Influence of ultrasound on the synthesis of silver nanoparticles by galvanic replacement in sodium polyacrylate solutions

dc.citation.epage22
dc.citation.issue2
dc.citation.spage17
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЗозуля, Г. І.
dc.contributor.authorМних, Р. В.
dc.contributor.authorКунтий, Орест Іванович
dc.contributor.authorЛапа, А. С.
dc.contributor.authorZozulia, G. I.
dc.contributor.authorMnykh, R. V.
dc.contributor.authorKuntyi, O. I.
dc.contributor.authorLapa, A. S.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:47:17Z
dc.date.available2024-01-22T08:47:17Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractДосліджено синтез наночастинок срібла (AgNPs) магнієвим скрапом у розчинах натрію поліакрилату соногальванічним та гальванічним заміщенням. Встановлено, що впродовж цих процесів у розчинах NaPA срібло практично не осідає на магнієвій поверхні. Натрію поліакрилат забезпечує стабілізацію AgNPs з утворенням розчинів жовтого забарвлення з максимумом поглинання ~415 нм. Показано, що синтез AgNPs соногальванічним заміщенням відбувається внаслідок одночасного перебігу гальванічного заміщення магнієм і відновлення Ag(I) за допомогою радикалів і відновників. Швидкість синтезу AgNPs соногальванічним заміщенням є на 20–30 % більшою порівняно з гальванічним заміщенням за механічного перемішування.
dc.description.abstractSonogalvanic replacement and galvanic replacement synthesis of silver nanoparticles (AgNPs) by magnesium scrap in sodium polyacrylate solutions were studied. It was found that during these processes in NaPA solutions silver is practically not deposited on the magnesium surface. Sodium polyacrylate provides stabilization of AgNPs with the formation of yellow solutions with maximum absorption of ~415 nm. It is shown that sonogalvanic replacement synthesis of AgNPs occurs due to the simultaneous course of galvanic replacement by magnesium and sonoreduction of Ag (I) by radicals and reducing agents. The rate of sonogalvanic replacement synthesis of AgNPs is 20-30% higher compared to galvanic substitution by mechanical stirring.
dc.format.extent17-22
dc.format.pages6
dc.identifier.citationInfluence of ultrasound on the synthesis of silver nanoparticles by galvanic replacement in sodium polyacrylate solutions / G. I. Zozulia, R. V. Mnykh, O. I. Kuntyi, A. S. Lapa // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 17–22.
dc.identifier.citationenInfluence of ultrasound on the synthesis of silver nanoparticles by galvanic replacement in sodium polyacrylate solutions / G. I. Zozulia, R. V. Mnykh, O. I. Kuntyi, A. S. Lapa // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 17–22.
dc.identifier.doidoi.org/10.23939/ctas2021.02.017
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60901
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (4), 2021
dc.relation.references1. Rizk M. R., Abd El-Moghny M. G. (2020). Controlled galvanic decoration boosting catalysis: Enhanced glycerol electro-oxidation at Cu/Ni modified macroporous films. International Journal of Hydrogen Energy, 10, 645–655.
dc.relation.references2. Josee R. D., Lauren M., A., Ringe E., Boudreau D. (2019). Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reductionassisted galvanic replacement approach. Journal of The Royal Society of Chemistry, 9, 389–396.
dc.relation.references3. Patella B., Russo R. R., O’Riordan A., Aiello G., Sunseri C., Inguanta R. (2021). Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water. Talanta, 221, 121643.
dc.relation.references4. Papaderakis A., Mintsouli I., Georgieva J., Sotiropoulos S. (2017). Electrocatalysts Prepared by Galvanic Replacement. Journal of Catalysis, 80, 34. https://doi.org/10.3390/catal7030080
dc.relation.references5. Kuntyi О. І., Zozulya H. І., Dobrovets’ka О. Ya., Kornii S. A., Reshetnyak O. V. (2018). Deposition of copper, silver, and nickel on aluminum by galvanic replacement. Materials science, 53, 488–494. https://doi.org/10.1007/s11003-018-0099-x
dc.relation.references6. Kuntyi O. I., Zozulya G. I., Shepida M. V. (2020). Nanoscale galvanic replacement in non-aqueous media: a mini review. Voprosy khimii i khimicheskoi tekhnologii, 4, 5–15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
dc.relation.references7. Kuntyi O. I., Zozulya G. I., Shepida M. V., Nichkalo S. I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a minireview. Voprosy khimii i khimicheskoi tekhnologii, 3, 74–82. https://doi.org/10.32434/0321-4095-2019-124-3-74-82
dc.relation.references8. Shepida M., Kuntyi O., Zozulya G., Kaniukov E. (2020). Deposition of palladium nanoparticles on the silicon surface via galvanic replacement in DMSO. Applied nanoscience, 10, 2563–2568. https://doi.org/10.1007/s13204-019-01018-0
dc.relation.references9. Kuntyi O., Shepida M., Sus L., Zozulya G., Korniy S. (2018). Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions. Chemistry & chemical technology, 12, 305–309. https://doi.org/10.23939/chcht12.03.305
dc.relation.references10. Gao Z., Ye H., Wang Q., Kim J. M., Tang D., Xi Z., Wei Z., Shao S., Xia X.(2020). Template Regeneration in Galvanic Replacement: A Route to Highly Diverse Hollow Nanostructures. ACS Nano, 14, 791–801.
dc.relation.references11. Wei F., Liu J., Zhu Y.-N., Wang X.-S., Cao C.- Y., Song W.-G. (2017). In situ facile loading of noble metal nanoparticles on polydopamine nanospheres via galvanic replacement reaction for multifunctional catalysis. Sci China Chem, 60, 1236–1242.
dc.relation.references12. Qian H., Anwer S., Bharath G., Iqbal S., Chen L. (2018). Nanoporous Ag-Au Bimetallic Triangular Nanoprisms Synthesized by Galvanic Replacement for Plasmonic Applications. Journal of Nanomaterials, 2018, 7.
dc.relation.references13. Znak Z., Zin O., Mashtaler A., Korniy S., Sukhatskiy Yu., Gogate Parag R., Mnykh R., Thanekar P. (2021). Improved modification of clinoptilolite with silver using ultrasonic radiation. Ultrasonics Sonochemistry, 73, 105496. DOI: 10.1016/j.ultsonch.2021.105496.
dc.relation.references14. Shevchuk L. I., Starchevsky V. L. (2014). Cavitation. Physical, chemical, biological and technological aspects. Lviv Polytechnic Publishing House, 450.
dc.relation.references15. Sukhatskiy Yu. V., Zin O. I., Znak Z. O., Mnykh R. V. (2018). Cavitation wastewater treatment from toluene. Вісник Нац. ун-ту “Львівська політехніка”. Хімія, технологія речовин та їх застосування, 886, 67–72.
dc.relation.references16. Liu J., Hu M., Song Y., Wang F., Ji J., Li Z. (2014). A novel strategy to prepare silver nanoparticles by ethanol-induced shape conversion of silver dendrites from modified galvanic replacement. Synthetic Metals, 187, 185–192. https://doi.org/10.1016/j.synthmet.2013.10.034
dc.relation.references17. Pienpinijtham P., Sornprasit P., Wongravee K., Thammacharoen C., Ekgasit S. (2015). Gold microsheets having nano/microporous structures fabricated by ultrasonic-assisted cyclic galvanic replacement. RSC Advances, 5, 78315–78323. https://doi.org/10.1039/c5ra11193e
dc.relation.references18. Wu C., Zeng T. (2006). Rapid Synthesis of Gold and Platinum Nanoparticles Using Metal Displacement Reduction with Sonomechanical Assistance. Chemistry of Materials, 18, 2925–2928. https://doi.org/10.1021/cm052400x
dc.relation.references19. Wu C., Mosher B. P., Zeng T. (2008). Chemically-Mechanically Assisted Synthesis of Metallic and Oxide Nanoparticles in Ambient Conditions. Journal of Nanoscience and Nanotechnology, 8, 386–389. https://doi.org/10.1166/jnn.2008.18144
dc.relation.references20. Mancier V., Rousse-Bertrand C., Dille J., Michel J., Fricoteaux P. (2010). Sono and electrochemical synthesis and characterization of copper core–silver shell nanoparticles. Ultrasonics Sonochemistry, 17, 690–696. https://doi.org/10.1016/j.ultsonch.2009.12.009
dc.relation.references21. Rousse C., Josse J., Mancier V., Levi S., Gangloff S. C., Fricoteaux P. (2016). Synthesis of copper–silver bimetallic nanopowders for a biomedical approach; study of their antibacterial properties. RSC Advances, 6, 50933–50940. https://doi.org/10.1039/c6ra07002g
dc.relation.references22. Farsadrooh M., Noroozifar M., Modarresi-Alam A. R., Saravani H. (2019). Sonochemical synthesis of high-performance Pd@CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media. Ultrasonics Sonochemistry, 51, 478–486. https://doi.org/10.1016/j.ultsonch.2018.06.011
dc.relation.references23. Douk S., Saravani H., Farsadrooh M., Noroozifar M. (2019). An environmentally friendly onepot synthesis method by the ultrasound assistance for the decoration of ultrasmall Pd-Ag NPs on graphene as high active anode catalyst towards ethanol oxidation. Ultrasonics Sonochemistry, 58, 104616. https://doi.org/10.1016/j.ultsonch.2019.104616
dc.relation.references24. Lee E., Jang J.-H., Matin Md. A., Kwon Y.-Uk.(2014). One-step sonochemical syntheses of Ni@Pt coreshell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst. Ultrasonics Sonochemistry, 21, 317–323. http://dx.doi.org/10.1016/j.ultsonch.2013.05.006
dc.relation.references25. Sun Z., Masa J., Xia W., König D., Ludwig A., Li Z.-A., Farle M., Schuhmann W., Muhle M. (2012). Rapid and Surfactant-Free Synthesis of Bimetallic Pt−Cu Nanoparticles Simply via Ultrasound-Assisted Redox Replacement. ACS Catalysis, 2, 1647–1653. https://doi.org/10.1021/cs300187z
dc.relation.references26. Zheng H., Matseke M. S., Munonde T. S. (2019). The unique Pd@Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis. Ultrasonics Sonochemistry, 57, 166–171. https://doi.org/10.1016/j.ultsonch.2019.05.023
dc.relation.references27. Gudikandula K., Maringanti S. C. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11, 1–8.
dc.relation.referencesen1. Rizk M. R., Abd El-Moghny M. G. (2020). Controlled galvanic decoration boosting catalysis: Enhanced glycerol electro-oxidation at Cu/Ni modified macroporous films. International Journal of Hydrogen Energy, 10, 645–655.
dc.relation.referencesen2. Josee R. D., Lauren M., A., Ringe E., Boudreau D. (2019). Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reductionassisted galvanic replacement approach. Journal of The Royal Society of Chemistry, 9, 389–396.
dc.relation.referencesen3. Patella B., Russo R. R., O’Riordan A., Aiello G., Sunseri C., Inguanta R. (2021). Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water. Talanta, 221, 121643.
dc.relation.referencesen4. Papaderakis A., Mintsouli I., Georgieva J., Sotiropoulos S. (2017). Electrocatalysts Prepared by Galvanic Replacement. Journal of Catalysis, 80, 34. https://doi.org/10.3390/catal7030080
dc.relation.referencesen5. Kuntyi O. I., Zozulya H. I., Dobrovetska O. Ya., Kornii S. A., Reshetnyak O. V. (2018). Deposition of copper, silver, and nickel on aluminum by galvanic replacement. Materials science, 53, 488–494. https://doi.org/10.1007/s11003-018-0099-x
dc.relation.referencesen6. Kuntyi O. I., Zozulya G. I., Shepida M. V. (2020). Nanoscale galvanic replacement in non-aqueous media: a mini review. Voprosy khimii i khimicheskoi tekhnologii, 4, 5–15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
dc.relation.referencesen7. Kuntyi O. I., Zozulya G. I., Shepida M. V., Nichkalo S. I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a minireview. Voprosy khimii i khimicheskoi tekhnologii, 3, 74–82. https://doi.org/10.32434/0321-4095-2019-124-3-74-82
dc.relation.referencesen8. Shepida M., Kuntyi O., Zozulya G., Kaniukov E. (2020). Deposition of palladium nanoparticles on the silicon surface via galvanic replacement in DMSO. Applied nanoscience, 10, 2563–2568. https://doi.org/10.1007/s13204-019-01018-0
dc.relation.referencesen9. Kuntyi O., Shepida M., Sus L., Zozulya G., Korniy S. (2018). Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions. Chemistry & chemical technology, 12, 305–309. https://doi.org/10.23939/chcht12.03.305
dc.relation.referencesen10. Gao Z., Ye H., Wang Q., Kim J. M., Tang D., Xi Z., Wei Z., Shao S., Xia X.(2020). Template Regeneration in Galvanic Replacement: A Route to Highly Diverse Hollow Nanostructures. ACS Nano, 14, 791–801.
dc.relation.referencesen11. Wei F., Liu J., Zhu Y.-N., Wang X.-S., Cao C, Y., Song W.-G. (2017). In situ facile loading of noble metal nanoparticles on polydopamine nanospheres via galvanic replacement reaction for multifunctional catalysis. Sci China Chem, 60, 1236–1242.
dc.relation.referencesen12. Qian H., Anwer S., Bharath G., Iqbal S., Chen L. (2018). Nanoporous Ag-Au Bimetallic Triangular Nanoprisms Synthesized by Galvanic Replacement for Plasmonic Applications. Journal of Nanomaterials, 2018, 7.
dc.relation.referencesen13. Znak Z., Zin O., Mashtaler A., Korniy S., Sukhatskiy Yu., Gogate Parag R., Mnykh R., Thanekar P. (2021). Improved modification of clinoptilolite with silver using ultrasonic radiation. Ultrasonics Sonochemistry, 73, 105496. DOI: 10.1016/j.ultsonch.2021.105496.
dc.relation.referencesen14. Shevchuk L. I., Starchevsky V. L. (2014). Cavitation. Physical, chemical, biological and technological aspects. Lviv Polytechnic Publishing House, 450.
dc.relation.referencesen15. Sukhatskiy Yu. V., Zin O. I., Znak Z. O., Mnykh R. V. (2018). Cavitation wastewater treatment from toluene. Visnyk Nats. un-tu "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 886, 67–72.
dc.relation.referencesen16. Liu J., Hu M., Song Y., Wang F., Ji J., Li Z. (2014). A novel strategy to prepare silver nanoparticles by ethanol-induced shape conversion of silver dendrites from modified galvanic replacement. Synthetic Metals, 187, 185–192. https://doi.org/10.1016/j.synthmet.2013.10.034
dc.relation.referencesen17. Pienpinijtham P., Sornprasit P., Wongravee K., Thammacharoen C., Ekgasit S. (2015). Gold microsheets having nano/microporous structures fabricated by ultrasonic-assisted cyclic galvanic replacement. RSC Advances, 5, 78315–78323. https://doi.org/10.1039/P.5ra11193e
dc.relation.referencesen18. Wu C., Zeng T. (2006). Rapid Synthesis of Gold and Platinum Nanoparticles Using Metal Displacement Reduction with Sonomechanical Assistance. Chemistry of Materials, 18, 2925–2928. https://doi.org/10.1021/cm052400x
dc.relation.referencesen19. Wu C., Mosher B. P., Zeng T. (2008). Chemically-Mechanically Assisted Synthesis of Metallic and Oxide Nanoparticles in Ambient Conditions. Journal of Nanoscience and Nanotechnology, 8, 386–389. https://doi.org/10.1166/jnn.2008.18144
dc.relation.referencesen20. Mancier V., Rousse-Bertrand C., Dille J., Michel J., Fricoteaux P. (2010). Sono and electrochemical synthesis and characterization of copper core–silver shell nanoparticles. Ultrasonics Sonochemistry, 17, 690–696. https://doi.org/10.1016/j.ultsonch.2009.12.009
dc.relation.referencesen21. Rousse C., Josse J., Mancier V., Levi S., Gangloff S. C., Fricoteaux P. (2016). Synthesis of copper–silver bimetallic nanopowders for a biomedical approach; study of their antibacterial properties. RSC Advances, 6, 50933–50940. https://doi.org/10.1039/P.6ra07002g
dc.relation.referencesen22. Farsadrooh M., Noroozifar M., Modarresi-Alam A. R., Saravani H. (2019). Sonochemical synthesis of high-performance Pd@CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media. Ultrasonics Sonochemistry, 51, 478–486. https://doi.org/10.1016/j.ultsonch.2018.06.011
dc.relation.referencesen23. Douk S., Saravani H., Farsadrooh M., Noroozifar M. (2019). An environmentally friendly onepot synthesis method by the ultrasound assistance for the decoration of ultrasmall Pd-Ag NPs on graphene as high active anode catalyst towards ethanol oxidation. Ultrasonics Sonochemistry, 58, 104616. https://doi.org/10.1016/j.ultsonch.2019.104616
dc.relation.referencesen24. Lee E., Jang J.-H., Matin Md. A., Kwon Y.-Uk.(2014). One-step sonochemical syntheses of Ni@Pt coreshell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst. Ultrasonics Sonochemistry, 21, 317–323. http://dx.doi.org/10.1016/j.ultsonch.2013.05.006
dc.relation.referencesen25. Sun Z., Masa J., Xia W., König D., Ludwig A., Li Z.-A., Farle M., Schuhmann W., Muhle M. (2012). Rapid and Surfactant-Free Synthesis of Bimetallic Pt−Cu Nanoparticles Simply via Ultrasound-Assisted Redox Replacement. ACS Catalysis, 2, 1647–1653. https://doi.org/10.1021/cs300187z
dc.relation.referencesen26. Zheng H., Matseke M. S., Munonde T. S. (2019). The unique Pd@Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis. Ultrasonics Sonochemistry, 57, 166–171. https://doi.org/10.1016/j.ultsonch.2019.05.023
dc.relation.referencesen27. Gudikandula K., Maringanti S. C. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11, 1–8.
dc.relation.urihttps://doi.org/10.3390/catal7030080
dc.relation.urihttps://doi.org/10.1007/s11003-018-0099-x
dc.relation.urihttps://doi.org/10.32434/0321-4095-2020-131-4-5-15
dc.relation.urihttps://doi.org/10.32434/0321-4095-2019-124-3-74-82
dc.relation.urihttps://doi.org/10.1007/s13204-019-01018-0
dc.relation.urihttps://doi.org/10.23939/chcht12.03.305
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2013.10.034
dc.relation.urihttps://doi.org/10.1039/c5ra11193e
dc.relation.urihttps://doi.org/10.1021/cm052400x
dc.relation.urihttps://doi.org/10.1166/jnn.2008.18144
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2009.12.009
dc.relation.urihttps://doi.org/10.1039/c6ra07002g
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2018.06.011
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.104616
dc.relation.urihttp://dx.doi.org/10.1016/j.ultsonch.2013.05.006
dc.relation.urihttps://doi.org/10.1021/cs300187z
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.05.023
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectсоногальванічне заміщення
dc.subjectнаночастинки срібла
dc.subjectультразвук
dc.subjectмаґній
dc.subjectнатрію поліакрилат
dc.subjectsonogalvanic replacement
dc.subjectsilver nanoparticles
dc.subjectultrasound
dc.subjectmagnesium
dc.subjectsodium polyacrylate
dc.titleInfluence of ultrasound on the synthesis of silver nanoparticles by galvanic replacement in sodium polyacrylate solutions
dc.title.alternativeВплив ультразвуку на синтез наночастинок срібла гальванічним заміщенням у розчинах натрію поліакрилату
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v4n2_Zozulia_G_I-Influence_of_ultrasound_17-22.pdf
Size:
813.63 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v4n2_Zozulia_G_I-Influence_of_ultrasound_17-22__COVER.png
Size:
428.98 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: