Selection of a rational method for hardening carbide cutting tools for heavy engineering

dc.citation.epage56
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage45
dc.citation.volume9
dc.contributor.affiliationDonbass State Engineering Academy
dc.contributor.affiliationV. Bakul Institute for Superhard Materials NAS of Ukraine
dc.contributor.authorKovalev, Viktor
dc.contributor.authorKlymenko, Galyna
dc.contributor.authorVasylchenko, Yana
dc.contributor.authorShapovalov, Maksym
dc.contributor.authorManokhin, Andrey
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-07T08:50:59Z
dc.date.available2024-02-07T08:50:59Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractAn important task is to improve cutting tools for high-precision productive machining of difficult-to-machine materials by applying the latest tool hardening methods. This is especially true for carbide-cutting tools. The paper analyzes the current state of the problem of improving the tooling of new machine tools for high-precision productive machining of hard-tomachine materials. The main known methods of increasing the wear resistance and strength of carbide tools can be divided into the following groups: structural methods; mechanical hardening; wearresistant coatings; chemical and thermal treatment; laser hardening; plasma-arc hardening; radiation hardening; ionic alloying; magnetic abrasive treatment; and pulsed magnetic field treatment. The choice of a particular hardening method depends on many factors that determine its effectiveness and costs in certain production conditions. The conditions for machining large-sized parts at heavy engineering enterprises are analyzed. It was found that, along with wear, the destruction of the cutting part in the form of pitting and fracture is significant. Statistical studies have proven that when machining on heavy machine tools, the cutting force allowed by the machine tool mechanisms does not limit the cutting modes. The maximumvalues of forces are up to 10 times higher than their average value, which is usually used to calculate the design parameters of cutting tools An analysis of various methods for improving the physical and mechanical properties of carbide tool materials has shown that the best combination of cost and production efficiency is observed in pulsed magnetic field treatment. The use of magnetic fields in cutting processes and tool hardening is a promising area of high-technology development in machining. Increasing tool life can be achieved by the influence of a magnetic field either on the conditions of the cutting process or on the structure and physical and mechanical properties of tool materials with ferromagnetic components.
dc.format.extent45-56
dc.format.pages12
dc.identifier.citationSelection of a rational method for hardening carbide cutting tools for heavy engineering / Viktor Kovalev, Galyna Klymenko, Yana Vasylchenko, Maksym Shapovalov, Andrey Manokhin // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 2. — P. 45–56.
dc.identifier.citationenSelection of a rational method for hardening carbide cutting tools for heavy engineering / Viktor Kovalev, Galyna Klymenko, Yana Vasylchenko, Maksym Shapovalov, Andrey Manokhin // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 2. — P. 45–56.
dc.identifier.doidoi.org/10.23939/ujmems2023.02.045
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61145
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 2 (9), 2023
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 2 (9), 2023
dc.relation.references[1] A. S.Manokhin, S. A. Klimenko, M. Y. Kopeikina, et al., “Tribology of cutting by tools equipped with cBNbased PSHM”, Journal of Superhard Materials, vol. 36, pp. 124–135, 2014.
dc.relation.references[2] H. Caliskan, P. Panjan, C. Kurbanoglu , “Hard Coatings on Cutting Tools and Surface Finish. Comprehensive Materials Finishing”, Chapter: 3, Publisher: Oxford: Elsevier / Editors: M. S. J. Hashmi, vol. 3, pp. 230–242, 2017.
dc.relation.references[3] B. Kursuncu, H. Caliskan, S. Yilmaz Guven, P. Panjan P, “Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 super alloy using multilayer nanocomposite hard coating and cryogenic heat treatment”, The International Journal of Advanced Manufacturing Technology, vol. 97, No. 1–4, pp. 467–479, 2018.
dc.relation.references[4] A. Zhygalov, V. Stupnytskyy, “Investigation of the carbide-tipped tool wear hardened by method of aerodynamic impact”, Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 3, No. 2, pp. 11–23, 2017.
dc.relation.references[5] R. P. Didyk, “Hard alloy metal regeneration in shock waves”, Metallurgical and Mining Industry, vol. 1, No. 6, pp. 61–63, 2014.
dc.relation.references[6] S. Akincioğlu, I. Uygur, H. Gökkaya, “A review of cryogenic treatment on cutting tools”, International Journal of Advanced Manufacturing Technology, vol. 78, No. 9–12, pр. 1609–1627, 2015.
dc.relation.references[7] S. Nirmal, S. Kalsi, Rakesh Sehgal, S. Vishal, “Cryogenic Treatment of Tool Materials: A Review”, Sharma Materials and Manufacturing Processes, vol. 25, No. 10, pp. 1077–1100, 2010.
dc.relation.references[8] S. T.Dhande,V. A.Kane, C. L.Gogte, “Cryogenic Treatment of Tungsten Carbide Tools: Review”, International Journal of Science and Research, vol. 3 No. 11, pр. 3151–3155, 2014.
dc.relation.references[9] N. H. Rizvi, P. Apte, “Developments in laser micromachining techniques”, Journal of Materials Processing Technology, vol. 127, pp. 206–210, 2002.
dc.relation.references[10] T. N. Oskolkova, “Improving theWear Resistance of Tungsten-Carbide Hard Alloys”, Steel in Translation, vol. 45, No. 5, pp. 318–321, 2015.
dc.relation.references[11] O. Bataineha, V. Klameckia, B. G. Koepkeb, “Effect of pulsed magnetic treatment on drill wear”, Journal of Materials Processing Technology, vol. 134, No. 2, pp. 190–196, 2003.
dc.relation.references[12] L. G. Nikitina, A. V. Volchenkov, “Study of Influence of Magnetic-Pulse Hardening on Cutting Tools Strength and Wear Resistance”, In: Radionov, A. A., Gasiyarov, V. R. (eds) Proceedings of the 6th International Conference on Industrial Engineering, Lecture Notes in Mechanical Engineering, Springer: Cham, vol. 1, pp. 59–65, 2021.
dc.relation.references[13] V. Kovalov, Y. Vasilchenko, M. Shapovalov, R. Turmanidze, P. Dašić, “Impact of a PulsedMagnetic Field on a Hard Alloy During Machining on Heavy Machine Tools”, International Journal of Industrial Engineering and Management, vol. 10, No. 1, pp. 125–130, 2019.
dc.relation.references[14] Y. Rodichev, O. Soroka, V. Kovalov, Y. Vasilchenko, V. Maiboroda, “Fracture Resistance of the Edge of Cemented Carbide Cutting Tool”, Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham, vol. 1, pp. 281–288, 2020.
dc.relation.references[15] K. Kostyk, I. Kuric, M. Saga, V. Kostyk, V. Ivanov, V. Kovalov, I. Pavlenko, “Impact of Magnetic-Pulse and Chemical-Thermal Treatment on Alloyed Steels’ Surface Layer”. Applied Sciences, vol. 12, No. 1:469, 2022.
dc.relation.references[16] K. O. Kostyk, V. O. Kostyk, V. D. Kovalev, “Strengthening the Surface Layer of Tools with State-of-the-Art Technologies”, Progress in Physics of Metals, vol. 22, No. 1, pp. 78–102, 2021.
dc.relation.referencesen[1] A. S.Manokhin, S. A. Klimenko, M. Y. Kopeikina, et al., "Tribology of cutting by tools equipped with cBNbased PSHM", Journal of Superhard Materials, vol. 36, pp. 124–135, 2014.
dc.relation.referencesen[2] H. Caliskan, P. Panjan, C. Kurbanoglu , "Hard Coatings on Cutting Tools and Surface Finish. Comprehensive Materials Finishing", Chapter: 3, Publisher: Oxford: Elsevier, Editors: M. S. J. Hashmi, vol. 3, pp. 230–242, 2017.
dc.relation.referencesen[3] B. Kursuncu, H. Caliskan, S. Yilmaz Guven, P. Panjan P, "Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 super alloy using multilayer nanocomposite hard coating and cryogenic heat treatment", The International Journal of Advanced Manufacturing Technology, vol. 97, No. 1–4, pp. 467–479, 2018.
dc.relation.referencesen[4] A. Zhygalov, V. Stupnytskyy, "Investigation of the carbide-tipped tool wear hardened by method of aerodynamic impact", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 3, No. 2, pp. 11–23, 2017.
dc.relation.referencesen[5] R. P. Didyk, "Hard alloy metal regeneration in shock waves", Metallurgical and Mining Industry, vol. 1, No. 6, pp. 61–63, 2014.
dc.relation.referencesen[6] S. Akincioğlu, I. Uygur, H. Gökkaya, "A review of cryogenic treatment on cutting tools", International Journal of Advanced Manufacturing Technology, vol. 78, No. 9–12, pr. 1609–1627, 2015.
dc.relation.referencesen[7] S. Nirmal, S. Kalsi, Rakesh Sehgal, S. Vishal, "Cryogenic Treatment of Tool Materials: A Review", Sharma Materials and Manufacturing Processes, vol. 25, No. 10, pp. 1077–1100, 2010.
dc.relation.referencesen[8] S. T.Dhande,V. A.Kane, C. L.Gogte, "Cryogenic Treatment of Tungsten Carbide Tools: Review", International Journal of Science and Research, vol. 3 No. 11, pr. 3151–3155, 2014.
dc.relation.referencesen[9] N. H. Rizvi, P. Apte, "Developments in laser micromachining techniques", Journal of Materials Processing Technology, vol. 127, pp. 206–210, 2002.
dc.relation.referencesen[10] T. N. Oskolkova, "Improving theWear Resistance of Tungsten-Carbide Hard Alloys", Steel in Translation, vol. 45, No. 5, pp. 318–321, 2015.
dc.relation.referencesen[11] O. Bataineha, V. Klameckia, B. G. Koepkeb, "Effect of pulsed magnetic treatment on drill wear", Journal of Materials Processing Technology, vol. 134, No. 2, pp. 190–196, 2003.
dc.relation.referencesen[12] L. G. Nikitina, A. V. Volchenkov, "Study of Influence of Magnetic-Pulse Hardening on Cutting Tools Strength and Wear Resistance", In: Radionov, A. A., Gasiyarov, V. R. (eds) Proceedings of the 6th International Conference on Industrial Engineering, Lecture Notes in Mechanical Engineering, Springer: Cham, vol. 1, pp. 59–65, 2021.
dc.relation.referencesen[13] V. Kovalov, Y. Vasilchenko, M. Shapovalov, R. Turmanidze, P. Dašić, "Impact of a PulsedMagnetic Field on a Hard Alloy During Machining on Heavy Machine Tools", International Journal of Industrial Engineering and Management, vol. 10, No. 1, pp. 125–130, 2019.
dc.relation.referencesen[14] Y. Rodichev, O. Soroka, V. Kovalov, Y. Vasilchenko, V. Maiboroda, "Fracture Resistance of the Edge of Cemented Carbide Cutting Tool", Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham, vol. 1, pp. 281–288, 2020.
dc.relation.referencesen[15] K. Kostyk, I. Kuric, M. Saga, V. Kostyk, V. Ivanov, V. Kovalov, I. Pavlenko, "Impact of Magnetic-Pulse and Chemical-Thermal Treatment on Alloyed Steels’ Surface Layer". Applied Sciences, vol. 12, No. 1:469, 2022.
dc.relation.referencesen[16] K. O. Kostyk, V. O. Kostyk, V. D. Kovalev, "Strengthening the Surface Layer of Tools with State-of-the-Art Technologies", Progress in Physics of Metals, vol. 22, No. 1, pp. 78–102, 2021.
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kovalev V., Klymenko G., Vasylchenko Ya., Shapovalov M., Manokhin A., 2023
dc.subjectcutting tools
dc.subjectcarbide tool materials
dc.subjectmagnetic field
dc.subjectstrength
dc.titleSelection of a rational method for hardening carbide cutting tools for heavy engineering
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v9n2_Kovalev_V-Selection_of_a_rational_method_45-56.pdf
Size:
379.61 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v9n2_Kovalev_V-Selection_of_a_rational_method_45-56__COVER.png
Size:
475.51 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: