Drying of cenospheres recovered by the wet-based method from coal fly ash for their rational use
dc.citation.epage | 276 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Екологічні проблеми | |
dc.citation.spage | 271 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Kindzera, Diana | |
dc.contributor.author | Atamanyuk, Volodymyr | |
dc.contributor.author | Hosovskyi, Roman | |
dc.contributor.author | Mitin, Ihor | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-04-03T08:00:42Z | |
dc.date.available | 2024-04-03T08:00:42Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Since slag and coal fly ash (CFA) are major global pollutants produced by thermal power plants (TPPs), special attention should be paid to their rational disposal. Scanning electron microscopy (SEM) was used to study the morphology of CFA and it was suggested that the use potential of CFA is high due to the presence of a large number of cenospheres (CSs), that can be recovered mostly by wet methods for the production of the wide range of products with improved properties. However, such decisions regarding the application of the cenospheres are largely related to the problem of their drying after removal. The article is devoted to the investigation of the filtration method as less energy-consuming for the drying of cenospheres. The effect of the drying agent velocity on the mass transfer intensity has been established. The values of mass transfer coefficients have been calculated based on the thin-layer experimental data and equation . Calculated mass transfer coefficients for cenospheres have been correlated by the dimensionless expression , based on which equation has been proposed to calculate the mass transfer coefficients, which is important at the filtration drying equipment design stage. | |
dc.format.extent | 271-276 | |
dc.format.pages | 6 | |
dc.identifier.citation | Drying of cenospheres recovered by the wet-based method from coal fly ash for their rational use / Diana Kindzera, Volodymyr Atamanyuk, Roman Hosovskyi, Ihor Mitin // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 271–276. | |
dc.identifier.citationen | Drying of cenospheres recovered by the wet-based method from coal fly ash for their rational use / Diana Kindzera, Volodymyr Atamanyuk, Roman Hosovskyi, Ihor Mitin // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 271–276. | |
dc.identifier.doi | doi.org/10.23939/ep2023.04.271 | |
dc.identifier.issn | 2414-5950 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61646 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Екологічні проблеми, 4 (8), 2023 | |
dc.relation.ispartof | Environmental Problems, 4 (8), 2023 | |
dc.relation.references | Adesina, A. (2020). Sustainable application of cenospheres in cementitious materials—Overview of performance. Developments in the Built Environment, 4, 100029. doi: https://doi.org/10.1016/j.dibe.2020.100029 | |
dc.relation.references | Arizmendi-Morquecho, A., Chávez-Valdez, A., & Alvarez-Quintana, J. (2012). High temperature thermal barrier coatings from recycled fly ash cenospheres. Applied Thermal Engineering, 48, 117–121. doi: https://doi.org/10.1016/j.applthermaleng.2012.05.004 | |
dc.relation.references | Badanoiu, A., & Voicu, G. (2011) Influence of raw materials characteristics and processing parameters on the strength of geopolymer cements based on fly ash. Environmental Engineering and Management Journal, 10, 673-681. doi: https://doi.org/10.30638/eemj.2011.091 | |
dc.relation.references | Cheng, T. W., Ueng, T. H., Chen, Y. S., & Chiu, J. P. (2002). Production of glass-ceramic from incinerator fly ash. Ceramics International, 28, 779–783. doi: https://doi.org/10.1016/S0272-8842(02)00043-3 | |
dc.relation.references | Dzikuć,M., Kuryło, P., Dudziak, R., Szufa, S., Dzikuć, M., & Godzisz, K. (2020). Selected Aspects of Combustion Optimization of Coal in Power Plants. Energies, 13(9), 2208. doi: https://doi.org/10.3390/en13092208 | |
dc.relation.references | Goga, F., Dudric, R., Cormos, C., Imre, F., Bizo, L., & Misca R. (2013). Fly ash from thermal power plant, raw material for glass-ceramic. Environmental Engineering and Management Journal, 12(2), 337-342. doi: https://doi.org/10.30638/eemj.2013.041 | |
dc.relation.references | Goodarzi, F., & Sanei, H. (2009). Plerosphere and its role in reduction of emitted fine fly ash particles from pulverized coal-fired power plants. Fuel, 88, 382–386. doi: https://doi.org/10.1016/j.fuel.2008.08.015 | |
dc.relation.references | Haustein, E., & Kuryłowicz-Cudowska, A. (2020). The Effect of Fly Ash Microspheres on the Pore Structure of Concrete. Minerals, 10, 58. doi: https://doi.org/10.3390/min10010058 | |
dc.relation.references | Hirajima, T., Petrus, H.T.B.M., Oosako, Y., Nonaka, M., Sasaki, K., & Ando, T. (2010). Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application. International Journal of Mineral Processing, 95(1-4), 18–24. doi: https://doi.org/10.1016/j.minpro.2010.03.004 | |
dc.relation.references | Hower, J.C., Groppo, J.G., Joshi, P., Dai, S., & Moecher, D.P. (2013). Location of Cerium in Coal-Combustion Fly Ashes: Implications for Recovery of Lanthanides. Coal Combustion and Gasification Products, 5, 73–78. doi: https://doi.org/10.4177/CCGP-D-13-00007.1 | |
dc.relation.references | Kindzera, D., Hosovskyi, R., Atamanyuk, V. & Symak, D. (2020). Heat transfer process during drying of grinded biomass in a fixed bed dryer. Chemistry and Chemical Technology, 15(1), 118–124. doi: https://doi.org/10.23939/chcht15.01.118 | |
dc.relation.references | Kosivtsov, Y., Chalov, K., Sulman, M., Lugovoy, Yu., Novichenkova T., Petropavlovskaya, V., Gadzhiev, S., & Popel, O. (2021). Use of Ash and Slag Waste from Thermal Power Plants as an Active Component of Building Materials. Chemical Engineering Transactions, 88, 337-342. doi: https://doi.org/10.3303/CET2188056 | |
dc.relation.references | Mammadov, H., & Gadirov, M. (2018). Application of slags from thermal power station as an effective initial material in the production of artificial porous filler. International Journal of Engineering & Technology, 7(3,14), 461-466. doi: https://doi.org/10.14419/ijet.v7i3.14.17043 | |
dc.relation.references | Mitin, I., Kindzera, D., & Atamanyuk, V. (2021). Application of slag from thermal power plant for the production of porous filler. Journal Environmental Problems, 6(2), 110–116. doi: https://doi.org/10.23939/ep2021.02.110 | |
dc.relation.references | Nakonieczny, D., Antonowicz, M., & Paszenda, Z. (2020). Cenospheres and their application advantages in biomedical engineering — A systematic review. Reviews on Advanced Materials Science, 59, 115–130. doi: https://doi.org/10.1515/rams-2020-0011 | |
dc.relation.references | Nithyanandam, A., & Deivarajan, T. (2021). Development of fly ash cenosphere-based composite for thermal insulation application. International Journal of Applied Ceramic Technology, 18, 1825–1831. doi: https://doi.org/10.1111/ijac.13767 | |
dc.relation.references | Patel, S. K., Majhi, R. K., Satpathy, H. P., & Nayak, A. N. (2019). Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate. Construction and Building Materials, 226, 579–590. doi: https://doi.org/10.1016/j.conbuildmat.2019.07.304 | |
dc.relation.references | Progress (2023). Retrieved from https://www.progress.ua/product/heat-mass-exchange-equipment/filtering-a... | |
dc.relation.references | Shao, Y., Jia, D., Zhou, Y., & Liu, B. (2008). Novel Method for Fabrication of Silicon Nitride/Silicon Oxynitride Composite Ceramic Foams using Fly Ash Cenosphere as a Pore-Forming Agent. Journal of the American Ceramic Society, 91, 3781–3785. doi: https://doi.org/10.1111/j.1551-2916.2008.02702.x | |
dc.relation.references | Strzałkowska, E. (2021). Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash. International Journal of Coal Geology, 240, 103746. doi: https://doi.org/10.1016/j.coal.2021.103746 | |
dc.relation.references | Walker, A., & Wheelock, T.D. (2006). Separation of Carbon from Fly Ash Using Froth Flotation. Coal Preparation, 26, 235–250. doi: https://doi.org/10.1080/07349340601104883 | |
dc.relation.references | Yadav, V. K., Yadav, K. K., Tirth V., Jangid, A., Gnanamoorthy, G., Choudhary, N., Islam, S., Gupta, N., Son, C. T., & Jeon, B.-H. (2021). Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup. Crystals, 11, 1067. doi: https://doi.org/10.3390/cryst11091067 | |
dc.relation.references | Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253–267, doi: https://doi.org/10.1016/j.jclepro.2016.03.019 | |
dc.relation.references | Zyrkowski, M., Neto, R.C., Santos, L.F., & Witkowski, K. (2016). Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel, 174, 49–53. doi: https://doi.org/10.1016/j.fuel.2016.01.061 | |
dc.relation.referencesen | Adesina, A. (2020). Sustainable application of cenospheres in cementitious materials-Overview of performance. Developments in the Built Environment, 4, 100029. doi: https://doi.org/10.1016/j.dibe.2020.100029 | |
dc.relation.referencesen | Arizmendi-Morquecho, A., Chávez-Valdez, A., & Alvarez-Quintana, J. (2012). High temperature thermal barrier coatings from recycled fly ash cenospheres. Applied Thermal Engineering, 48, 117–121. doi: https://doi.org/10.1016/j.applthermaleng.2012.05.004 | |
dc.relation.referencesen | Badanoiu, A., & Voicu, G. (2011) Influence of raw materials characteristics and processing parameters on the strength of geopolymer cements based on fly ash. Environmental Engineering and Management Journal, 10, 673-681. doi: https://doi.org/10.30638/eemj.2011.091 | |
dc.relation.referencesen | Cheng, T. W., Ueng, T. H., Chen, Y. S., & Chiu, J. P. (2002). Production of glass-ceramic from incinerator fly ash. Ceramics International, 28, 779–783. doi: https://doi.org/10.1016/S0272-8842(02)00043-3 | |
dc.relation.referencesen | Dzikuć,M., Kuryło, P., Dudziak, R., Szufa, S., Dzikuć, M., & Godzisz, K. (2020). Selected Aspects of Combustion Optimization of Coal in Power Plants. Energies, 13(9), 2208. doi: https://doi.org/10.3390/en13092208 | |
dc.relation.referencesen | Goga, F., Dudric, R., Cormos, C., Imre, F., Bizo, L., & Misca R. (2013). Fly ash from thermal power plant, raw material for glass-ceramic. Environmental Engineering and Management Journal, 12(2), 337-342. doi: https://doi.org/10.30638/eemj.2013.041 | |
dc.relation.referencesen | Goodarzi, F., & Sanei, H. (2009). Plerosphere and its role in reduction of emitted fine fly ash particles from pulverized coal-fired power plants. Fuel, 88, 382–386. doi: https://doi.org/10.1016/j.fuel.2008.08.015 | |
dc.relation.referencesen | Haustein, E., & Kuryłowicz-Cudowska, A. (2020). The Effect of Fly Ash Microspheres on the Pore Structure of Concrete. Minerals, 10, 58. doi: https://doi.org/10.3390/min10010058 | |
dc.relation.referencesen | Hirajima, T., Petrus, H.T.B.M., Oosako, Y., Nonaka, M., Sasaki, K., & Ando, T. (2010). Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application. International Journal of Mineral Processing, 95(1-4), 18–24. doi: https://doi.org/10.1016/j.minpro.2010.03.004 | |
dc.relation.referencesen | Hower, J.C., Groppo, J.G., Joshi, P., Dai, S., & Moecher, D.P. (2013). Location of Cerium in Coal-Combustion Fly Ashes: Implications for Recovery of Lanthanides. Coal Combustion and Gasification Products, 5, 73–78. doi: https://doi.org/10.4177/CCGP-D-13-00007.1 | |
dc.relation.referencesen | Kindzera, D., Hosovskyi, R., Atamanyuk, V. & Symak, D. (2020). Heat transfer process during drying of grinded biomass in a fixed bed dryer. Chemistry and Chemical Technology, 15(1), 118–124. doi: https://doi.org/10.23939/chcht15.01.118 | |
dc.relation.referencesen | Kosivtsov, Y., Chalov, K., Sulman, M., Lugovoy, Yu., Novichenkova T., Petropavlovskaya, V., Gadzhiev, S., & Popel, O. (2021). Use of Ash and Slag Waste from Thermal Power Plants as an Active Component of Building Materials. Chemical Engineering Transactions, 88, 337-342. doi: https://doi.org/10.3303/CET2188056 | |
dc.relation.referencesen | Mammadov, H., & Gadirov, M. (2018). Application of slags from thermal power station as an effective initial material in the production of artificial porous filler. International Journal of Engineering & Technology, 7(3,14), 461-466. doi: https://doi.org/10.14419/ijet.v7i3.14.17043 | |
dc.relation.referencesen | Mitin, I., Kindzera, D., & Atamanyuk, V. (2021). Application of slag from thermal power plant for the production of porous filler. Journal Environmental Problems, 6(2), 110–116. doi: https://doi.org/10.23939/ep2021.02.110 | |
dc.relation.referencesen | Nakonieczny, D., Antonowicz, M., & Paszenda, Z. (2020). Cenospheres and their application advantages in biomedical engineering - A systematic review. Reviews on Advanced Materials Science, 59, 115–130. doi: https://doi.org/10.1515/rams-2020-0011 | |
dc.relation.referencesen | Nithyanandam, A., & Deivarajan, T. (2021). Development of fly ash cenosphere-based composite for thermal insulation application. International Journal of Applied Ceramic Technology, 18, 1825–1831. doi: https://doi.org/10.1111/ijac.13767 | |
dc.relation.referencesen | Patel, S. K., Majhi, R. K., Satpathy, H. P., & Nayak, A. N. (2019). Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate. Construction and Building Materials, 226, 579–590. doi: https://doi.org/10.1016/j.conbuildmat.2019.07.304 | |
dc.relation.referencesen | Progress (2023). Retrieved from https://www.progress.ua/product/heat-mass-exchange-equipment/filtering-a... | |
dc.relation.referencesen | Shao, Y., Jia, D., Zhou, Y., & Liu, B. (2008). Novel Method for Fabrication of Silicon Nitride/Silicon Oxynitride Composite Ceramic Foams using Fly Ash Cenosphere as a Pore-Forming Agent. Journal of the American Ceramic Society, 91, 3781–3785. doi: https://doi.org/10.1111/j.1551-2916.2008.02702.x | |
dc.relation.referencesen | Strzałkowska, E. (2021). Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash. International Journal of Coal Geology, 240, 103746. doi: https://doi.org/10.1016/j.coal.2021.103746 | |
dc.relation.referencesen | Walker, A., & Wheelock, T.D. (2006). Separation of Carbon from Fly Ash Using Froth Flotation. Coal Preparation, 26, 235–250. doi: https://doi.org/10.1080/07349340601104883 | |
dc.relation.referencesen | Yadav, V. K., Yadav, K. K., Tirth V., Jangid, A., Gnanamoorthy, G., Choudhary, N., Islam, S., Gupta, N., Son, C. T., & Jeon, B.-H. (2021). Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup. Crystals, 11, 1067. doi: https://doi.org/10.3390/cryst11091067 | |
dc.relation.referencesen | Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253–267, doi: https://doi.org/10.1016/j.jclepro.2016.03.019 | |
dc.relation.referencesen | Zyrkowski, M., Neto, R.C., Santos, L.F., & Witkowski, K. (2016). Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel, 174, 49–53. doi: https://doi.org/10.1016/j.fuel.2016.01.061 | |
dc.relation.uri | https://doi.org/10.1016/j.dibe.2020.100029 | |
dc.relation.uri | https://doi.org/10.1016/j.applthermaleng.2012.05.004 | |
dc.relation.uri | https://doi.org/10.30638/eemj.2011.091 | |
dc.relation.uri | https://doi.org/10.1016/S0272-8842(02)00043-3 | |
dc.relation.uri | https://doi.org/10.3390/en13092208 | |
dc.relation.uri | https://doi.org/10.30638/eemj.2013.041 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2008.08.015 | |
dc.relation.uri | https://doi.org/10.3390/min10010058 | |
dc.relation.uri | https://doi.org/10.1016/j.minpro.2010.03.004 | |
dc.relation.uri | https://doi.org/10.4177/CCGP-D-13-00007.1 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.01.118 | |
dc.relation.uri | https://doi.org/10.3303/CET2188056 | |
dc.relation.uri | https://doi.org/10.14419/ijet.v7i3.14.17043 | |
dc.relation.uri | https://doi.org/10.23939/ep2021.02.110 | |
dc.relation.uri | https://doi.org/10.1515/rams-2020-0011 | |
dc.relation.uri | https://doi.org/10.1111/ijac.13767 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2019.07.304 | |
dc.relation.uri | https://www.progress.ua/product/heat-mass-exchange-equipment/filtering-a.. | |
dc.relation.uri | https://doi.org/10.1111/j.1551-2916.2008.02702.x | |
dc.relation.uri | https://doi.org/10.1016/j.coal.2021.103746 | |
dc.relation.uri | https://doi.org/10.1080/07349340601104883 | |
dc.relation.uri | https://doi.org/10.3390/cryst11091067 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2016.03.019 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2016.01.061 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kindzera D., Atamanyuk V., Hosovskyi R., Mitin I., 2023 | |
dc.subject | thermal power plant (TPP) | |
dc.subject | slag | |
dc.subject | coal fly ash | |
dc.subject | ash/slag dump | |
dc.subject | ash/slag settling pond | |
dc.subject | cenospheres | |
dc.subject | utilization | |
dc.subject | filtration drying method | |
dc.subject | mass transfer coefficient | |
dc.title | Drying of cenospheres recovered by the wet-based method from coal fly ash for their rational use | |
dc.type | Article |
Files
License bundle
1 - 1 of 1