Використання карбонізованого залишку процесу піролізу вживаних автомобільних шин як модифікатора дорожніх бітумів

dc.citation.epage94
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage86
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationВроцлавський технічний університет
dc.contributor.affiliationНаціональний університет харчових технологій
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationWroclaw University of Science and Technology
dc.contributor.affiliationNational UniversityOf Food Technologies
dc.contributor.authorПиш’єв, С. В.
dc.contributor.authorКухар, О. М.
dc.contributor.authorПрисяжний, Ю. В.
dc.contributor.authorКорчак, Б. О.
dc.contributor.authorНявкевич, М. В.
dc.contributor.authorФалтиновіч, Г.
dc.contributor.authorЖитнецький, І. В.
dc.contributor.authorPyshyev, S. V.
dc.contributor.authorKukhar, O. M.
dc.contributor.authorPrysiazhnyi, Yu. V.
dc.contributor.authorKorchak, B. O.
dc.contributor.authorNiavkevych, M. V.
dc.contributor.authorFałtynowicz, H.
dc.contributor.authorZhytnetskyi, I. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:42Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractПроаналізовано можливості утилізації твердого карбонізованого залишку (КЗ) процесу піролізу вживаних автомобільних шин (ВАШ). В результаті процесу піролізу ВАШ одержують близько 36 % карбонізованого залишку, який може слугувати адгезійною та/або модифікувальною добавкою в процесах модифікування нафтових бітумів. Здійснено аналізи КЗ та бітуму марки БНД 70/100, одержаних на малотоннажній промисловій установці та ПАТ “Укртатнафта”, відповідно. Встановлено вплив карбонізованого залишку на експлуатаційні властивості модифікованих бітумів за різного співвідношення сировина (БНД 70/100) : КЗ. Відповідно до одержаних результатів запропоновано оптимальні кількості КЗ для модифікування нафтових бітумів та визначено напрями подальших досліджень.
dc.description.abstractThe paper analyzes the possibility of utilizing the solid carbonized residue (SCR) from the pyrolysis of waste tires (WT). The pyrolysis process of waste tires produces about 36 % of carbonized residue, which can serve as an adhesive and/or modifying additive in the processes of modifying petroleum bitumen. We analyzed the SCP and BND 70/100 bitumen produced at a small-scale industrial unit and PJSC Ukrtatnafta, respectively. The influence of solid carbonized residue on the performance properties of modified bitumen at different ratios of raw materials (BND 70/100) : SCR. According to the results obtained, the optimal amounts of SCR for modifying petroleum bitumen were proposed and directions for further research were determined.
dc.format.extent86-94
dc.format.pages9
dc.identifier.citationВикористання карбонізованого залишку процесу піролізу вживаних автомобільних шин як модифікатора дорожніх бітумів / С. В. Пиш’єв, О. М. Кухар, Ю. В. Присяжний, Б. О. Корчак, М. В. Нявкевич, Г. Фалтиновіч, І. В. Житнецький // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 86–94.
dc.identifier.citationenUse of carbonized residue from the pyrolysis process of waste tires as a modifier of road bitumen / S. V. Pyshyev, O. M. Kukhar, Yu. V. Prysiazhnyi, B. O. Korchak, M. V. Niavkevych, H. Fałtynowicz, I. V. Zhytnetskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 86–94.
dc.identifier.doidoi.org/10.23939/ctas2024.01.086
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111731
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Hita, I., Arabiourrutia, M., Olazar, M., Bilbao, J., Arandes, J. M., Castaño, P. (2016). Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable Sustainable Energy Rev., 56, 745-759. https://doi.org/10.1016/j.rser.2015.11.081.
dc.relation.references2. Song, W., Zhou, J., Li, Y., Li, Sh., Yang, J. (2021). Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue. Renew. Energy., 173, 283-296. https://doi.org/10.1016/j.renene.2021.03.090
dc.relation.references3. Pyshyev, S., Lypko, Y., Chervinskyy, T., Fedevych, O., Kułażyński, M., Pstrowska, K. (2023). Application of tyre derived pyrolysis oil as a fuel component. S. Afr. J. Chem. Eng., 43, 342-347. https://doi.org/10.1016/j.sajce.2022.12.003
dc.relation.references4. Moasas, A. M., Amin, M. N., Khan, K., Ahmad, W., Al-Hashem, M. N. A., Deifalla, A. F., Ahmad, A. (2022). Case Stud. Constr. Mater., 17, 2214-5095. https://doi.org/10.1016/j.cscm.2022.e01677
dc.relation.references5. Przydatek, G., Budzik, G. & Janik, M. (2022). Effectiveness of selected issues related to used tyre management in Poland. Environ Sci Pollut Res., 29, 31467-31475. https://doi.org/10.1007/s11356-022-18494-7
dc.relation.references6. Han, J., Li, W., Liu, D., Qin, L., Chen, W., Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. J. Anal. Appl. Pyrolysis., 129, 1-5. https://doi.org/10.1016/j.jaap.2017.12.016
dc.relation.references7. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O. (2017). Bitumen compositions for cold applied roofing products. Chem. Chem. Tech., 11(2), 226-229. https://doi.org/10.23939/chcht11.02.226
dc.relation.references8. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O., Kochubei, V. (2020). Rubber Crumb Modified Bitumen Produced from Crude Oil Residuals of Ukrainian Deposits. Chem. Chem. Tech. 14(4), 420-425. https://doi.org/10.23939/chcht14.03.420
dc.relation.references9. Oboirien, B.O., North B.C. (2017). A review of waste tyre gasification. J. Environ. Chem. Eng., 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057
dc.relation.references10. Xi-Shan, T., Wei-Hua, Z., Dong-Qing, L.I. (2006). Combustion characteristics of the waste tire by thermo-gravimetric analysis. J. Nanjing Univ. Technol. 28, 85-88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020
dc.relation.references11. Williams, P.T. (2013). Pyrolysis of waste tyres: a review. Waste Manag., 33, 1714-1728. https://doi.org/10.1016/j.wasman.2013.05.003
dc.relation.references12. Martinez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., Mastral, A.M. (2013). Waste tyre pyrolysis - a review. Renew. Sustain. Energy Rev., 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038
dc.relation.references13. Zhang, X., Tang, J., Chen, J. Behavior of sulfur during pyrolysis of waste tires: A critical review. J. Energy Inst., 102, 302-314 (2022). https://doi.org/10.1016/j.joei.2022.04.006
dc.relation.references14. Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis - a review. Renew. Sustain. Energy Rev., 129, 109932. https://doi.org/10.1016/j.rser.2020.109932
dc.relation.references15. Sagar, M., Nibedita, K., Manohar, N., Raj Kumar, K., Suchismita, S., Pradnyesh, A., Babul Reddy, A., Rotimi Sadiku, E., Gupta, U.N., Lachi,t P., Jayaramudu, J. (2018). A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Management. 74, 110-122. https://doi.org/10.1016/j.wasman.2018.01.003
dc.relation.references16. Feng, Z., Rao, W., Chen, Ch., Tian, B., Li, X., Li, P., Guo, Q. (2016). Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres. Constr. Build. Mater., 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143
dc.relation.references17. Wu X., Wang Sh., Dong R. (2016). Lightly pyrolyzed tire rubber used as potential asphalt alternative. Constr. Build. Mater., 112, 623-628. https://doi.org/10.1016/j.conbuildmat.2016.02.208
dc.relation.references18. DSTU ISO 589:2015 (2015). Hard coal - Determination of total moisture (ISO 589:2008, IDT). [Valid from 01.01.2016].
dc.relation.references19. ISO 1171:1997 Solid mineral fuels - Determination of ash.
dc.relation.references20. DSTU ISO 562:2015 (2015). Hard coal and coke - Determination of volatile matter (ISO 562:2010, IDT). [Valid from 01.01.2016].
dc.relation.references21. ISO 351:1996 (1996). Solid mineral fuels - Determination of total sulfur - High temperature combustion method.
dc.relation.references22. DSTU ISO 1928:2006 (2006). Solid mineral fuels. Determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value (ISO 1928:1995, IDT). [Valid from 01.07.2008].
dc.relation.references23. ISO 625:1996 (1996). Solid mineral fuels - Determination of carbon and hydrogen - Liebig method.
dc.relation.references24. DSTU 9169:2021 (2021). Bitumen and bituminous binders determination of resistance to stripping from mineral material. [Valid from 01.08.2022].
dc.relation.references25. EN 1427:2015 (2015). Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method). [Valid from 01.06.2019].
dc.relation.references26. EN 1426:2015 (2015). Bitumen and bituminous binders - Determination of needle penetration). [Valid from 01.06.2019].
dc.relation.references27. DSTU 8825:2019 (2015). Bitumen and bitumen binders. Determination of tensile strength. [Valid from 01.01.2020].
dc.relation.references28. DSTU 8787:2018 (2018). Bitumen and bituminous binders. Method for determining adhesion to crushed stone [Valid from 01.06.2019].
dc.relation.references29. ДСТУ EN 13398:2018 (2018). Bitumen and bituminous binders. Determination of the elasticity (EN 13398:2017, IDT). [Valid from 01.12.2019].
dc.relation.references30. DSTU Б EN 12607-1:2015 (2015). Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 1. RTFOT method (EN 12607-1:2014, IDT). [Valid from 01.07.2016].
dc.relation.references31. DSTU 4044:2019 (2015). Bitumens petroleum. Specifications [Valid from 01.05.2020].
dc.relation.references32. Prysiazhnyi, Y., Borbeyiyong, G. I., Pyshyev, S. (2022). Preparation and Application of Coumarone-Indene-Carbazole Resin as a Modifier of Road Petroleum Bitumen. 1. Influence of Carbazole:Raw Materials Ratio. Chem. Chem. Tech., 16(2), 284-294. https://doi.org/10.23939/chcht16.02.284
dc.relation.references33. SOU 45.2-00018112-067:2011. Road bitumen, modified with adhesive additives. Specifications. Change № 1. [Valid from 01.09.2011].
dc.relation.referencesen1. Hita, I., Arabiourrutia, M., Olazar, M., Bilbao, J., Arandes, J. M., Castaño, P. (2016). Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable Sustainable Energy Rev., 56, 745-759. https://doi.org/10.1016/j.rser.2015.11.081.
dc.relation.referencesen2. Song, W., Zhou, J., Li, Y., Li, Sh., Yang, J. (2021). Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue. Renew. Energy., 173, 283-296. https://doi.org/10.1016/j.renene.2021.03.090
dc.relation.referencesen3. Pyshyev, S., Lypko, Y., Chervinskyy, T., Fedevych, O., Kułażyński, M., Pstrowska, K. (2023). Application of tyre derived pyrolysis oil as a fuel component. S. Afr. J. Chem. Eng., 43, 342-347. https://doi.org/10.1016/j.sajce.2022.12.003
dc.relation.referencesen4. Moasas, A. M., Amin, M. N., Khan, K., Ahmad, W., Al-Hashem, M. N. A., Deifalla, A. F., Ahmad, A. (2022). Case Stud. Constr. Mater., 17, 2214-5095. https://doi.org/10.1016/j.cscm.2022.e01677
dc.relation.referencesen5. Przydatek, G., Budzik, G. & Janik, M. (2022). Effectiveness of selected issues related to used tyre management in Poland. Environ Sci Pollut Res., 29, 31467-31475. https://doi.org/10.1007/s11356-022-18494-7
dc.relation.referencesen6. Han, J., Li, W., Liu, D., Qin, L., Chen, W., Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. J. Anal. Appl. Pyrolysis., 129, 1-5. https://doi.org/10.1016/j.jaap.2017.12.016
dc.relation.referencesen7. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O. (2017). Bitumen compositions for cold applied roofing products. Chem. Chem. Tech., 11(2), 226-229. https://doi.org/10.23939/chcht11.02.226
dc.relation.referencesen8. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O., Kochubei, V. (2020). Rubber Crumb Modified Bitumen Produced from Crude Oil Residuals of Ukrainian Deposits. Chem. Chem. Tech. 14(4), 420-425. https://doi.org/10.23939/chcht14.03.420
dc.relation.referencesen9. Oboirien, B.O., North B.C. (2017). A review of waste tyre gasification. J. Environ. Chem. Eng., 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057
dc.relation.referencesen10. Xi-Shan, T., Wei-Hua, Z., Dong-Qing, L.I. (2006). Combustion characteristics of the waste tire by thermo-gravimetric analysis. J. Nanjing Univ. Technol. 28, 85-88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020
dc.relation.referencesen11. Williams, P.T. (2013). Pyrolysis of waste tyres: a review. Waste Manag., 33, 1714-1728. https://doi.org/10.1016/j.wasman.2013.05.003
dc.relation.referencesen12. Martinez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., Mastral, A.M. (2013). Waste tyre pyrolysis - a review. Renew. Sustain. Energy Rev., 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038
dc.relation.referencesen13. Zhang, X., Tang, J., Chen, J. Behavior of sulfur during pyrolysis of waste tires: A critical review. J. Energy Inst., 102, 302-314 (2022). https://doi.org/10.1016/j.joei.2022.04.006
dc.relation.referencesen14. Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis - a review. Renew. Sustain. Energy Rev., 129, 109932. https://doi.org/10.1016/j.rser.2020.109932
dc.relation.referencesen15. Sagar, M., Nibedita, K., Manohar, N., Raj Kumar, K., Suchismita, S., Pradnyesh, A., Babul Reddy, A., Rotimi Sadiku, E., Gupta, U.N., Lachi,t P., Jayaramudu, J. (2018). A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Management. 74, 110-122. https://doi.org/10.1016/j.wasman.2018.01.003
dc.relation.referencesen16. Feng, Z., Rao, W., Chen, Ch., Tian, B., Li, X., Li, P., Guo, Q. (2016). Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres. Constr. Build. Mater., 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143
dc.relation.referencesen17. Wu X., Wang Sh., Dong R. (2016). Lightly pyrolyzed tire rubber used as potential asphalt alternative. Constr. Build. Mater., 112, 623-628. https://doi.org/10.1016/j.conbuildmat.2016.02.208
dc.relation.referencesen18. DSTU ISO 589:2015 (2015). Hard coal - Determination of total moisture (ISO 589:2008, IDT). [Valid from 01.01.2016].
dc.relation.referencesen19. ISO 1171:1997 Solid mineral fuels - Determination of ash.
dc.relation.referencesen20. DSTU ISO 562:2015 (2015). Hard coal and coke - Determination of volatile matter (ISO 562:2010, IDT). [Valid from 01.01.2016].
dc.relation.referencesen21. ISO 351:1996 (1996). Solid mineral fuels - Determination of total sulfur - High temperature combustion method.
dc.relation.referencesen22. DSTU ISO 1928:2006 (2006). Solid mineral fuels. Determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value (ISO 1928:1995, IDT). [Valid from 01.07.2008].
dc.relation.referencesen23. ISO 625:1996 (1996). Solid mineral fuels - Determination of carbon and hydrogen - Liebig method.
dc.relation.referencesen24. DSTU 9169:2021 (2021). Bitumen and bituminous binders determination of resistance to stripping from mineral material. [Valid from 01.08.2022].
dc.relation.referencesen25. EN 1427:2015 (2015). Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method). [Valid from 01.06.2019].
dc.relation.referencesen26. EN 1426:2015 (2015). Bitumen and bituminous binders - Determination of needle penetration). [Valid from 01.06.2019].
dc.relation.referencesen27. DSTU 8825:2019 (2015). Bitumen and bitumen binders. Determination of tensile strength. [Valid from 01.01.2020].
dc.relation.referencesen28. DSTU 8787:2018 (2018). Bitumen and bituminous binders. Method for determining adhesion to crushed stone [Valid from 01.06.2019].
dc.relation.referencesen29. DSTU EN 13398:2018 (2018). Bitumen and bituminous binders. Determination of the elasticity (EN 13398:2017, IDT). [Valid from 01.12.2019].
dc.relation.referencesen30. DSTU B EN 12607-1:2015 (2015). Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 1. RTFOT method (EN 12607-1:2014, IDT). [Valid from 01.07.2016].
dc.relation.referencesen31. DSTU 4044:2019 (2015). Bitumens petroleum. Specifications [Valid from 01.05.2020].
dc.relation.referencesen32. Prysiazhnyi, Y., Borbeyiyong, G. I., Pyshyev, S. (2022). Preparation and Application of Coumarone-Indene-Carbazole Resin as a Modifier of Road Petroleum Bitumen. 1. Influence of Carbazole:Raw Materials Ratio. Chem. Chem. Tech., 16(2), 284-294. https://doi.org/10.23939/chcht16.02.284
dc.relation.referencesen33. SOU 45.2-00018112-067:2011. Road bitumen, modified with adhesive additives. Specifications. Change No 1. [Valid from 01.09.2011].
dc.relation.urihttps://doi.org/10.1016/j.rser.2015.11.081
dc.relation.urihttps://doi.org/10.1016/j.renene.2021.03.090
dc.relation.urihttps://doi.org/10.1016/j.sajce.2022.12.003
dc.relation.urihttps://doi.org/10.1016/j.cscm.2022.e01677
dc.relation.urihttps://doi.org/10.1007/s11356-022-18494-7
dc.relation.urihttps://doi.org/10.1016/j.jaap.2017.12.016
dc.relation.urihttps://doi.org/10.23939/chcht11.02.226
dc.relation.urihttps://doi.org/10.23939/chcht14.03.420
dc.relation.urihttps://doi.org/10.1016/j.jece.2017.09.057
dc.relation.urihttps://doi.org/10.3969/j.issn.1671-7627.2006.02.020
dc.relation.urihttps://doi.org/10.1016/j.wasman.2013.05.003
dc.relation.urihttps://doi.org/10.1016/j.rser.2013.02.038
dc.relation.urihttps://doi.org/10.1016/j.joei.2022.04.006
dc.relation.urihttps://doi.org/10.1016/j.rser.2020.109932
dc.relation.urihttps://doi.org/10.1016/j.wasman.2018.01.003
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.02.143
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.02.208
dc.relation.urihttps://doi.org/10.23939/chcht16.02.284
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectвідпрацьовані шини
dc.subjectпіроліз
dc.subjectкарбонізований залишок
dc.subjectмодифікування бітумів
dc.subjectадгезійна добавка
dc.subjectwaste tires
dc.subjectpyrolysis
dc.subjectcarbon black
dc.subjectbitumen modifier
dc.subjectadhesive additive
dc.titleВикористання карбонізованого залишку процесу піролізу вживаних автомобільних шин як модифікатора дорожніх бітумів
dc.title.alternativeUse of carbonized residue from the pyrolysis process of waste tires as a modifier of road bitumen
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Pyshyev_S_V-Use_of_carbonized_residue_86-94.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Pyshyev_S_V-Use_of_carbonized_residue_86-94__COVER.png
Size:
433.03 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.01 KB
Format:
Plain Text
Description: