Mathematical model of adsorption of high molecular weight compounds in a column-type apparatus

dc.citation.epage178
dc.citation.issue3
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage172
dc.citation.volume9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationJan Dlugosz University in Czestochowa
dc.contributor.authorSabadash, Vira
dc.contributor.authorNowik-Zając, Anna
dc.contributor.authorKonovalov, Oleh
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-13T09:48:15Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractd substances and the design features of the equipment. The purpose of the study was to create a mathematical model that describes the process of adsorption of high-molecular compounds in a column-type apparatus, taking into account the specific properties of the adsorbed substances and the design features of the equipment. Equations that consider the kinetic aspects of adsorption and desorption are used to describe the dynamics of the process. It was noted that the large size of molecules, their complex structure, and environmental conditions can significantly affect the efficiency of the adsorption process. The model considers phenomena such as diffusion in a porous medium, the influence of competition between different components of the mixture, and possible changes in the structure of adsorbed molecules. The obtained data made it possible to determine the optimal conditions for achieving maximum adsorption efficiency and assess the effect of changing the process parameters on the initial products. Comparison of experimental and theoretical data indicates the adequacy of the obtained model and high convergence of results. The developed model can be used for forecasting and optimizing industrial processes, where the adsorption of highmolecular compounds is a crucial stage, Including biotech manufacturing, the pharmaceutical industry, water treatment, and other industries. Thanks to the possibility of predicting the system’s behaviour when conditions change, the model can be a tool for improving existing technological processes, reducing costs and improving the quality of the final product. The developed mathematical model is essential to a deeper understanding of the adsorption processes of high-molecular compounds in column-type devices. It not only allows for the analysis of the current state of the system but also provides for the possibility of its adaptation to new production conditions and needs. This opens up new opportunities for the development of technologies in various industries.
dc.format.extent172-178
dc.format.pages7
dc.identifier.citationSabadash V. Mathematical model of adsorption of high molecular weight compounds in a column-type apparatus / Vira Sabadash, Anna Nowik-Zając, Oleh Konovalov // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 3. — P. 172–178.
dc.identifier.citationenSabadash V. Mathematical model of adsorption of high molecular weight compounds in a column-type apparatus / Vira Sabadash, Anna Nowik-Zając, Oleh Konovalov // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 3. — P. 172–178.
dc.identifier.doidoi.org/10.23939/ep2024.03.172
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64535
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 3 (9), 2024
dc.relation.ispartofEnvironmental Problems, 3 (9), 2024
dc.relation.referencesAguareles, M., Barrabés, E., Myers, T. G., & Valverde, A. (2022). Mathematical Analysis of a Sips-Based Model for Column Adsorption. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.4305495
dc.relation.referencesAguirre-Contreras, S., Leyva-Ramos, R., Ocampo-Pérez, R., Aguilar-Madera, C. G., Flores-Cano, J. V., & MedellínCastillo, N. A. (2023). Mathematical modelling of breakthrough curves for 8-hydroxyquinoline removal from fundamental equilibrium and adsorption rate studies. Journal of Water Process Engineering, 54, 103967. doi: https://doi.org/10.1016/j.jwpe.2023.103967
dc.relation.referencesAlmadani, M. (2023). Adsorption process modelling that reduces COD by activated carbon for wastewater treatment. Chemosphere, 139691. doi: https://doi.org/10.1016/j.chemosphere.2023.139691
dc.relation.referencesGarba, Z. N. (2019). The Relevance of Isotherm and Kinetic Models that Chlorophenols Adsorption: A Review. Avicenna Journal of Environmental Health Engineering, 6(1), 55–65. doi: https://doi.org/10.34172/ajehe.2019.08
dc.relation.referencesGhorbanian, S., Davoudinejad, M., Khakpay, A., & Radpour, S. (2015). Modelling Breakthrough Curves of Citric Acid Adsorption onto Anionic Resins in an Aqueous Solution. Journal of Engineering, 2015, 1–7. doi: https://doi.org/10.1155/2015/139041
dc.relation.referencesHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 95-100. doi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesKindi, H. A., Tambunan, A. H., Hartulistiyoso, E., Salundik, S., Sutoyo, E., & Sutisna, S. P. (2023). Simulation of the Breakthrough Curve During CO2 Adsorption from Biogas in a Fixed Bed Column. ASEAN Journal of Chemical Engineering, 23(3), 318. doi: https://doi.org/10.22146/ajche.82470
dc.relation.referencesLu, D., Xia, Y., Geng, N., Wang, H., Qian, J., & Xu, C. (2022). Estimate Parameters of Soil Solute Transport Processes by Using the Electric Resistivity Method. Processes, 10(5), 975. doi: https://doi.org/10.3390/pr10050975
dc.relation.referencesSabadash, V. (2023). Adsorption of Oil Products by Natural Sorbents. In Studies in Systems, Decision and Control (pp. 137–158). Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-44351-0_7
dc.relation.referencesSabadash, V., & Omelianova, S. (2021). Mathematical prediction of the scale of migration of heavy metals in the soil profile. At the 15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers. doi: https://doi.org/10.3997/2214-4609.20215k2048
dc.relation.referencesSabadash, V., & Gumnitsky, J. (2019). Determination of competitive adsorption regularities in multicomponent systems. Chemistry, Technology and Application of Substances, 2(1), 97–101. doi: https://doi.org/10.23939/ctas2019.01.097
dc.relation.referencesSoudejani, H. T., Kazemian, H., Inglezakis, J., & Zorpas, A. A. (2019). Application of zeolites in organic waste composting: A review. Biocatalysis and Agricultural Biotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesenAguareles, M., Barrabés, E., Myers, T. G., & Valverde, A. (2022). Mathematical Analysis of a Sips-Based Model for Column Adsorption. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.4305495
dc.relation.referencesenAguirre-Contreras, S., Leyva-Ramos, R., Ocampo-Pérez, R., Aguilar-Madera, C. G., Flores-Cano, J. V., & MedellínCastillo, N. A. (2023). Mathematical modelling of breakthrough curves for 8-hydroxyquinoline removal from fundamental equilibrium and adsorption rate studies. Journal of Water Process Engineering, 54, 103967. doi: https://doi.org/10.1016/j.jwpe.2023.103967
dc.relation.referencesenAlmadani, M. (2023). Adsorption process modelling that reduces COD by activated carbon for wastewater treatment. Chemosphere, 139691. doi: https://doi.org/10.1016/j.chemosphere.2023.139691
dc.relation.referencesenGarba, Z. N. (2019). The Relevance of Isotherm and Kinetic Models that Chlorophenols Adsorption: A Review. Avicenna Journal of Environmental Health Engineering, 6(1), 55–65. doi: https://doi.org/10.34172/ajehe.2019.08
dc.relation.referencesenGhorbanian, S., Davoudinejad, M., Khakpay, A., & Radpour, S. (2015). Modelling Breakthrough Curves of Citric Acid Adsorption onto Anionic Resins in an Aqueous Solution. Journal of Engineering, 2015, 1–7. doi: https://doi.org/10.1155/2015/139041
dc.relation.referencesenHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 95-100. doi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesenKindi, H. A., Tambunan, A. H., Hartulistiyoso, E., Salundik, S., Sutoyo, E., & Sutisna, S. P. (2023). Simulation of the Breakthrough Curve During CO2 Adsorption from Biogas in a Fixed Bed Column. ASEAN Journal of Chemical Engineering, 23(3), 318. doi: https://doi.org/10.22146/ajche.82470
dc.relation.referencesenLu, D., Xia, Y., Geng, N., Wang, H., Qian, J., & Xu, C. (2022). Estimate Parameters of Soil Solute Transport Processes by Using the Electric Resistivity Method. Processes, 10(5), 975. doi: https://doi.org/10.3390/pr10050975
dc.relation.referencesenSabadash, V. (2023). Adsorption of Oil Products by Natural Sorbents. In Studies in Systems, Decision and Control (pp. 137–158). Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-44351-0_7
dc.relation.referencesenSabadash, V., & Omelianova, S. (2021). Mathematical prediction of the scale of migration of heavy metals in the soil profile. At the 15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers. doi: https://doi.org/10.3997/2214-4609.20215k2048
dc.relation.referencesenSabadash, V., & Gumnitsky, J. (2019). Determination of competitive adsorption regularities in multicomponent systems. Chemistry, Technology and Application of Substances, 2(1), 97–101. doi: https://doi.org/10.23939/ctas2019.01.097
dc.relation.referencesenSoudejani, H. T., Kazemian, H., Inglezakis, J., & Zorpas, A. A. (2019). Application of zeolites in organic waste composting: A review. Biocatalysis and Agricultural Biotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.urihttps://doi.org/10.2139/ssrn.4305495
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2023.103967
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.139691
dc.relation.urihttps://doi.org/10.34172/ajehe.2019.08
dc.relation.urihttps://doi.org/10.1155/2015/139041
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.22146/ajche.82470
dc.relation.urihttps://doi.org/10.3390/pr10050975
dc.relation.urihttps://doi.org/10.1007/978-3-031-44351-0_7
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215k2048
dc.relation.urihttps://doi.org/10.23939/ctas2019.01.097
dc.relation.urihttps://doi.org/10.1016/j.bcab.2019.101396
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Sabadash V., Nowik-Zając A., Konovalov O., 2024
dc.subjectwastewater
dc.subjectmacromolecular compounds
dc.subjectadsorption dynamics
dc.subjectalbumin
dc.subjectactivated carbon
dc.subjectcolumn-type devices
dc.titleMathematical model of adsorption of high molecular weight compounds in a column-type apparatus
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n3_Sabadash_V-Mathematical_model_of_172-178.pdf
Size:
440.91 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n3_Sabadash_V-Mathematical_model_of_172-178__COVER.png
Size:
1.08 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: