Analysis of calculation regulation methods in steel combined trusses
dc.citation.epage | 71 | |
dc.citation.issue | 1 | |
dc.citation.spage | 64 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Гоголь, М. В. | |
dc.contributor.author | Пелешко, І. Д. | |
dc.contributor.author | Петренко, О. В. | |
dc.contributor.author | Сидорак, Д. П. | |
dc.contributor.author | Hohol, Myron | |
dc.contributor.author | Peleshko, Ivan | |
dc.contributor.author | Petrenko, Alexey | |
dc.contributor.author | Sydorak, Dmytro | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-05T10:31:20Z | |
dc.date.available | 2023-04-05T10:31:20Z | |
dc.date.created | 2021-06-06 | |
dc.date.issued | 2021-06-06 | |
dc.description.abstract | Розглянуто розрахункове регулювання напружено-деформованого стану (НДС) комбінованих сталевих ферм, яке дає змогу зменшити розрахункові зусилля у деяких елементах (перерізах) конструкції за рахунок збільшення зусиль у інших елементах (перерізах) та спроектувати рівномірно напружені конструкції як найраціональніші системи. Показано, що розрахунковий метод регулювання НДС у комбінованих сталевих фермах дає змогу зменшити витрату сталі до 34 %. Запропоновано чотири методи розрахункового регулювання НДС в балці жорсткості комбінованої системи та їх раціональні параметри. Наведено переваги комбінованих конструкцій: концентрація матеріалу та можливість проектування їх як малоелементних, що, зокрема, підвищує технологічність. Подано коефіцієнти повноти напруженого стану конструктивнихелементів, які дають змогу оцінити якісно об’ємний напружений стан конструктивних елементів та конструкцій, у які ці елементи входять. Виконано порівняльний розрахунок двох комбінованих сталевих ферм із різною топологією, розташуванням конструктивних елементів та однаковою масою і геометричними характеристиками. Здійснено порівняльний аналіз параметрів розрахованих ферм, таких як маса та потенційна енергія деформації. Показано на прикладі, що для кількісного критерію оцінювання якості комбінованих конструкцій з регулюванням НДС можливо раціонально використовувати максимальну потенційну енергію деформації. Наведено залежності для розрахунку максимальної потенціальної енергії стиснених, розтягнутих і стиснуто-зігнутих елементів несучих сталевих конструкцій. | |
dc.description.abstract | The article is devoted to the calculated regulation of the stress deformation state (SDS) of combined steel trusses, which allows to reduce the efforts in some sections of the structure by increasing the efforts in other and design evenly stressed structures as the most rational systems.It is shown that the calculated method of SDS regulation makes it possible to reduce steel consumption by up to 34 %. Four methods of calculated SDS regulation are proposed. The advantages of combined structures are given: the concentration of materials and the possibility of designing them as lowelement. Shown in the example,that for the quantitative criterion of quality it is possible to use rationally the maximum potential energy of deformation. Dependences for calculation of the maximum potential energy of compressed, stretched and compressed-bent elements of rod bearing steel structures are given. | |
dc.format.extent | 64-71 | |
dc.format.pages | 8 | |
dc.identifier.citation | Analysis of calculation regulation methods in steel combined trusses / Myron Hohol, Ivan Peleshko, Alexey Petrenko, Dmytro Sydorak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 1. — P. 64–71. | |
dc.identifier.citationen | Hohol M., Peleshko I., Petrenko A., Sydorak D. (2021) Analysis of calculation regulation methods in steel combined trusses. Theory and Building Practice (Lviv), vol. 3, no 1, pp. 64-71. | |
dc.identifier.doi | https://doi.org/10.23939/jtbp2021.01.064 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57929 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 1 (3), 2021 | |
dc.relation.references | Hohol, M. V. (2018). Tension regulation in steel combined structures [monograph]. Kyiv: Stal(in Ukrainian). | |
dc.relation.references | Hohol, M. V. (2014). Calculation and rational design combined metal structures.Modern industrial and civil | |
dc.relation.references | construction. (Vol. 10, p. 79–90). Makiivka: DonNACEA (in Ukrainian). | |
dc.relation.references | Hohol, M. V., Ordon-Beska, B. (2015). Reduction of material consumption of combined metal structures. | |
dc.relation.references | Budownictwo o zoptymalizowanym potencjale energetycznym, 1(15), 61–69 (in Russian). | |
dc.relation.references | Gogol, M., Zygun, A., Maksiuta, N. (2018). New effective combined steel structures. International Journal of | |
dc.relation.references | Engineering and Technology. (Vol 7, p. 343–348). DOI:10.14419/ijet.v7i3.2.14432 | |
dc.relation.references | Permyakov, V. O., Hohol, M. V., (2004). The problem of regulating the stress-strainstate of flat rod metal | |
dc.relation.references | structures. Theory and Building Practice, 495, 154–157 (in Ukrainian). | |
dc.relation.references | Permyakov, V. O., Hohol, M. V., & Peleshlo, I. D. (2007). Combined metal structures with regulation and | |
dc.relation.references | their optimization. International scientific and practical conference Science and Innovations in Modern Construction | |
dc.relation.references | (p. 17–19), (in Russian). | |
dc.relation.references | Shymanovskiy, O. V., Hohol, M. V., (2018). New approach to effective steel combine truss design. 1st | |
dc.relation.references | International Scientific and Practical Conference Technology, Engineering and Science – 2018. London, United | |
dc.relation.references | Kingdom, (p. 16–18). | |
dc.relation.references | Yuriev, A. (2013). Variational formulations of structural synthesis problems. Collection of scientific papers | |
dc.relation.references | Sworld 4(14), 67–70 (in Russian). | |
dc.relation.references | Ruiz-Teran, A., Aparicio, A. (2010). Developments in under-deck and combined cable-stayed bridges. | |
dc.relation.references | Bridge engineering, 163, 67–78 https://doi.org/10.1680/bren.2010.163.2.67 | |
dc.relation.references | Lavrinenko, L., Zotina, A. (2019). Effective parameters of low-element sprung trusses with the use of Ibeams with corrugated walls. Building structures. Theory and practice, 4, 56–69 https://doi.org/10.32347/2522-4182.4.2019.56-59 | |
dc.relation.references | Madrazo-Aguirre, F., Wadee, M., Ruiz-Teran, A. (2015). Non-linear stability of under-deck cable-stayed | |
dc.relation.references | bridge decks. International Journal of Non-Linear Mechanics 77, 28–40 https://dx.doi.org/10.1016/ j.ijnonlinmec.2015.07.001 | |
dc.relation.references | Bendsoe, M., Sigmund, O. (2003). Topology Optimization. Theory, Methods and Applications. Springer | |
dc.relation.references | Verlag, Berlin Heidelberg https://doi.org/10.1007/978-3-662-05086-6 | |
dc.relation.references | Amir, O., Mass, Y., (2016). Topology optimization for staged construction with applications to additive | |
dc.relation.references | manufacturing, Environmental Engineering, The European Conference on Computational Optimization, EUCCO 2016. Leuven, Belgium | |
dc.relation.references | Shmukler, V. S., (2017). New energy principles of rationalization of structures. Collection of scientific works | |
dc.relation.references | of the Ukrainian State University of Railway Transport, 167, 54–69. | |
dc.relation.references | Ruiz-Teran, A. M., & Aparicio, A. C. (2008). Structural behaviour and design criteria of under-deck | |
dc.relation.references | cable-stayed bridges and combined cable-stayed bridges. Part 1: Single-span bridges. Canadian Journal of | |
dc.relation.references | Civil Engineering, 35(9), 938–950. doi.org/10.1139/L08-033 | |
dc.relation.referencesen | Hohol, M. V. (2018). Tension regulation in steel combined structures [monograph]. Kyiv: Stal(in Ukrainian). | |
dc.relation.referencesen | Hohol, M. V. (2014). Calculation and rational design combined metal structures.Modern industrial and civil | |
dc.relation.referencesen | construction. (Vol. 10, p. 79–90). Makiivka: DonNACEA (in Ukrainian). | |
dc.relation.referencesen | Hohol, M. V., Ordon-Beska, B. (2015). Reduction of material consumption of combined metal structures. | |
dc.relation.referencesen | Budownictwo o zoptymalizowanym potencjale energetycznym, 1(15), 61–69 (in Russian). | |
dc.relation.referencesen | Gogol, M., Zygun, A., Maksiuta, N. (2018). New effective combined steel structures. International Journal of | |
dc.relation.referencesen | Engineering and Technology. (Vol 7, p. 343–348). DOI:10.14419/ijet.v7i3.2.14432 | |
dc.relation.referencesen | Permyakov, V. O., Hohol, M. V., (2004). The problem of regulating the stress-strainstate of flat rod metal | |
dc.relation.referencesen | structures. Theory and Building Practice, 495, 154–157 (in Ukrainian). | |
dc.relation.referencesen | Permyakov, V. O., Hohol, M. V., & Peleshlo, I. D. (2007). Combined metal structures with regulation and | |
dc.relation.referencesen | their optimization. International scientific and practical conference Science and Innovations in Modern Construction | |
dc.relation.referencesen | (p. 17–19), (in Russian). | |
dc.relation.referencesen | Shymanovskiy, O. V., Hohol, M. V., (2018). New approach to effective steel combine truss design. 1st | |
dc.relation.referencesen | International Scientific and Practical Conference Technology, Engineering and Science – 2018. London, United | |
dc.relation.referencesen | Kingdom, (p. 16–18). | |
dc.relation.referencesen | Yuriev, A. (2013). Variational formulations of structural synthesis problems. Collection of scientific papers | |
dc.relation.referencesen | Sworld 4(14), 67–70 (in Russian). | |
dc.relation.referencesen | Ruiz-Teran, A., Aparicio, A. (2010). Developments in under-deck and combined cable-stayed bridges. | |
dc.relation.referencesen | Bridge engineering, 163, 67–78 https://doi.org/10.1680/bren.2010.163.2.67 | |
dc.relation.referencesen | Lavrinenko, L., Zotina, A. (2019). Effective parameters of low-element sprung trusses with the use of Ibeams with corrugated walls. Building structures. Theory and practice, 4, 56–69 https://doi.org/10.32347/2522-4182.4.2019.56-59 | |
dc.relation.referencesen | Madrazo-Aguirre, F., Wadee, M., Ruiz-Teran, A. (2015). Non-linear stability of under-deck cable-stayed | |
dc.relation.referencesen | bridge decks. International Journal of Non-Linear Mechanics 77, 28–40 https://dx.doi.org/10.1016/ j.ijnonlinmec.2015.07.001 | |
dc.relation.referencesen | Bendsoe, M., Sigmund, O. (2003). Topology Optimization. Theory, Methods and Applications. Springer | |
dc.relation.referencesen | Verlag, Berlin Heidelberg https://doi.org/10.1007/978-3-662-05086-6 | |
dc.relation.referencesen | Amir, O., Mass, Y., (2016). Topology optimization for staged construction with applications to additive | |
dc.relation.referencesen | manufacturing, Environmental Engineering, The European Conference on Computational Optimization, EUCCO 2016. Leuven, Belgium | |
dc.relation.referencesen | Shmukler, V. S., (2017). New energy principles of rationalization of structures. Collection of scientific works | |
dc.relation.referencesen | of the Ukrainian State University of Railway Transport, 167, 54–69. | |
dc.relation.referencesen | Ruiz-Teran, A. M., & Aparicio, A. C. (2008). Structural behaviour and design criteria of under-deck | |
dc.relation.referencesen | cable-stayed bridges and combined cable-stayed bridges. Part 1: Single-span bridges. Canadian Journal of | |
dc.relation.referencesen | Civil Engineering, 35(9), 938–950. doi.org/10.1139/L08-033 | |
dc.relation.uri | https://doi.org/10.1680/bren.2010.163.2.67 | |
dc.relation.uri | https://doi.org/10.32347/2522-4182.4.2019.56-59 | |
dc.relation.uri | https://dx.doi.org/10.1016/ | |
dc.relation.uri | https://doi.org/10.1007/978-3-662-05086-6 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.rights.holder | © Hohol M., Peleshko I., Petrenko A., Sydorak D., 2021 | |
dc.subject | комбінована сталева ферма | |
dc.subject | напружено-деформований стан | |
dc.subject | раціональне проектування | |
dc.subject | розрахункові методи регулювання | |
dc.subject | повнота напруженого стану | |
dc.subject | кількісний критерій оцінки якості | |
dc.subject | максимум потенційної енергії | |
dc.subject | steel combined truss | |
dc.subject | rational designing | |
dc.subject | stress deformation state | |
dc.subject | methods of calculation regulation | |
dc.subject | completeness of stress state | |
dc.subject | quantitative quality criterion | |
dc.subject | maximum potential energy | |
dc.title | Analysis of calculation regulation methods in steel combined trusses | |
dc.title.alternative | Аналіз розрахункових методів регулювання у сталевих комбінованих фермах | |
dc.type | Article |