-26570. doi: 10.1007/s11356-021-12548-y
dc.relation.referencesen12. Junlabhuta, P., Nuthongkuma, P., & Pechrapab, W. (2018). Influences of calcination temperature on structural properties of MnFe2O4 nanopowders synthesized by co-precipitation method for reusable absorbent materials. Materials Today: Proceedings, 5(6), 13857-13864. doi: 10.1016/j.matpr.2018.02.028
dc.relation.referencesen13. Ghatreh-Samani, R., & Mostafaei, A. (2014). Chemical co-precipitation synthesis of spinel manganese ferrite nanoparticles (MnFe2O4): Morphological characterizations and magnetic properties. Journal of Magnetism and Magnetic Materials, 11.005. doi: 10.1016/j.jmmm.2014.11.005
dc.relation.referencesen14. Aghrich, K., Mtougui, S., Goumrhar, F., Abdellaoui, M., Mamouni, N., Fekhaoui, M., …Mounkachi, O. (2022). Experimental and theoretical investigation of the synthesis, electronic and magnetic properties of MnFe2O4 spinel ferrite. Energies, 15, 8386. doi: 10.3390/en15228386
dc.relation.referencesen15. Rafique, M. Y., Li-Qing, P., Javed, Q., Iqbal, M. Z., Hong-Mei, Q., Farooq, M. H., & Tanveer, M. (2013). Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties. Chinese Physics B, 22(10), 107101. doi: 10.1088/1674-1056/22/10/107101
dc.relation.referencesen16. Yavors'kyi, V. T., Znak, Z. O., Sukhats'kyi, Y. V., Mnykh, R. V. (2017). Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Materials Science, 52(4), 595-600. doi: 10.1007/s11003-017-9995-8
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectшпінель
dc.subjectнаночастинки
dc.subjectметод співосадження
dc.subjectультразвукове поле
dc.subjectрівняння Дебая – Шеррера
dc.subjectсередній розмір кристаліту
dc.subjectspinel
dc.subjectnanoparticles
dc.subjectco-precipitation method
dc.subjectultrasonic field
dc.subjectDebye-Scherrer equation
dc.subjectaverage crystallite size
dc.titleSynthesis of spinel MgMn2O4 nanoparticles by the co-precipitation method in an ultrasonic field
dc.title.alternativeСинтез наночастинок шпінелі MgMn2O4 методом співосадження в ультразвуковому полі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Sukhatskyi_Yu_V-Synthesis_of_spinel_52-59.pdf
Size:
993.47 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Sukhatskyi_Yu_V-Synthesis_of_spinel_52-59__COVER.png
Size:
480.68 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: