Використання карбонізованого залишку процесу піролізу вживаних автомобільних шин як модифікатора дорожніх бітумів
| dc.citation.epage | 94 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 86 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Вроцлавський технічний університет | |
| dc.contributor.affiliation | Національний університет харчових технологій | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Wroclaw University of Science and Technology | |
| dc.contributor.affiliation | National UniversityOf Food Technologies | |
| dc.contributor.author | Пиш’єв, С. В. | |
| dc.contributor.author | Кухар, О. М. | |
| dc.contributor.author | Присяжний, Ю. В. | |
| dc.contributor.author | Корчак, Б. О. | |
| dc.contributor.author | Нявкевич, М. В. | |
| dc.contributor.author | Фалтиновіч, Г. | |
| dc.contributor.author | Житнецький, І. В. | |
| dc.contributor.author | Pyshyev, S. V. | |
| dc.contributor.author | Kukhar, O. M. | |
| dc.contributor.author | Prysiazhnyi, Yu. V. | |
| dc.contributor.author | Korchak, B. O. | |
| dc.contributor.author | Niavkevych, M. V. | |
| dc.contributor.author | Fałtynowicz, H. | |
| dc.contributor.author | Zhytnetskyi, I. V. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T07:59:42Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Проаналізовано можливості утилізації твердого карбонізованого залишку (КЗ) процесу піролізу вживаних автомобільних шин (ВАШ). В результаті процесу піролізу ВАШ одержують близько 36 % карбонізованого залишку, який може слугувати адгезійною та/або модифікувальною добавкою в процесах модифікування нафтових бітумів. Здійснено аналізи КЗ та бітуму марки БНД 70/100, одержаних на малотоннажній промисловій установці та ПАТ “Укртатнафта”, відповідно. Встановлено вплив карбонізованого залишку на експлуатаційні властивості модифікованих бітумів за різного співвідношення сировина (БНД 70/100) : КЗ. Відповідно до одержаних результатів запропоновано оптимальні кількості КЗ для модифікування нафтових бітумів та визначено напрями подальших досліджень. | |
| dc.description.abstract | The paper analyzes the possibility of utilizing the solid carbonized residue (SCR) from the pyrolysis of waste tires (WT). The pyrolysis process of waste tires produces about 36 % of carbonized residue, which can serve as an adhesive and/or modifying additive in the processes of modifying petroleum bitumen. We analyzed the SCP and BND 70/100 bitumen produced at a small-scale industrial unit and PJSC Ukrtatnafta, respectively. The influence of solid carbonized residue on the performance properties of modified bitumen at different ratios of raw materials (BND 70/100) : SCR. According to the results obtained, the optimal amounts of SCR for modifying petroleum bitumen were proposed and directions for further research were determined. | |
| dc.format.extent | 86-94 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Використання карбонізованого залишку процесу піролізу вживаних автомобільних шин як модифікатора дорожніх бітумів / С. В. Пиш’єв, О. М. Кухар, Ю. В. Присяжний, Б. О. Корчак, М. В. Нявкевич, Г. Фалтиновіч, І. В. Житнецький // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 86–94. | |
| dc.identifier.citationen | Use of carbonized residue from the pyrolysis process of waste tires as a modifier of road bitumen / S. V. Pyshyev, O. M. Kukhar, Yu. V. Prysiazhnyi, B. O. Korchak, M. V. Niavkevych, H. Fałtynowicz, I. V. Zhytnetskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 86–94. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.086 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111731 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Hita, I., Arabiourrutia, M., Olazar, M., Bilbao, J., Arandes, J. M., Castaño, P. (2016). Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable Sustainable Energy Rev., 56, 745-759. https://doi.org/10.1016/j.rser.2015.11.081. | |
| dc.relation.references | 2. Song, W., Zhou, J., Li, Y., Li, Sh., Yang, J. (2021). Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue. Renew. Energy., 173, 283-296. https://doi.org/10.1016/j.renene.2021.03.090 | |
| dc.relation.references | 3. Pyshyev, S., Lypko, Y., Chervinskyy, T., Fedevych, O., Kułażyński, M., Pstrowska, K. (2023). Application of tyre derived pyrolysis oil as a fuel component. S. Afr. J. Chem. Eng., 43, 342-347. https://doi.org/10.1016/j.sajce.2022.12.003 | |
| dc.relation.references | 4. Moasas, A. M., Amin, M. N., Khan, K., Ahmad, W., Al-Hashem, M. N. A., Deifalla, A. F., Ahmad, A. (2022). Case Stud. Constr. Mater., 17, 2214-5095. https://doi.org/10.1016/j.cscm.2022.e01677 | |
| dc.relation.references | 5. Przydatek, G., Budzik, G. & Janik, M. (2022). Effectiveness of selected issues related to used tyre management in Poland. Environ Sci Pollut Res., 29, 31467-31475. https://doi.org/10.1007/s11356-022-18494-7 | |
| dc.relation.references | 6. Han, J., Li, W., Liu, D., Qin, L., Chen, W., Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. J. Anal. Appl. Pyrolysis., 129, 1-5. https://doi.org/10.1016/j.jaap.2017.12.016 | |
| dc.relation.references | 7. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O. (2017). Bitumen compositions for cold applied roofing products. Chem. Chem. Tech., 11(2), 226-229. https://doi.org/10.23939/chcht11.02.226 | |
| dc.relation.references | 8. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O., Kochubei, V. (2020). Rubber Crumb Modified Bitumen Produced from Crude Oil Residuals of Ukrainian Deposits. Chem. Chem. Tech. 14(4), 420-425. https://doi.org/10.23939/chcht14.03.420 | |
| dc.relation.references | 9. Oboirien, B.O., North B.C. (2017). A review of waste tyre gasification. J. Environ. Chem. Eng., 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057 | |
| dc.relation.references | 10. Xi-Shan, T., Wei-Hua, Z., Dong-Qing, L.I. (2006). Combustion characteristics of the waste tire by thermo-gravimetric analysis. J. Nanjing Univ. Technol. 28, 85-88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020 | |
| dc.relation.references | 11. Williams, P.T. (2013). Pyrolysis of waste tyres: a review. Waste Manag., 33, 1714-1728. https://doi.org/10.1016/j.wasman.2013.05.003 | |
| dc.relation.references | 12. Martinez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., Mastral, A.M. (2013). Waste tyre pyrolysis - a review. Renew. Sustain. Energy Rev., 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038 | |
| dc.relation.references | 13. Zhang, X., Tang, J., Chen, J. Behavior of sulfur during pyrolysis of waste tires: A critical review. J. Energy Inst., 102, 302-314 (2022). https://doi.org/10.1016/j.joei.2022.04.006 | |
| dc.relation.references | 14. Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis - a review. Renew. Sustain. Energy Rev., 129, 109932. https://doi.org/10.1016/j.rser.2020.109932 | |
| dc.relation.references | 15. Sagar, M., Nibedita, K., Manohar, N., Raj Kumar, K., Suchismita, S., Pradnyesh, A., Babul Reddy, A., Rotimi Sadiku, E., Gupta, U.N., Lachi,t P., Jayaramudu, J. (2018). A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Management. 74, 110-122. https://doi.org/10.1016/j.wasman.2018.01.003 | |
| dc.relation.references | 16. Feng, Z., Rao, W., Chen, Ch., Tian, B., Li, X., Li, P., Guo, Q. (2016). Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres. Constr. Build. Mater., 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143 | |
| dc.relation.references | 17. Wu X., Wang Sh., Dong R. (2016). Lightly pyrolyzed tire rubber used as potential asphalt alternative. Constr. Build. Mater., 112, 623-628. https://doi.org/10.1016/j.conbuildmat.2016.02.208 | |
| dc.relation.references | 18. DSTU ISO 589:2015 (2015). Hard coal - Determination of total moisture (ISO 589:2008, IDT). [Valid from 01.01.2016]. | |
| dc.relation.references | 19. ISO 1171:1997 Solid mineral fuels - Determination of ash. | |
| dc.relation.references | 20. DSTU ISO 562:2015 (2015). Hard coal and coke - Determination of volatile matter (ISO 562:2010, IDT). [Valid from 01.01.2016]. | |
| dc.relation.references | 21. ISO 351:1996 (1996). Solid mineral fuels - Determination of total sulfur - High temperature combustion method. | |
| dc.relation.references | 22. DSTU ISO 1928:2006 (2006). Solid mineral fuels. Determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value (ISO 1928:1995, IDT). [Valid from 01.07.2008]. | |
| dc.relation.references | 23. ISO 625:1996 (1996). Solid mineral fuels - Determination of carbon and hydrogen - Liebig method. | |
| dc.relation.references | 24. DSTU 9169:2021 (2021). Bitumen and bituminous binders determination of resistance to stripping from mineral material. [Valid from 01.08.2022]. | |
| dc.relation.references | 25. EN 1427:2015 (2015). Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method). [Valid from 01.06.2019]. | |
| dc.relation.references | 26. EN 1426:2015 (2015). Bitumen and bituminous binders - Determination of needle penetration). [Valid from 01.06.2019]. | |
| dc.relation.references | 27. DSTU 8825:2019 (2015). Bitumen and bitumen binders. Determination of tensile strength. [Valid from 01.01.2020]. | |
| dc.relation.references | 28. DSTU 8787:2018 (2018). Bitumen and bituminous binders. Method for determining adhesion to crushed stone [Valid from 01.06.2019]. | |
| dc.relation.references | 29. ДСТУ EN 13398:2018 (2018). Bitumen and bituminous binders. Determination of the elasticity (EN 13398:2017, IDT). [Valid from 01.12.2019]. | |
| dc.relation.references | 30. DSTU Б EN 12607-1:2015 (2015). Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 1. RTFOT method (EN 12607-1:2014, IDT). [Valid from 01.07.2016]. | |
| dc.relation.references | 31. DSTU 4044:2019 (2015). Bitumens petroleum. Specifications [Valid from 01.05.2020]. | |
| dc.relation.references | 32. Prysiazhnyi, Y., Borbeyiyong, G. I., Pyshyev, S. (2022). Preparation and Application of Coumarone-Indene-Carbazole Resin as a Modifier of Road Petroleum Bitumen. 1. Influence of Carbazole:Raw Materials Ratio. Chem. Chem. Tech., 16(2), 284-294. https://doi.org/10.23939/chcht16.02.284 | |
| dc.relation.references | 33. SOU 45.2-00018112-067:2011. Road bitumen, modified with adhesive additives. Specifications. Change № 1. [Valid from 01.09.2011]. | |
| dc.relation.referencesen | 1. Hita, I., Arabiourrutia, M., Olazar, M., Bilbao, J., Arandes, J. M., Castaño, P. (2016). Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable Sustainable Energy Rev., 56, 745-759. https://doi.org/10.1016/j.rser.2015.11.081. | |
| dc.relation.referencesen | 2. Song, W., Zhou, J., Li, Y., Li, Sh., Yang, J. (2021). Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue. Renew. Energy., 173, 283-296. https://doi.org/10.1016/j.renene.2021.03.090 | |
| dc.relation.referencesen | 3. Pyshyev, S., Lypko, Y., Chervinskyy, T., Fedevych, O., Kułażyński, M., Pstrowska, K. (2023). Application of tyre derived pyrolysis oil as a fuel component. S. Afr. J. Chem. Eng., 43, 342-347. https://doi.org/10.1016/j.sajce.2022.12.003 | |
| dc.relation.referencesen | 4. Moasas, A. M., Amin, M. N., Khan, K., Ahmad, W., Al-Hashem, M. N. A., Deifalla, A. F., Ahmad, A. (2022). Case Stud. Constr. Mater., 17, 2214-5095. https://doi.org/10.1016/j.cscm.2022.e01677 | |
| dc.relation.referencesen | 5. Przydatek, G., Budzik, G. & Janik, M. (2022). Effectiveness of selected issues related to used tyre management in Poland. Environ Sci Pollut Res., 29, 31467-31475. https://doi.org/10.1007/s11356-022-18494-7 | |
| dc.relation.referencesen | 6. Han, J., Li, W., Liu, D., Qin, L., Chen, W., Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. J. Anal. Appl. Pyrolysis., 129, 1-5. https://doi.org/10.1016/j.jaap.2017.12.016 | |
| dc.relation.referencesen | 7. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O. (2017). Bitumen compositions for cold applied roofing products. Chem. Chem. Tech., 11(2), 226-229. https://doi.org/10.23939/chcht11.02.226 | |
| dc.relation.referencesen | 8. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O., Kochubei, V. (2020). Rubber Crumb Modified Bitumen Produced from Crude Oil Residuals of Ukrainian Deposits. Chem. Chem. Tech. 14(4), 420-425. https://doi.org/10.23939/chcht14.03.420 | |
| dc.relation.referencesen | 9. Oboirien, B.O., North B.C. (2017). A review of waste tyre gasification. J. Environ. Chem. Eng., 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057 | |
| dc.relation.referencesen | 10. Xi-Shan, T., Wei-Hua, Z., Dong-Qing, L.I. (2006). Combustion characteristics of the waste tire by thermo-gravimetric analysis. J. Nanjing Univ. Technol. 28, 85-88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020 | |
| dc.relation.referencesen | 11. Williams, P.T. (2013). Pyrolysis of waste tyres: a review. Waste Manag., 33, 1714-1728. https://doi.org/10.1016/j.wasman.2013.05.003 | |
| dc.relation.referencesen | 12. Martinez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., Mastral, A.M. (2013). Waste tyre pyrolysis - a review. Renew. Sustain. Energy Rev., 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038 | |
| dc.relation.referencesen | 13. Zhang, X., Tang, J., Chen, J. Behavior of sulfur during pyrolysis of waste tires: A critical review. J. Energy Inst., 102, 302-314 (2022). https://doi.org/10.1016/j.joei.2022.04.006 | |
| dc.relation.referencesen | 14. Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis - a review. Renew. Sustain. Energy Rev., 129, 109932. https://doi.org/10.1016/j.rser.2020.109932 | |
| dc.relation.referencesen | 15. Sagar, M., Nibedita, K., Manohar, N., Raj Kumar, K., Suchismita, S., Pradnyesh, A., Babul Reddy, A., Rotimi Sadiku, E., Gupta, U.N., Lachi,t P., Jayaramudu, J. (2018). A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Management. 74, 110-122. https://doi.org/10.1016/j.wasman.2018.01.003 | |
| dc.relation.referencesen | 16. Feng, Z., Rao, W., Chen, Ch., Tian, B., Li, X., Li, P., Guo, Q. (2016). Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres. Constr. Build. Mater., 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143 | |
| dc.relation.referencesen | 17. Wu X., Wang Sh., Dong R. (2016). Lightly pyrolyzed tire rubber used as potential asphalt alternative. Constr. Build. Mater., 112, 623-628. https://doi.org/10.1016/j.conbuildmat.2016.02.208 | |
| dc.relation.referencesen | 18. DSTU ISO 589:2015 (2015). Hard coal - Determination of total moisture (ISO 589:2008, IDT). [Valid from 01.01.2016]. | |
| dc.relation.referencesen | 19. ISO 1171:1997 Solid mineral fuels - Determination of ash. | |
| dc.relation.referencesen | 20. DSTU ISO 562:2015 (2015). Hard coal and coke - Determination of volatile matter (ISO 562:2010, IDT). [Valid from 01.01.2016]. | |
| dc.relation.referencesen | 21. ISO 351:1996 (1996). Solid mineral fuels - Determination of total sulfur - High temperature combustion method. | |
| dc.relation.referencesen | 22. DSTU ISO 1928:2006 (2006). Solid mineral fuels. Determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value (ISO 1928:1995, IDT). [Valid from 01.07.2008]. | |
| dc.relation.referencesen | 23. ISO 625:1996 (1996). Solid mineral fuels - Determination of carbon and hydrogen - Liebig method. | |
| dc.relation.referencesen | 24. DSTU 9169:2021 (2021). Bitumen and bituminous binders determination of resistance to stripping from mineral material. [Valid from 01.08.2022]. | |
| dc.relation.referencesen | 25. EN 1427:2015 (2015). Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method). [Valid from 01.06.2019]. | |
| dc.relation.referencesen | 26. EN 1426:2015 (2015). Bitumen and bituminous binders - Determination of needle penetration). [Valid from 01.06.2019]. | |
| dc.relation.referencesen | 27. DSTU 8825:2019 (2015). Bitumen and bitumen binders. Determination of tensile strength. [Valid from 01.01.2020]. | |
| dc.relation.referencesen | 28. DSTU 8787:2018 (2018). Bitumen and bituminous binders. Method for determining adhesion to crushed stone [Valid from 01.06.2019]. | |
| dc.relation.referencesen | 29. DSTU EN 13398:2018 (2018). Bitumen and bituminous binders. Determination of the elasticity (EN 13398:2017, IDT). [Valid from 01.12.2019]. | |
| dc.relation.referencesen | 30. DSTU B EN 12607-1:2015 (2015). Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 1. RTFOT method (EN 12607-1:2014, IDT). [Valid from 01.07.2016]. | |
| dc.relation.referencesen | 31. DSTU 4044:2019 (2015). Bitumens petroleum. Specifications [Valid from 01.05.2020]. | |
| dc.relation.referencesen | 32. Prysiazhnyi, Y., Borbeyiyong, G. I., Pyshyev, S. (2022). Preparation and Application of Coumarone-Indene-Carbazole Resin as a Modifier of Road Petroleum Bitumen. 1. Influence of Carbazole:Raw Materials Ratio. Chem. Chem. Tech., 16(2), 284-294. https://doi.org/10.23939/chcht16.02.284 | |
| dc.relation.referencesen | 33. SOU 45.2-00018112-067:2011. Road bitumen, modified with adhesive additives. Specifications. Change No 1. [Valid from 01.09.2011]. | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2015.11.081 | |
| dc.relation.uri | https://doi.org/10.1016/j.renene.2021.03.090 | |
| dc.relation.uri | https://doi.org/10.1016/j.sajce.2022.12.003 | |
| dc.relation.uri | https://doi.org/10.1016/j.cscm.2022.e01677 | |
| dc.relation.uri | https://doi.org/10.1007/s11356-022-18494-7 | |
| dc.relation.uri | https://doi.org/10.1016/j.jaap.2017.12.016 | |
| dc.relation.uri | https://doi.org/10.23939/chcht11.02.226 | |
| dc.relation.uri | https://doi.org/10.23939/chcht14.03.420 | |
| dc.relation.uri | https://doi.org/10.1016/j.jece.2017.09.057 | |
| dc.relation.uri | https://doi.org/10.3969/j.issn.1671-7627.2006.02.020 | |
| dc.relation.uri | https://doi.org/10.1016/j.wasman.2013.05.003 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2013.02.038 | |
| dc.relation.uri | https://doi.org/10.1016/j.joei.2022.04.006 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2020.109932 | |
| dc.relation.uri | https://doi.org/10.1016/j.wasman.2018.01.003 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2016.02.143 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2016.02.208 | |
| dc.relation.uri | https://doi.org/10.23939/chcht16.02.284 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | відпрацьовані шини | |
| dc.subject | піроліз | |
| dc.subject | карбонізований залишок | |
| dc.subject | модифікування бітумів | |
| dc.subject | адгезійна добавка | |
| dc.subject | waste tires | |
| dc.subject | pyrolysis | |
| dc.subject | carbon black | |
| dc.subject | bitumen modifier | |
| dc.subject | adhesive additive | |
| dc.title | Використання карбонізованого залишку процесу піролізу вживаних автомобільних шин як модифікатора дорожніх бітумів | |
| dc.title.alternative | Use of carbonized residue from the pyrolysis process of waste tires as a modifier of road bitumen | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1