Energy Efficient RANSAC Algorithm for Flat Surface Detection in Point Clouds

dc.citation.epage53
dc.citation.issue1
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage47
dc.contributor.affiliationНаціональний технічний університет України “Київський політехнічний інститут імені Ігоря Сікорського”
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.authorЖученко, Анатолій
dc.contributor.authorКучкін, Олексій
dc.contributor.authorСазонов, Артем
dc.contributor.authorЗгурський, Данило
dc.contributor.authorZhuchenko, Anatoliy
dc.contributor.authorKuchkin, Oleksiy
dc.contributor.authorSazonov, Artem
dc.contributor.authorZghurskyi, Danylo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-08T08:27:46Z
dc.date.available2024-02-08T08:27:46Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractАвтоматичні системи контролю мобільних роботів досягають більшої ефективності за рахунок використання робастних алгоритмів навігації на основі оптичних датчиків, які формують тривимірну карту навколо об’єкта керування. Робота таких алгоритмів, зазвичай, спрямована на: детектування ключових об’єктів навколишнього середовища; пошук попередньо визначених об’єктів для релокації власного положення робота. Для вирішення проблеми детектування об’єктів із хмар точок існує багато різних підходів, але обчислювальна складність більшості із них висока. В цій роботі досліджено різні варіації методу консенсусу випадкової вибірки (RANSAC) для детектування об’єктів, заданих математичною моделлю аналітичного виду. Для порівняння методів використано статистичні характеристики аналізу даних. Результати демонструють найенергоефективніший метод виявлення площин, який обробляє 60 кадрів RGB-D камери за секунду.
dc.description.abstractMobile robots control systems achieve greater efficiency through the use of robust environmental analysis algorithms based on data collected from optical sensors such as depth cameras, Light Detection and Ranging sensors (LIDARs). These data sources provide information about control object environment in point cloud. The work of such algorithms, as a rule, is aimed at detecting the objects of interest and searching for the specified objects, as well as relocating its own position on the scene. There are many different approaches for solving object detection problem in point clouds, but most of them require high computational resources. In this work, many variations of the random sample consensus (RANSAC) method are analyzed for objects defined by a mathematical model of an analytical form. Statistical characteristics of data analysis were used to compare the methods. The results demonstrate the most energy efficient flat surface detection method that processes 60 RGB-D camera frames per second.
dc.format.extent47-53
dc.format.pages7
dc.identifier.citationEnergy Efficient RANSAC Algorithm for Flat Surface Detection in Point Clouds / Anatoliy Zhuchenko, Oleksiy Kuchkin, Artem Sazonov, Danylo Zghurskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 1. — P. 47–53.
dc.identifier.citationenEnergy Efficient RANSAC Algorithm for Flat Surface Detection in Point Clouds / Anatoliy Zhuchenko, Oleksiy Kuchkin, Artem Sazonov, Danylo Zghurskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 1. — P. 47–53.
dc.identifier.doidoi.org/10.23939/jeecs2023.01.047
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61156
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 1 (9), 2023
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (9), 2023
dc.relation.references[1] J. Ren, K. McIsaac, and R. Patel, “Modified newton’s method applied to potential field-based navigation for mobile robots,” IEEE Transactions on Robotics, vol. 22, No. 2, pp. 384–391, 2006.
dc.relation.references[2] Aldao, E.; González-de Santos, L.M.; González-Jorge, H. LiDAR Based Detect and Avoid System for UAV Navigation in UAM Corridors. Drones 2022, 6, 185. https://doi.org/10.3390/drones6080185.
dc.relation.references[3] Matous Vrba, Viktor Walter and Martin Saska. On Onboard LiDAR-based Flying Object Detection. 9 Mar 2023. https://arxiv.org/pdf/2303.05404.pdf
dc.relation.references[4] Abhijeet Shenoi, Mihir Patel, JunYoung Gwak, Patrick Goebel, Amir Sadeghian, Hamid Rezatofighi, Roberto Mart´ın-Mart´ın, Silvio Savarese. JRMOT: A Multi-Modal Real-Time 3D Multi-Object Tracker and a New Large-Scale Dataset. 22 Jul 2020. https://arxiv.org/pdf/2002.08397.pdf
dc.relation.references[5] Jinze Liu, Minzhe Li, Jiunn-Kai Huang, Jessy W. Grizzle. Realtime Safety Control for Bipedal Robots to Avoid Multiple Obstacles via CLF-CBF Constraints. 5 Jan 2023. https://arxiv.org/pdf/2301.01906.pdf
dc.relation.references[6] Jiaqi Yang, Zhiqiang Huang, Siwen Quan, Qian Zhang, Yanning Zhang, Senior Member, IEEE and Zhiguo Cao. On Efficient and Robust Metrics for RANSAC Hypotheses and 3D Rigid Registration.10 Nov 2020. https://arxiv.org/pdf/2011.04862.pdf
dc.relation.references[7] Sunglok Choi1, Taemin Kim2, Wonpil Yu1. Performance Evaluation of RANSAC Family. BMVC 2009 doi:10.5244/C.23.81
dc.relation.references[8] Bin Tan, Nan Xue, Tianfu Wu, Gui-Song Xia. NOPE-SAC: Neural One-Plane RANSAC for Sparse-View Planar 3D Reconstruction. 30 Nov 2022. https://arxiv.org/pdf/2211.16799.pdf
dc.relation.references[9] Fisher, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography; Comm. of the ACM 24(6), 381–395, 1981.
dc.relation.references[10] Jiri Matas and Ondrej Chum. Randomized RANSAC with Td, d test. Image and Vision Computing, 22(10):837–842, September 2004.
dc.relation.references[11] J. Matas, O. Chum. Randomized RANSAC with sequential probability ratio test. 05 December 2005. DOI: 10.1109/ICCV.2005.198
dc.relation.references[12] Torr, P., Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. DOI:10.1006/cviu.1999.0832.
dc.relation.references[13] Chum, O., Matas, J. Matching with PROSAC – Progressive sample consensus. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Vol. 1, pp. 220–226.
dc.relation.references[14] Ehsan Shojaedinia, Mahshid Majda, Reza Safabakhsha. Novel Adaptive Genetic Algorithm Sample Consensus. 26 Nov. 2017. https://arxiv.org/pdf/1711.09398.pdf
dc.relation.references[15] Zhang, Qingming, Buhai Shi, and Haibo Xu. 2019. “Least Squares Consensus for Matching Local Features” Information, 10, No. 9: 275. https://doi.org/10.3390/info10090275
dc.relation.referencesen[1] J. Ren, K. McIsaac, and R. Patel, "Modified newton’s method applied to potential field-based navigation for mobile robots," IEEE Transactions on Robotics, vol. 22, No. 2, pp. 384–391, 2006.
dc.relation.referencesen[2] Aldao, E.; González-de Santos, L.M.; González-Jorge, H. LiDAR Based Detect and Avoid System for UAV Navigation in UAM Corridors. Drones 2022, 6, 185. https://doi.org/10.3390/drones6080185.
dc.relation.referencesen[3] Matous Vrba, Viktor Walter and Martin Saska. On Onboard LiDAR-based Flying Object Detection. 9 Mar 2023. https://arxiv.org/pdf/2303.05404.pdf
dc.relation.referencesen[4] Abhijeet Shenoi, Mihir Patel, JunYoung Gwak, Patrick Goebel, Amir Sadeghian, Hamid Rezatofighi, Roberto Mart´ın-Mart´ın, Silvio Savarese. JRMOT: A Multi-Modal Real-Time 3D Multi-Object Tracker and a New Large-Scale Dataset. 22 Jul 2020. https://arxiv.org/pdf/2002.08397.pdf
dc.relation.referencesen[5] Jinze Liu, Minzhe Li, Jiunn-Kai Huang, Jessy W. Grizzle. Realtime Safety Control for Bipedal Robots to Avoid Multiple Obstacles via CLF-CBF Constraints. 5 Jan 2023. https://arxiv.org/pdf/2301.01906.pdf
dc.relation.referencesen[6] Jiaqi Yang, Zhiqiang Huang, Siwen Quan, Qian Zhang, Yanning Zhang, Senior Member, IEEE and Zhiguo Cao. On Efficient and Robust Metrics for RANSAC Hypotheses and 3D Rigid Registration.10 Nov 2020. https://arxiv.org/pdf/2011.04862.pdf
dc.relation.referencesen[7] Sunglok Choi1, Taemin Kim2, Wonpil Yu1. Performance Evaluation of RANSAC Family. BMVC 2009 doi:10.5244/P.23.81
dc.relation.referencesen[8] Bin Tan, Nan Xue, Tianfu Wu, Gui-Song Xia. NOPE-SAC: Neural One-Plane RANSAC for Sparse-View Planar 3D Reconstruction. 30 Nov 2022. https://arxiv.org/pdf/2211.16799.pdf
dc.relation.referencesen[9] Fisher, M., Bolles, R., Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography; Comm. of the ACM 24(6), 381–395, 1981.
dc.relation.referencesen[10] Jiri Matas and Ondrej Chum. Randomized RANSAC with Td, d test. Image and Vision Computing, 22(10):837–842, September 2004.
dc.relation.referencesen[11] J. Matas, O. Chum. Randomized RANSAC with sequential probability ratio test. 05 December 2005. DOI: 10.1109/ICCV.2005.198
dc.relation.referencesen[12] Torr, P., Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. DOI:10.1006/cviu.1999.0832.
dc.relation.referencesen[13] Chum, O., Matas, J. Matching with PROSAC – Progressive sample consensus. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Vol. 1, pp. 220–226.
dc.relation.referencesen[14] Ehsan Shojaedinia, Mahshid Majda, Reza Safabakhsha. Novel Adaptive Genetic Algorithm Sample Consensus. 26 Nov. 2017. https://arxiv.org/pdf/1711.09398.pdf
dc.relation.referencesen[15] Zhang, Qingming, Buhai Shi, and Haibo Xu. 2019. "Least Squares Consensus for Matching Local Features" Information, 10, No. 9: 275. https://doi.org/10.3390/info10090275
dc.relation.urihttps://doi.org/10.3390/drones6080185
dc.relation.urihttps://arxiv.org/pdf/2303.05404.pdf
dc.relation.urihttps://arxiv.org/pdf/2002.08397.pdf
dc.relation.urihttps://arxiv.org/pdf/2301.01906.pdf
dc.relation.urihttps://arxiv.org/pdf/2011.04862.pdf
dc.relation.urihttps://arxiv.org/pdf/2211.16799.pdf
dc.relation.urihttps://arxiv.org/pdf/1711.09398.pdf
dc.relation.urihttps://doi.org/10.3390/info10090275
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectконсенсус випадкової вибірки
dc.subjectдетектування площин
dc.subjectБПЛА
dc.subjectRANSAC
dc.subjectplane detection
dc.subjectpoint cloud
dc.subjectUAV
dc.titleEnergy Efficient RANSAC Algorithm for Flat Surface Detection in Point Clouds
dc.title.alternativeЕнергоефективний RANSAC алгоритм для детектування площин у хмарі точок
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v9n1_Zhuchenko_A-Energy_Efficient_RANSAC_47-53.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v9n1_Zhuchenko_A-Energy_Efficient_RANSAC_47-53__COVER.png
Size:
428.29 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: