AI/ML integration into noise pollution monitoring systems for rail transport and smart cities

dc.citation.epage55
dc.citation.issue3
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage50
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГавран, Володимир
dc.contributor.authorОринчак, Марія
dc.contributor.authorHavran, Volodymyr
dc.contributor.authorOrynchak, Mariia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-16T08:41:07Z
dc.description.abstractШумове забруднення – велика екологічна та соціальна проблема для залізничного транспорту та міських територій. У статті описано підхід до моніторингу шуму, оснований на інте- грації штучного інтелекту (AI) і машинного навчання (ML) у системи збирання та аналізу акустичних даних. Як вимірювальне обладнання використовували спектральний аналізатор SVAN 958A, що дає змогу отримувати точні шумові дані в режимі реального часу. Алгоритми ML використовують для автоматичного виявлення шуму, зокрема трамвайного, з метою поліпшення якості класифікації та аналізу. Для візуалізації даних та управління результатами в середовищі Grafana створено інтерактивні дашборди, інтегровані в загальну систему управління розумним містом. Ці приладові панелі дають можливість контролювати шумове забруднення в режимі реального часу, прогнозувати його рівень і приймати оперативні рішення щодо зниження впливу шуму на міське середовище. Пропонована система демонструє практичну ефективність завдяки поєднанню засобів збирання даних, методів машинного навчання та зручного інтерфейсу візуалізації. Її впровадження дає змогу поліпшити якість моніторингу шумового забруднення, сприяти зниженню рівня шуму та покращенню екологічної ситуації, забезпеченню комфортних умов проживання у міському середовищі.
dc.description.abstractNoise pollution is a significant environmental and social problem for rail transport and urban areas. This paper describes an approach to noise monitoring based on the integration of artificial intelligence (AI) and machine learning (ML) into acoustic data collection and analysis systems. The SVAN 958A spectral analyzer was used as the measuring equipment, which allows obtaining accurate noise data in real time. ML algorithms are used for automatic noise detection, in particular, tram noise, in order to improve the quality of classification and analysis. For data visualization and results management, interactive dashboards were created in the Grafana environment, which are integrated into the overall smart city management system. These dashboards provide the opportunity to monitor noise pollution in real time, predict its level and make operational decisions to reduce the impact of noise on the urban environment. The proposed system demonstrates practical effectiveness due to the combination of data collection tools, machine learning methods and a user-friendly visualization interface. Its implementation allows to improve the quality of noise pollution monitoring, contribute to reducing noise levels and improve the environmental situation, ensuring comfortable living conditions in the urban environment.
dc.format.extent50-55
dc.format.pages6
dc.identifier.citationHavran V. AI/ML integration into noise pollution monitoring systems for rail transport and smart cities / Volodymyr Havran, Mariia Orynchak // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 3. — P. 50–55.
dc.identifier.citation2015Havran V., Orynchak M. AI/ML integration into noise pollution monitoring systems for rail transport and smart cities // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 3. P. 50–55.
dc.identifier.citationenAPAHavran, V., & Orynchak, M. (2024). AI/ML integration into noise pollution monitoring systems for rail transport and smart cities. Computer Systems of Design. Theory and Practice, 6(3), 50-55. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOHavran V., Orynchak M. (2024) AI/ML integration into noise pollution monitoring systems for rail transport and smart cities. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 3, pp. 50-55.
dc.identifier.doihttps://doi.org/10.23939/cds2024.03.050
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124101
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 3 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 3 (6), 2024
dc.relation.references[1] Biondo, E., Brito, T., Nakano, A., & Lima, J. (2023). A WSN Real-Time Monitoring System Approach for Measuring Indoor Air Quality Using the Internet of Things. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST (Vol. 458 LNICST, pp. 76–90). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-25222-8_7
dc.relation.references[2] S. K, J. (2021). IOT based Air and Sound Pollution Monitoring System. International Journal for Research in Applied Science and Engineering Technology, 9(5), 1968–971. https://doi.org/10.22214/ijraset.2021.34688
dc.relation.references[3] Mok Hat, A. N., Wan Syahidah, W. M., Zuhelmi, C. W. Y. C. W., Atan, F., & Khadijah, S. (2022). IoT Base on Air and Sound Pollution Monitoring System. In Journal of Physics: Conference Series (Vol. 2319). Institute of Physics. https://doi.org/10.1088/1742-6596/2319/1/012013
dc.relation.references[4] Reddy, m. R. (2020). Iot Based Air And Sound Pollution Monitioring System Using Machine Learning Algorithms. Journal of ISMAC, 2(1), 13–25. https://doi.org/10.36548/jismac.2020.1.002
dc.relation.references[5] Nourani, V., Gökçekuş, H., & Umar, I. K. (2020). Artificial intelligence based ensemble model for prediction of vehicular traffic noise. Environmental Research, 180. https://doi.org/10.1016/j.envres.2019.108852
dc.relation.references[6] Rauniyar, A., Berge, T., Kuijpers, A., Litzinger, P., Peeters, B., Gils, E. V., … Hakegard, J. E. (2023). NEMO: Real-Time Noise and Exhaust Emissions Monitoring for Sustainable and Intelligent Transportation Systems. IEEE Sensors Journal, 23(20), 25497–25517. https://doi.org/10.1109/JSEN.2023.3312861
dc.relation.references[7] Al-Habaibeh, A., Shakmak, B., Watkins, M., & Shin, H. D. (2024). A novel method of using sound waves and artificial intelligence for the detection of vehicle’s proximity from cyclists and E-scooters. MethodsX, 12.https://doi.org/10.1016/j.mex.2023.102534
dc.relation.references[8] Sundaram, D., Nordin, I. N. A. M., Khamis, N., Zulkarnain, N., Razif, M. R. M., & Abidin, A. F. Z.(2021). Development of Real-time IoT based Air and Noise Monitoring System. Alinteri Journal of Agriculture Sciences, 36(1), 500–506. https://doi.org/10.47059/alinteri/v36i1/ajas21071
dc.relation.references[9] Fatema, T., Hakim, M. A., Mim, T. K., Mitu, M. J., & Paul, B. (2023). IoT cloud based noise intensity monitoring system. Indonesian Journal of Electrical Engineering and Computer Science, 30(1), 289–298. https://doi.org/10.11591/ijeecs.v30.i1.pp289-298
dc.relation.references[10] Surahman, E., Nana, Sujaya, K., & Sidik, C. M. (2024). Developing Sound Intensity Measuring Meter to Determine Noise Pollution Level Based on the Internet of Things (IoT). International Journal of Engineering Trends and Technology, 72(1), 56–63. https://doi.org/10.14445/22315381/IJETT-V72I1P106
dc.relation.references[11] Toma, C., Alexandru, A., Popa, M., & Zamfiroiu, A. (2019). IoT solution for smart cities’ pollution monitoring and the security challenges. Sensors (Switzerland), 19(15). https://doi.org/10.3390/s19153401
dc.relation.references[12] Pedsangi, N., Phapale, P., Rajendraprasad Pimpalkar, P., & Pimpalkar, P. (2021). Sound Level Monitoring system Smart Irrigation System View project Sound Level Monitoring System View project Sound Level Monitoring system. IJARCCE International Journal of Advanced Research in Computer and Communication Engineering, 10. Retrieved from https://www.researchgate.net/publication/357598611
dc.relation.references[13] Ezhilarasi, L., Sripriya, K., Suganya, A., & Vinodhini, K. (2017). A System for Monitoring Air and Sound Pollution Using Arduino Controller With IoT Technology. International Research Journal in Advanced Engineering and Technology (IRJAET), 3(2), 1781–1785.
dc.relation.references[14] B. M. (2022). An IoT Based Air and Sound Pollution Monitoring System. International Journal for Research in Applied Science and Engineering Technology, 10(6), 2694–2697. https://doi.org/10.22214/ijraset.2022.44498
dc.relation.references[15] S. Mounika, M. V. Vyshnavi, T. Harishkumar, N. Harikrishna, & M. Naga Swetha (2022). IOT based system and method for air and sound pollution monitoring. International Journal of Engineering Technology and Management Sciences, 63–69. https://doi.org/10.46647/ijetms.2022.v06si01.012
dc.relation.references[16] Choi, K., Kwak, J. H., & Choi, K. J. (2021). Monitoring system for outside passenger accident prevention in tram. Journal of the Korean Society for Railway, 24(3), 228–238. https://doi.org/10.7782/JKSR.2021.24.3.228
dc.relation.referencesen[1] Biondo, E., Brito, T., Nakano, A., & Lima, J. (2023). A WSN Real-Time Monitoring System Approach for Measuring Indoor Air Quality Using the Internet of Things. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST (Vol. 458 LNICST, pp. 76–90). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-25222-8_7
dc.relation.referencesen[2] S. K, J. (2021). IOT based Air and Sound Pollution Monitoring System. International Journal for Research in Applied Science and Engineering Technology, 9(5), 1968–971. https://doi.org/10.22214/ijraset.2021.34688
dc.relation.referencesen[3] Mok Hat, A. N., Wan Syahidah, W. M., Zuhelmi, C. W. Y. C. W., Atan, F., & Khadijah, S. (2022). IoT Base on Air and Sound Pollution Monitoring System. In Journal of Physics: Conference Series (Vol. 2319). Institute of Physics. https://doi.org/10.1088/1742-6596/2319/1/012013
dc.relation.referencesen[4] Reddy, m. R. (2020). Iot Based Air And Sound Pollution Monitioring System Using Machine Learning Algorithms. Journal of ISMAC, 2(1), 13–25. https://doi.org/10.36548/jismac.2020.1.002
dc.relation.referencesen[5] Nourani, V., Gökçekuş, H., & Umar, I. K. (2020). Artificial intelligence based ensemble model for prediction of vehicular traffic noise. Environmental Research, 180. https://doi.org/10.1016/j.envres.2019.108852
dc.relation.referencesen[6] Rauniyar, A., Berge, T., Kuijpers, A., Litzinger, P., Peeters, B., Gils, E. V., … Hakegard, J. E. (2023). NEMO: Real-Time Noise and Exhaust Emissions Monitoring for Sustainable and Intelligent Transportation Systems. IEEE Sensors Journal, 23(20), 25497–25517. https://doi.org/10.1109/JSEN.2023.3312861
dc.relation.referencesen[7] Al-Habaibeh, A., Shakmak, B., Watkins, M., & Shin, H. D. (2024). A novel method of using sound waves and artificial intelligence for the detection of vehicle’s proximity from cyclists and E-scooters. MethodsX, 12.https://doi.org/10.1016/j.mex.2023.102534
dc.relation.referencesen[8] Sundaram, D., Nordin, I. N. A. M., Khamis, N., Zulkarnain, N., Razif, M. R. M., & Abidin, A. F. Z.(2021). Development of Real-time IoT based Air and Noise Monitoring System. Alinteri Journal of Agriculture Sciences, 36(1), 500–506. https://doi.org/10.47059/alinteri/v36i1/ajas21071
dc.relation.referencesen[9] Fatema, T., Hakim, M. A., Mim, T. K., Mitu, M. J., & Paul, B. (2023). IoT cloud based noise intensity monitoring system. Indonesian Journal of Electrical Engineering and Computer Science, 30(1), 289–298. https://doi.org/10.11591/ijeecs.v30.i1.pp289-298
dc.relation.referencesen[10] Surahman, E., Nana, Sujaya, K., & Sidik, C. M. (2024). Developing Sound Intensity Measuring Meter to Determine Noise Pollution Level Based on the Internet of Things (IoT). International Journal of Engineering Trends and Technology, 72(1), 56–63. https://doi.org/10.14445/22315381/IJETT-V72I1P106
dc.relation.referencesen[11] Toma, C., Alexandru, A., Popa, M., & Zamfiroiu, A. (2019). IoT solution for smart cities’ pollution monitoring and the security challenges. Sensors (Switzerland), 19(15). https://doi.org/10.3390/s19153401
dc.relation.referencesen[12] Pedsangi, N., Phapale, P., Rajendraprasad Pimpalkar, P., & Pimpalkar, P. (2021). Sound Level Monitoring system Smart Irrigation System View project Sound Level Monitoring System View project Sound Level Monitoring system. IJARCCE International Journal of Advanced Research in Computer and Communication Engineering, 10. Retrieved from https://www.researchgate.net/publication/357598611
dc.relation.referencesen[13] Ezhilarasi, L., Sripriya, K., Suganya, A., & Vinodhini, K. (2017). A System for Monitoring Air and Sound Pollution Using Arduino Controller With IoT Technology. International Research Journal in Advanced Engineering and Technology (IRJAET), 3(2), 1781–1785.
dc.relation.referencesen[14] B. M. (2022). An IoT Based Air and Sound Pollution Monitoring System. International Journal for Research in Applied Science and Engineering Technology, 10(6), 2694–2697. https://doi.org/10.22214/ijraset.2022.44498
dc.relation.referencesen[15] S. Mounika, M. V. Vyshnavi, T. Harishkumar, N. Harikrishna, & M. Naga Swetha (2022). IOT based system and method for air and sound pollution monitoring. International Journal of Engineering Technology and Management Sciences, 63–69. https://doi.org/10.46647/ijetms.2022.v06si01.012
dc.relation.referencesen[16] Choi, K., Kwak, J. H., & Choi, K. J. (2021). Monitoring system for outside passenger accident prevention in tram. Journal of the Korean Society for Railway, 24(3), 228–238. https://doi.org/10.7782/JKSR.2021.24.3.228
dc.relation.urihttps://doi.org/10.1007/978-3-031-25222-8_7
dc.relation.urihttps://doi.org/10.22214/ijraset.2021.34688
dc.relation.urihttps://doi.org/10.1088/1742-6596/2319/1/012013
dc.relation.urihttps://doi.org/10.36548/jismac.2020.1.002
dc.relation.urihttps://doi.org/10.1016/j.envres.2019.108852
dc.relation.urihttps://doi.org/10.1109/JSEN.2023.3312861
dc.relation.urihttps://doi.org/10.1016/j.mex.2023.102534
dc.relation.urihttps://doi.org/10.47059/alinteri/v36i1/ajas21071
dc.relation.urihttps://doi.org/10.11591/ijeecs.v30.i1.pp289-298
dc.relation.urihttps://doi.org/10.14445/22315381/IJETT-V72I1P106
dc.relation.urihttps://doi.org/10.3390/s19153401
dc.relation.urihttps://www.researchgate.net/publication/357598611
dc.relation.urihttps://doi.org/10.22214/ijraset.2022.44498
dc.relation.urihttps://doi.org/10.46647/ijetms.2022.v06si01.012
dc.relation.urihttps://doi.org/10.7782/JKSR.2021.24.3.228
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Havran V., Orynchak M., 2024
dc.subjectшумове забруднення
dc.subjectAI/ML
dc.subjectGrafana
dc.subjectмоніторинг
dc.subjectрозумне місто
dc.subjectінформаційна панель
dc.subjectпрогнозне моделювання
dc.subjectІнтернет речей (IoT)
dc.subjectобробка даних
dc.subjectnoise pollution
dc.subjectAI/ML
dc.subjectGrafana
dc.subjectmonitoring
dc.subjectsmart city
dc.subjectdashboard
dc.subjectpredictive modeling
dc.subjectInternet of Things (IoT)
dc.subjectdata processing
dc.titleAI/ML integration into noise pollution monitoring systems for rail transport and smart cities
dc.title.alternativeІнтеграція AI/ML у системи моніторингу шумового забруднення для залізничного транспорту та розумних міст
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n3_Havran_V-AI_ML_integration_into_noise_50-55.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: