Drying of cenospheres recovered by the wet-based method from coal fly ash for their rational use

dc.citation.epage276
dc.citation.issue4
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage271
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKindzera, Diana
dc.contributor.authorAtamanyuk, Volodymyr
dc.contributor.authorHosovskyi, Roman
dc.contributor.authorMitin, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T08:00:42Z
dc.date.available2024-04-03T08:00:42Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractSince slag and coal fly ash (CFA) are major global pollutants produced by thermal power plants (TPPs), special attention should be paid to their rational disposal. Scanning electron microscopy (SEM) was used to study the morphology of CFA and it was suggested that the use potential of CFA is high due to the presence of a large number of cenospheres (CSs), that can be recovered mostly by wet methods for the production of the wide range of products with improved properties. However, such decisions regarding the application of the cenospheres are largely related to the problem of their drying after removal. The article is devoted to the investigation of the filtration method as less energy-consuming for the drying of cenospheres. The effect of the drying agent velocity on the mass transfer intensity has been established. The values of mass transfer coefficients have been calculated based on the thin-layer experimental data and equation . Calculated mass transfer coefficients for cenospheres have been correlated by the dimensionless expression , based on which equation has been proposed to calculate the mass transfer coefficients, which is important at the filtration drying equipment design stage.
dc.format.extent271-276
dc.format.pages6
dc.identifier.citationDrying of cenospheres recovered by the wet-based method from coal fly ash for their rational use / Diana Kindzera, Volodymyr Atamanyuk, Roman Hosovskyi, Ihor Mitin // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 271–276.
dc.identifier.citationenDrying of cenospheres recovered by the wet-based method from coal fly ash for their rational use / Diana Kindzera, Volodymyr Atamanyuk, Roman Hosovskyi, Ihor Mitin // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 271–276.
dc.identifier.doidoi.org/10.23939/ep2023.04.271
dc.identifier.issn2414-5950
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61646
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 4 (8), 2023
dc.relation.ispartofEnvironmental Problems, 4 (8), 2023
dc.relation.referencesAdesina, A. (2020). Sustainable application of cenospheres in cementitious materials—Overview of performance. Developments in the Built Environment, 4, 100029. doi: https://doi.org/10.1016/j.dibe.2020.100029
dc.relation.referencesArizmendi-Morquecho, A., Chávez-Valdez, A., & Alvarez-Quintana, J. (2012). High temperature thermal barrier coatings from recycled fly ash cenospheres. Applied Thermal Engineering, 48, 117–121. doi: https://doi.org/10.1016/j.applthermaleng.2012.05.004
dc.relation.referencesBadanoiu, A., & Voicu, G. (2011) Influence of raw materials characteristics and processing parameters on the strength of geopolymer cements based on fly ash. Environmental Engineering and Management Journal, 10, 673-681. doi: https://doi.org/10.30638/eemj.2011.091
dc.relation.referencesCheng, T. W., Ueng, T. H., Chen, Y. S., & Chiu, J. P. (2002). Production of glass-ceramic from incinerator fly ash. Ceramics International, 28, 779–783. doi: https://doi.org/10.1016/S0272-8842(02)00043-3
dc.relation.referencesDzikuć,M., Kuryło, P., Dudziak, R., Szufa, S., Dzikuć, M., & Godzisz, K. (2020). Selected Aspects of Combustion Optimization of Coal in Power Plants. Energies, 13(9), 2208. doi: https://doi.org/10.3390/en13092208
dc.relation.referencesGoga, F., Dudric, R., Cormos, C., Imre, F., Bizo, L., & Misca R. (2013). Fly ash from thermal power plant, raw material for glass-ceramic. Environmental Engineering and Management Journal, 12(2), 337-342. doi: https://doi.org/10.30638/eemj.2013.041
dc.relation.referencesGoodarzi, F., & Sanei, H. (2009). Plerosphere and its role in reduction of emitted fine fly ash particles from pulverized coal-fired power plants. Fuel, 88, 382–386. doi: https://doi.org/10.1016/j.fuel.2008.08.015
dc.relation.referencesHaustein, E., & Kuryłowicz-Cudowska, A. (2020). The Effect of Fly Ash Microspheres on the Pore Structure of Concrete. Minerals, 10, 58. doi: https://doi.org/10.3390/min10010058
dc.relation.referencesHirajima, T., Petrus, H.T.B.M., Oosako, Y., Nonaka, M., Sasaki, K., & Ando, T. (2010). Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application. International Journal of Mineral Processing, 95(1-4), 18–24. doi: https://doi.org/10.1016/j.minpro.2010.03.004
dc.relation.referencesHower, J.C., Groppo, J.G., Joshi, P., Dai, S., & Moecher, D.P. (2013). Location of Cerium in Coal-Combustion Fly Ashes: Implications for Recovery of Lanthanides. Coal Combustion and Gasification Products, 5, 73–78. doi: https://doi.org/10.4177/CCGP-D-13-00007.1
dc.relation.referencesKindzera, D., Hosovskyi, R., Atamanyuk, V. & Symak, D. (2020). Heat transfer process during drying of grinded biomass in a fixed bed dryer. Chemistry and Chemical Technology, 15(1), 118–124. doi: https://doi.org/10.23939/chcht15.01.118
dc.relation.referencesKosivtsov, Y., Chalov, K., Sulman, M., Lugovoy, Yu., Novichenkova T., Petropavlovskaya, V., Gadzhiev, S., & Popel, O. (2021). Use of Ash and Slag Waste from Thermal Power Plants as an Active Component of Building Materials. Chemical Engineering Transactions, 88, 337-342. doi: https://doi.org/10.3303/CET2188056
dc.relation.referencesMammadov, H., & Gadirov, M. (2018). Application of slags from thermal power station as an effective initial material in the production of artificial porous filler. International Journal of Engineering & Technology, 7(3,14), 461-466. doi: https://doi.org/10.14419/ijet.v7i3.14.17043
dc.relation.referencesMitin, I., Kindzera, D., & Atamanyuk, V. (2021). Application of slag from thermal power plant for the production of porous filler. Journal Environmental Problems, 6(2), 110–116. doi: https://doi.org/10.23939/ep2021.02.110
dc.relation.referencesNakonieczny, D., Antonowicz, M., & Paszenda, Z. (2020). Cenospheres and their application advantages in biomedical engineering — A systematic review. Reviews on Advanced Materials Science, 59, 115–130. doi: https://doi.org/10.1515/rams-2020-0011
dc.relation.referencesNithyanandam, A., & Deivarajan, T. (2021). Development of fly ash cenosphere-based composite for thermal insulation application. International Journal of Applied Ceramic Technology, 18, 1825–1831. doi: https://doi.org/10.1111/ijac.13767
dc.relation.referencesPatel, S. K., Majhi, R. K., Satpathy, H. P., & Nayak, A. N. (2019). Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate. Construction and Building Materials, 226, 579–590. doi: https://doi.org/10.1016/j.conbuildmat.2019.07.304
dc.relation.referencesProgress (2023). Retrieved from https://www.progress.ua/product/heat-mass-exchange-equipment/filtering-a...
dc.relation.referencesShao, Y., Jia, D., Zhou, Y., & Liu, B. (2008). Novel Method for Fabrication of Silicon Nitride/Silicon Oxynitride Composite Ceramic Foams using Fly Ash Cenosphere as a Pore-Forming Agent. Journal of the American Ceramic Society, 91, 3781–3785. doi: https://doi.org/10.1111/j.1551-2916.2008.02702.x
dc.relation.referencesStrzałkowska, E. (2021). Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash. International Journal of Coal Geology, 240, 103746. doi: https://doi.org/10.1016/j.coal.2021.103746
dc.relation.referencesWalker, A., & Wheelock, T.D. (2006). Separation of Carbon from Fly Ash Using Froth Flotation. Coal Preparation, 26, 235–250. doi: https://doi.org/10.1080/07349340601104883
dc.relation.referencesYadav, V. K., Yadav, K. K., Tirth V., Jangid, A., Gnanamoorthy, G., Choudhary, N., Islam, S., Gupta, N., Son, C. T., & Jeon, B.-H. (2021). Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup. Crystals, 11, 1067. doi: https://doi.org/10.3390/cryst11091067
dc.relation.referencesZhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253–267, doi: https://doi.org/10.1016/j.jclepro.2016.03.019
dc.relation.referencesZyrkowski, M., Neto, R.C., Santos, L.F., & Witkowski, K. (2016). Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel, 174, 49–53. doi: https://doi.org/10.1016/j.fuel.2016.01.061
dc.relation.referencesenAdesina, A. (2020). Sustainable application of cenospheres in cementitious materials-Overview of performance. Developments in the Built Environment, 4, 100029. doi: https://doi.org/10.1016/j.dibe.2020.100029
dc.relation.referencesenArizmendi-Morquecho, A., Chávez-Valdez, A., & Alvarez-Quintana, J. (2012). High temperature thermal barrier coatings from recycled fly ash cenospheres. Applied Thermal Engineering, 48, 117–121. doi: https://doi.org/10.1016/j.applthermaleng.2012.05.004
dc.relation.referencesenBadanoiu, A., & Voicu, G. (2011) Influence of raw materials characteristics and processing parameters on the strength of geopolymer cements based on fly ash. Environmental Engineering and Management Journal, 10, 673-681. doi: https://doi.org/10.30638/eemj.2011.091
dc.relation.referencesenCheng, T. W., Ueng, T. H., Chen, Y. S., & Chiu, J. P. (2002). Production of glass-ceramic from incinerator fly ash. Ceramics International, 28, 779–783. doi: https://doi.org/10.1016/S0272-8842(02)00043-3
dc.relation.referencesenDzikuć,M., Kuryło, P., Dudziak, R., Szufa, S., Dzikuć, M., & Godzisz, K. (2020). Selected Aspects of Combustion Optimization of Coal in Power Plants. Energies, 13(9), 2208. doi: https://doi.org/10.3390/en13092208
dc.relation.referencesenGoga, F., Dudric, R., Cormos, C., Imre, F., Bizo, L., & Misca R. (2013). Fly ash from thermal power plant, raw material for glass-ceramic. Environmental Engineering and Management Journal, 12(2), 337-342. doi: https://doi.org/10.30638/eemj.2013.041
dc.relation.referencesenGoodarzi, F., & Sanei, H. (2009). Plerosphere and its role in reduction of emitted fine fly ash particles from pulverized coal-fired power plants. Fuel, 88, 382–386. doi: https://doi.org/10.1016/j.fuel.2008.08.015
dc.relation.referencesenHaustein, E., & Kuryłowicz-Cudowska, A. (2020). The Effect of Fly Ash Microspheres on the Pore Structure of Concrete. Minerals, 10, 58. doi: https://doi.org/10.3390/min10010058
dc.relation.referencesenHirajima, T., Petrus, H.T.B.M., Oosako, Y., Nonaka, M., Sasaki, K., & Ando, T. (2010). Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application. International Journal of Mineral Processing, 95(1-4), 18–24. doi: https://doi.org/10.1016/j.minpro.2010.03.004
dc.relation.referencesenHower, J.C., Groppo, J.G., Joshi, P., Dai, S., & Moecher, D.P. (2013). Location of Cerium in Coal-Combustion Fly Ashes: Implications for Recovery of Lanthanides. Coal Combustion and Gasification Products, 5, 73–78. doi: https://doi.org/10.4177/CCGP-D-13-00007.1
dc.relation.referencesenKindzera, D., Hosovskyi, R., Atamanyuk, V. & Symak, D. (2020). Heat transfer process during drying of grinded biomass in a fixed bed dryer. Chemistry and Chemical Technology, 15(1), 118–124. doi: https://doi.org/10.23939/chcht15.01.118
dc.relation.referencesenKosivtsov, Y., Chalov, K., Sulman, M., Lugovoy, Yu., Novichenkova T., Petropavlovskaya, V., Gadzhiev, S., & Popel, O. (2021). Use of Ash and Slag Waste from Thermal Power Plants as an Active Component of Building Materials. Chemical Engineering Transactions, 88, 337-342. doi: https://doi.org/10.3303/CET2188056
dc.relation.referencesenMammadov, H., & Gadirov, M. (2018). Application of slags from thermal power station as an effective initial material in the production of artificial porous filler. International Journal of Engineering & Technology, 7(3,14), 461-466. doi: https://doi.org/10.14419/ijet.v7i3.14.17043
dc.relation.referencesenMitin, I., Kindzera, D., & Atamanyuk, V. (2021). Application of slag from thermal power plant for the production of porous filler. Journal Environmental Problems, 6(2), 110–116. doi: https://doi.org/10.23939/ep2021.02.110
dc.relation.referencesenNakonieczny, D., Antonowicz, M., & Paszenda, Z. (2020). Cenospheres and their application advantages in biomedical engineering - A systematic review. Reviews on Advanced Materials Science, 59, 115–130. doi: https://doi.org/10.1515/rams-2020-0011
dc.relation.referencesenNithyanandam, A., & Deivarajan, T. (2021). Development of fly ash cenosphere-based composite for thermal insulation application. International Journal of Applied Ceramic Technology, 18, 1825–1831. doi: https://doi.org/10.1111/ijac.13767
dc.relation.referencesenPatel, S. K., Majhi, R. K., Satpathy, H. P., & Nayak, A. N. (2019). Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate. Construction and Building Materials, 226, 579–590. doi: https://doi.org/10.1016/j.conbuildmat.2019.07.304
dc.relation.referencesenProgress (2023). Retrieved from https://www.progress.ua/product/heat-mass-exchange-equipment/filtering-a...
dc.relation.referencesenShao, Y., Jia, D., Zhou, Y., & Liu, B. (2008). Novel Method for Fabrication of Silicon Nitride/Silicon Oxynitride Composite Ceramic Foams using Fly Ash Cenosphere as a Pore-Forming Agent. Journal of the American Ceramic Society, 91, 3781–3785. doi: https://doi.org/10.1111/j.1551-2916.2008.02702.x
dc.relation.referencesenStrzałkowska, E. (2021). Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash. International Journal of Coal Geology, 240, 103746. doi: https://doi.org/10.1016/j.coal.2021.103746
dc.relation.referencesenWalker, A., & Wheelock, T.D. (2006). Separation of Carbon from Fly Ash Using Froth Flotation. Coal Preparation, 26, 235–250. doi: https://doi.org/10.1080/07349340601104883
dc.relation.referencesenYadav, V. K., Yadav, K. K., Tirth V., Jangid, A., Gnanamoorthy, G., Choudhary, N., Islam, S., Gupta, N., Son, C. T., & Jeon, B.-H. (2021). Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup. Crystals, 11, 1067. doi: https://doi.org/10.3390/cryst11091067
dc.relation.referencesenZhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253–267, doi: https://doi.org/10.1016/j.jclepro.2016.03.019
dc.relation.referencesenZyrkowski, M., Neto, R.C., Santos, L.F., & Witkowski, K. (2016). Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel, 174, 49–53. doi: https://doi.org/10.1016/j.fuel.2016.01.061
dc.relation.urihttps://doi.org/10.1016/j.dibe.2020.100029
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2012.05.004
dc.relation.urihttps://doi.org/10.30638/eemj.2011.091
dc.relation.urihttps://doi.org/10.1016/S0272-8842(02)00043-3
dc.relation.urihttps://doi.org/10.3390/en13092208
dc.relation.urihttps://doi.org/10.30638/eemj.2013.041
dc.relation.urihttps://doi.org/10.1016/j.fuel.2008.08.015
dc.relation.urihttps://doi.org/10.3390/min10010058
dc.relation.urihttps://doi.org/10.1016/j.minpro.2010.03.004
dc.relation.urihttps://doi.org/10.4177/CCGP-D-13-00007.1
dc.relation.urihttps://doi.org/10.23939/chcht15.01.118
dc.relation.urihttps://doi.org/10.3303/CET2188056
dc.relation.urihttps://doi.org/10.14419/ijet.v7i3.14.17043
dc.relation.urihttps://doi.org/10.23939/ep2021.02.110
dc.relation.urihttps://doi.org/10.1515/rams-2020-0011
dc.relation.urihttps://doi.org/10.1111/ijac.13767
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.07.304
dc.relation.urihttps://www.progress.ua/product/heat-mass-exchange-equipment/filtering-a..
dc.relation.urihttps://doi.org/10.1111/j.1551-2916.2008.02702.x
dc.relation.urihttps://doi.org/10.1016/j.coal.2021.103746
dc.relation.urihttps://doi.org/10.1080/07349340601104883
dc.relation.urihttps://doi.org/10.3390/cryst11091067
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2016.03.019
dc.relation.urihttps://doi.org/10.1016/j.fuel.2016.01.061
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kindzera D., Atamanyuk V., Hosovskyi R., Mitin I., 2023
dc.subjectthermal power plant (TPP)
dc.subjectslag
dc.subjectcoal fly ash
dc.subjectash/slag dump
dc.subjectash/slag settling pond
dc.subjectcenospheres
dc.subjectutilization
dc.subjectfiltration drying method
dc.subjectmass transfer coefficient
dc.titleDrying of cenospheres recovered by the wet-based method from coal fly ash for their rational use
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n4_Kindzera_D-Drying_of_cenospheres_271-276.pdf
Size:
479.86 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n4_Kindzera_D-Drying_of_cenospheres_271-276__COVER.png
Size:
1.04 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: