Energy audit for complex energy system simulated using TRNSYS software

dc.citation.epage42
dc.citation.issue1
dc.citation.spage33
dc.contributor.affiliationПриазовський державний технічний університет
dc.contributor.affiliationОдеська національна академія харчових технологій
dc.contributor.affiliationPryazovskyi State Technical University
dc.contributor.affiliationOdessa National Academy of Food Technologies
dc.contributor.authorБежан, Володимир
dc.contributor.authorЖитаренко, Володимир
dc.contributor.authorЯковлева, Ольга
dc.contributor.authorОстапенко, Олексій
dc.contributor.authorХмельнюк, Михайло
dc.contributor.authorBezhan, Volodymyr
dc.contributor.authorZhytarenko, Volodymyr
dc.contributor.authorYakovleva, Olga
dc.contributor.authorOstapenko, Oleksii
dc.contributor.authorKhmelniuk, Mykhailo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-14T07:56:06Z
dc.date.available2023-09-14T07:56:06Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractЕнергоаудит допомагає виявити енергетичний потенціал, розробити програму енергозбереження з метою підвищення енергоефективності під час процесу прийняття рішення про розробку на ранніх стадіях для нових розроблених систем, що може знизити витрати для власника проекту та для замовника. У статті представлено використання складної енергетичної системи (теплового насоса з використанням сонячної енергії) для нагрівання та охолодження. Моделювання виконуються для складної енергетичної системи, розташованої на північній широті, за допомогою програмного забезпечення TRNSYS 18. Наведено результати конфігурацій системи. Результати показують, що сонячний колектор, встановлений під кутом 30 градусів, виходячи на південний захід, з азимутом 45°, пропонує до 95 % оптимальної сонячної енергії. Для східної або західної орієнтації можна отримати до 85 % енергії з кутами покрівлі від 25° до 40°. З використанням сонячного теплового колектора замовник може зменшити виснаження свердловини, що може бути чудовими можливостями для будівельних секторів.
dc.description.abstractEnergy audit provides a way to derive energy potential and to develop energy saving program in order to improve energy efficiency during early stage design decision process for new-developed systems that can reduce costs for project owner and for customer. This paper presents utilization of complex energy system (solar assisted heat pump) for heating and cooling purposes. Simulation has been carried out using TRNSYS 18 software for a complex energy system located in northern latitude. The results of such system configurations are presented in the paper. The results show that the solar collector, set at the angle of 30 degrees, facing southwest, with azimuth of 45°, offers up to 95 % of optimal solar energy. For east or west orientation, it is possible to obtain up to 85 % energy, with roof angles of 25° to 40°. By applying the solar thermal collector the customer can reduce borehole depletion that can provide great opportunities for construction sector.
dc.format.extent33-42
dc.format.pages10
dc.identifier.citationEnergy audit for complex energy system simulated using TRNSYS software / Volodymyr Bezhan, Volodymyr Zhytarenko, Olga Yakovleva, Oleksii Ostapenko, Mykhailo Khmelniuk // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 1. — P. 33–42.
dc.identifier.citationenEnergy audit for complex energy system simulated using TRNSYS software / Volodymyr Bezhan, Volodymyr Zhytarenko, Olga Yakovleva, Oleksii Ostapenko, Mykhailo Khmelniuk // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 1. — P. 33–42.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59998
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (6), 2020
dc.relation.references[1] International Energy Agency. 2019. Energy Efficiency Market Report 2019, OECD/IEA, 2019.
dc.relation.references[2] The GABC Secretariat is located at UNEP’s Economy Division. 2019. Global Alliance for Buildings and Construction. [on-line resources] accessed by URL: https://unfccc.int/news/global-alliance-for-buildings-and-construction
dc.relation.references[3] BRE Group, BREEAM International New Construction 2016, Technical Standard, Building Research Establishment, Watford, [on-line resources] accessed by URL: https://hbreavis.com/wp-content/uploads/2017/06/BREEAM-International-New-Construction-2016.pdf.
dc.relation.references[4] US Green Building Council. 2019. LEED V4 for Building Design and Construction, 2019. [on-line resources] accessed by URL: http://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version.
dc.relation.references[5] Energy performance of buildings directive, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast), [on-line resources] accessed by URL: https://www.eea.europa.eu/policy-documents/energyperformance-of-buildings-directive
dc.relation.references[6] Oswaldo Lucon (Brazil), Diana Ürge-Vorsatz (Hungary). 2018. Buildings [on-line resources] accessed by URL: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter9.pdf
dc.relation.references[7] Klijn-Chevalerias, M.; Javed, S. 2017. The Dutch approach for assessing and reducing environmental impacts of building materials. Building and Environment. [on-line resources] accessed by URL: https://www.ofcoursecme.nl/?mdocs-file=3806
dc.relation.references[8] Antonio Ángel. 2016. Life Cycle Assessment in Building: A Case Study on the Energy and Emissions Impact Related to the Choice of Housing Typologies and Construction Process in Spain. Sustainability, # 8, pp. 287–316.
dc.relation.references[9] Afaf Azzouz. 2019. Life Cycle Assessment of Energy Conservation Measures during Early Stage Office Building Design: A Case Study in London, UK. [on-line resources] accessed by URL: https://discovery.ucl.ac.uk/id/eprint/1552588/1/Mavrogianni_MANUSCRIPT_FINAL.pdf
dc.relation.references[10] Randa Ghattas. 2013. Life Cycle Assessment for Residential Buildings: A Literature Review and Gap Analysis. Concrete Sustainability Hub Massachusetts Institute of Technology. [on-line resources] accessed by URL: https://cshub.mit.edu/sites/default/files/documents/LCAforResidentialBuildings.pdf
dc.relation.references[11] Energy Performance of Buildings. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance) . [on-line resources] accessed by URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG
dc.relation.references[12] European Standard BS EN 14511-2 (2013), Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling – Part 2: Test conditions, published by CEN on 31 August 2013.
dc.relation.references[13] Final Report IEA HPP Annex 28. Test procedure and seasonal performance calculation for residential heat pumps with combined space and domestic hot water heating. 2005. 114 p.
dc.relation.references[14] European Standard BS EN 14825 (2016), Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling — Testing and rating at part load conditions and calculation of seasonal performance, published by CEN on March 2016.
dc.relation.referencesen[1] International Energy Agency. 2019. Energy Efficiency Market Report 2019, OECD/IEA, 2019.
dc.relation.referencesen[2] The GABC Secretariat is located at UNEP’s Economy Division. 2019. Global Alliance for Buildings and Construction. [on-line resources] accessed by URL: https://unfccc.int/news/global-alliance-for-buildings-and-construction
dc.relation.referencesen[3] BRE Group, BREEAM International New Construction 2016, Technical Standard, Building Research Establishment, Watford, [on-line resources] accessed by URL: https://hbreavis.com/wp-content/uploads/2017/06/BREEAM-International-New-Construction-2016.pdf.
dc.relation.referencesen[4] US Green Building Council. 2019. LEED V4 for Building Design and Construction, 2019. [on-line resources] accessed by URL: http://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version.
dc.relation.referencesen[5] Energy performance of buildings directive, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast), [on-line resources] accessed by URL: https://www.eea.europa.eu/policy-documents/energyperformance-of-buildings-directive
dc.relation.referencesen[6] Oswaldo Lucon (Brazil), Diana Ürge-Vorsatz (Hungary). 2018. Buildings [on-line resources] accessed by URL: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter9.pdf
dc.relation.referencesen[7] Klijn-Chevalerias, M.; Javed, S. 2017. The Dutch approach for assessing and reducing environmental impacts of building materials. Building and Environment. [on-line resources] accessed by URL: https://www.ofcoursecme.nl/?mdocs-file=3806
dc.relation.referencesen[8] Antonio Ángel. 2016. Life Cycle Assessment in Building: A Case Study on the Energy and Emissions Impact Related to the Choice of Housing Typologies and Construction Process in Spain. Sustainability, # 8, pp. 287–316.
dc.relation.referencesen[9] Afaf Azzouz. 2019. Life Cycle Assessment of Energy Conservation Measures during Early Stage Office Building Design: A Case Study in London, UK. [on-line resources] accessed by URL: https://discovery.ucl.ac.uk/id/eprint/1552588/1/Mavrogianni_MANUSCRIPT_FINAL.pdf
dc.relation.referencesen[10] Randa Ghattas. 2013. Life Cycle Assessment for Residential Buildings: A Literature Review and Gap Analysis. Concrete Sustainability Hub Massachusetts Institute of Technology. [on-line resources] accessed by URL: https://cshub.mit.edu/sites/default/files/documents/LCAforResidentialBuildings.pdf
dc.relation.referencesen[11] Energy Performance of Buildings. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance) . [on-line resources] accessed by URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG
dc.relation.referencesen[12] European Standard BS EN 14511-2 (2013), Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling – Part 2: Test conditions, published by CEN on 31 August 2013.
dc.relation.referencesen[13] Final Report IEA HPP Annex 28. Test procedure and seasonal performance calculation for residential heat pumps with combined space and domestic hot water heating. 2005. 114 p.
dc.relation.referencesen[14] European Standard BS EN 14825 (2016), Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling - Testing and rating at part load conditions and calculation of seasonal performance, published by CEN on March 2016.
dc.relation.urihttps://unfccc.int/news/global-alliance-for-buildings-and-construction
dc.relation.urihttps://hbreavis.com/wp-content/uploads/2017/06/BREEAM-International-New-Construction-2016.pdf
dc.relation.urihttp://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version
dc.relation.urihttps://www.eea.europa.eu/policy-documents/energyperformance-of-buildings-directive
dc.relation.urihttps://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter9.pdf
dc.relation.urihttps://www.ofcoursecme.nl/?mdocs-file=3806
dc.relation.urihttps://discovery.ucl.ac.uk/id/eprint/1552588/1/Mavrogianni_MANUSCRIPT_FINAL.pdf
dc.relation.urihttps://cshub.mit.edu/sites/default/files/documents/LCAforResidentialBuildings.pdf
dc.relation.urihttps://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectенергетичний аудит
dc.subjectTRNSYS 18
dc.subjectгеотермальний тепловий насос
dc.subjectкондиціонування
dc.subjectенергоефективність
dc.subjectenergy audit
dc.subjectTRNSYS 18
dc.subjectground source heat pump
dc.subjectair-conditioning
dc.subjectenergy efficiency
dc.titleEnergy audit for complex energy system simulated using TRNSYS software
dc.title.alternativeЕнергетичний аудит комплексної енергетичної системи, змодельованої за допомогою програмного забезпечення TRNSYS
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v6n1_Bezhan_V-Energy_audit_for_complex_energy_33-42.pdf
Size:
707.66 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v6n1_Bezhan_V-Energy_audit_for_complex_energy_33-42__COVER.png
Size:
439.96 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: