Oxidative destruction of benzene in the conditions of unstationary cavitation excitation

dc.citation.epage44
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage38
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут хімічної технології, Мумбаї
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Chemical Technology, Mumbai
dc.contributor.authorЗнак, З. О.
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorГогейт, П. Р.
dc.contributor.authorМних, Р. В.
dc.contributor.authorТанекар, П.
dc.contributor.authorZnak, Z. O.
dc.contributor.authorSukhatskyi, Y. V.
dc.contributor.authorGogate, P. R.
dc.contributor.authorMnykh, R. V.
dc.contributor.authorThanekar, P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:50Z
dc.date.available2024-02-09T09:24:50Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractВстановлено порогове значення енергії, необхідної для деградації бензену після припинення збудження кавітації. Визначено закономірності окисної деструкції бензену в циклічному режимі “кавітація–експозиція”. Показано можливість деструкції бензену у разі ініціювання процесу введенням до водно-бензенового середовища деякої кількості попередньо кавітаційно активованої його частини. Експериментально підтверджено роль кисню в процесі кавітаційної деградації бензену.
dc.description.abstractThe threshold value of the energy required for the decomposition of benzene after the cessation of cavitation has been established. The regularities of the oxidative destruction of benzene in the cyclic mode “cavitation-exposure” were established. The possibility of destruction of benzene in case of initiation of the process by introducing a certain amount of its cavitationally activated part into the water-benzene medium is shown. The role of oxygen in the cavitation decomposition of benzene was experimentally confirmed.
dc.format.extent38-44
dc.format.pages7
dc.identifier.citationOxidative destruction of benzene in the conditions of unstationary cavitation excitation / Z. O. Znak, Y. V. Sukhatskyi, P. R. Gogate, R. V. Mnykh, P. Thanekar // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 38–44.
dc.identifier.citationenOxidative destruction of benzene in the conditions of unstationary cavitation excitation / Z. O. Znak, Y. V. Sukhatskyi, P. R. Gogate, R. V. Mnykh, P. Thanekar // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 38–44.
dc.identifier.doidoi.org/10.23939/ctas2023.01.038
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61193
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Rahman, W., Khan, M. D., Khan, M. Z., Halder, G. (2018). Anaerobic biodegradation of benzene-laden wastewater under mesophilic environment and simultaneous recovery of methane-rich biogas, Journal of Environmental Chemical Engineering., 6 (2), 2957-2964. doi.org/10.1016/j.jece.2018.04.038.
dc.relation.references2. Atashgahi, S., Hornung, B., Van Der Waals, M. J., Da Rocha, U. N., Hugenholtz, F., Nijsse, B., Molenaar, D., Van Spanning, R., Stams, A. J. M., Gerritse, J., Smidt, H. (2018). A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep., 8, 1–12. doi: 10.1038/s41598-018-22617-x.
dc.relation.references3. Gomathi, Devi, L., Krishnaiah, G.M. (1999). Photocatalytic degradation of p-amino-azo-benzene and p-hydroxy- azo-benzene using various heat treated TiO2 as the photocatalyst. J. Photochem. Photobiol. A: Chem., 121, 141–145.
dc.relation.references4. Yu, H., Ming, H., Zhang, H., Li., Pan, H. K., Liu, Y., Wang, F., Gong, J., Kang, Z. (2012). Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater. Chem. Phys., 137, 113–117. doi.org/10.1016/j.matchemphys.2012.02.076.
dc.relation.references5. Zin, O., Sukhatskiy, Yu., Znak, Z., Lysenko, A. V. (2017). Cavitation decomposition of benzene under acousticradiation of ultrasonicrange. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 868, 273–278.
dc.relation.references6. Znak, Z. O., Sukhatskiy, Yu. V., Zin, O. I., Khomyak, S. V., Mnykh, R. V., Lysenko, A. V. (2018). The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii, 1(116), 72–77.
dc.relation.references7. Braeutigam, P., Wu, Z. L., Stark, A., Ondruschka, B. (2009). Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem. Eng. Technol., 32(5), 745–753. doi:10.1002/ceat.200800626.
dc.relation.references8. Dhanke, P. B., Wagh, S. M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerg. Contam., 6, 20–32. doi: 10.1016/j.ultsonch.2022.106144.
dc.relation.references9. Ramteke, L. P., Gogate, P. R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. Eng. Chem., 28, 247–260. doi.org/10.1016/j.jiec.2015.02.022.
dc.relation.references10. Weschayanwiwat, P., Kunanupap, O., Scamehorn, J. F. (2008). Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures. Chemosphere, 72, 1043–1048. DOI: 10.1016/j.chemosphere.2008.03.065.
dc.relation.references11. Wu, Z., Lifka, J., Ondruschka, B. (2004). Aquasonolysis of selected cyclic C6Hx hydrocarbons. Ultrason. Sonochem, 11, 187–190. DOI: 10.1016/j.ultsonch.2004.01.028.
dc.relation.references12. Thanekar, P., Gogate, P. R., Znak, Z., Sukhatskiy, Y., Mnykh, R. (2021). Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrasonics Sonochemistry, 70, 105296. doi.org/10.1016/j.ultsonch.2020.105296.
dc.relation.references13. Barik, A. J., Gogate, P. R. (2016). Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone,. Ultrason. Sonochem, 30, 70–78. DOI: 10.1016/j.ultsonch.2015.11.007.
dc.relation.references14. Goel, M., Hongqiang, H., Mujumdar, A. S., Ray, M. B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds – A comparative study. Water Res., 38. 4247–4261. DOI: 10.1016/j.watres.2004.08.008.
dc.relation.references15. Weavers, L. K., Ling, F. H., Hoffmann, M. R. (1998). Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environ. Sci. Technol, 32, 2727–2733. DOI: 10.1021/es970675a.
dc.relation.referencesen1. Rahman, W., Khan, M. D., Khan, M. Z., Halder, G. (2018). Anaerobic biodegradation of benzene-laden wastewater under mesophilic environment and simultaneous recovery of methane-rich biogas, Journal of Environmental Chemical Engineering., 6 (2), 2957-2964. doi.org/10.1016/j.jece.2018.04.038.
dc.relation.referencesen2. Atashgahi, S., Hornung, B., Van Der Waals, M. J., Da Rocha, U. N., Hugenholtz, F., Nijsse, B., Molenaar, D., Van Spanning, R., Stams, A. J. M., Gerritse, J., Smidt, H. (2018). A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep., 8, 1–12. doi: 10.1038/s41598-018-22617-x.
dc.relation.referencesen3. Gomathi, Devi, L., Krishnaiah, G.M. (1999). Photocatalytic degradation of p-amino-azo-benzene and p-hydroxy- azo-benzene using various heat treated TiO2 as the photocatalyst. J. Photochem. Photobiol. A: Chem., 121, 141–145.
dc.relation.referencesen4. Yu, H., Ming, H., Zhang, H., Li., Pan, H. K., Liu, Y., Wang, F., Gong, J., Kang, Z. (2012). Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater. Chem. Phys., 137, 113–117. doi.org/10.1016/j.matchemphys.2012.02.076.
dc.relation.referencesen5. Zin, O., Sukhatskiy, Yu., Znak, Z., Lysenko, A. V. (2017). Cavitation decomposition of benzene under acousticradiation of ultrasonicrange. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 868, 273–278.
dc.relation.referencesen6. Znak, Z. O., Sukhatskiy, Yu. V., Zin, O. I., Khomyak, S. V., Mnykh, R. V., Lysenko, A. V. (2018). The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii, 1(116), 72–77.
dc.relation.referencesen7. Braeutigam, P., Wu, Z. L., Stark, A., Ondruschka, B. (2009). Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem. Eng. Technol., 32(5), 745–753. doi:10.1002/ceat.200800626.
dc.relation.referencesen8. Dhanke, P. B., Wagh, S. M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerg. Contam., 6, 20–32. doi: 10.1016/j.ultsonch.2022.106144.
dc.relation.referencesen9. Ramteke, L. P., Gogate, P. R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. Eng. Chem., 28, 247–260. doi.org/10.1016/j.jiec.2015.02.022.
dc.relation.referencesen10. Weschayanwiwat, P., Kunanupap, O., Scamehorn, J. F. (2008). Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures. Chemosphere, 72, 1043–1048. DOI: 10.1016/j.chemosphere.2008.03.065.
dc.relation.referencesen11. Wu, Z., Lifka, J., Ondruschka, B. (2004). Aquasonolysis of selected cyclic P.6Hx hydrocarbons. Ultrason. Sonochem, 11, 187–190. DOI: 10.1016/j.ultsonch.2004.01.028.
dc.relation.referencesen12. Thanekar, P., Gogate, P. R., Znak, Z., Sukhatskiy, Y., Mnykh, R. (2021). Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrasonics Sonochemistry, 70, 105296. doi.org/10.1016/j.ultsonch.2020.105296.
dc.relation.referencesen13. Barik, A. J., Gogate, P. R. (2016). Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone,. Ultrason. Sonochem, 30, 70–78. DOI: 10.1016/j.ultsonch.2015.11.007.
dc.relation.referencesen14. Goel, M., Hongqiang, H., Mujumdar, A. S., Ray, M. B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds – A comparative study. Water Res., 38. 4247–4261. DOI: 10.1016/j.watres.2004.08.008.
dc.relation.referencesen15. Weavers, L. K., Ling, F. H., Hoffmann, M. R. (1998). Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environ. Sci. Technol, 32, 2727–2733. DOI: 10.1021/es970675a.
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectбензен
dc.subjectультразвук
dc.subjectкавітація
dc.subjectініціювання
dc.subject“порогова” енергія
dc.subjectперіодичне збудження кавітації
dc.subjectbenzene
dc.subjectultrasound
dc.subjectcavitation
dc.subjectinitiation
dc.subject“threshold” energy
dc.subjectperiodic excitation of cavitation
dc.titleOxidative destruction of benzene in the conditions of unstationary cavitation excitation
dc.title.alternativeОкисна деструкція бензену в умовах нестаціонарного збудження кавітації
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023v6n1_Znak_Z_O-Oxidative_destruction_of_benzene_38-44.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2023v6n1_Znak_Z_O-Oxidative_destruction_of_benzene_38-44__COVER.png
Size:
465.72 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: