Методи підвищення інформативності та зменшення об'єму графічних даних на основі аналізу їх колірного простору
dc.citation.epage | 84 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Український журнал інформаційних технологій | |
dc.citation.spage | 78 | |
dc.citation.volume | 4 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Журавель, І. М. | |
dc.contributor.author | Мичуда, Л. З. | |
dc.contributor.author | Zhuravel, I. M. | |
dc.contributor.author | Mychuda, L. Z. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-03-20T09:41:12Z | |
dc.date.available | 2024-03-20T09:41:12Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | Постійний розвиток цифрової техніки призвів до різкого збільшення кількості та об'ємів медіафайлів, зокрема, цифрових зображень, які становлять значну частину трафіка комп'ютерних мереж, що призводить до зменшення швидкості їх передачі. Дослідження, проведені у роботі, ґрунтуються на положеннях та методах опрацювання цифрових зображень, законах зорового сприйняття, основах теорії ймовірності та математичного моделювання. Результати теоретичних досліджень перевірялися шляхом імітаційного моделювання. У роботі запропоновано технологію, яка через аналіз колірного простору зображення та врахування законів зорового сприйняття, дає можливість істотно зменшити об'єм графічного файлу. Ця технологія використовується для розв'язання цілого ряду задач, зокрема, візуалізації файлів великого об'єму та підвищення інформативності зображень зі складним семантичним наповненням. Встановлено, що зменшення об'єму графічного файлу досягається через оптимізацію палітри та призводить до незначного погіршення візуальної якості сприйняття зображення. Для зменшення помітності похибки та формування візуального відчуття присутності на зображенні більшої кількості різноманітних кольорів, ніж є насправді, запропоновано використовувати дифузійне псевдозмішування кольорів, яке полягає у моделюванні одних кольорів за допомогою інших. Разом з задачею зменшення об'єму графічних файлів на основі оптимізації палітри досліджено подібну за методологією задачу підвищення інформативності зображень через використання псевдокольорів. За допомогою модифікації функції перетворення координат колірного простору в колірні компоненти, запропоновано модифікований підхід до формування псевдокольорових зображень, який забезпечує підвищення інформативності напівтонових цифрових зображень при їх візуальному аналізі. | |
dc.description.abstract | The constant development of digital technology has led to a sharp increase in the number and volume of media files, including digital images, which make up a significant part of computer network traffic, which reduces the speed of their transmission. The research conducted in this work is based on the provisions and methods of digital image processing, the laws of visual perception, the basics of probability theory and mathematical modeling. The results of theoretical research were verified by simulation. The paper proposes a technology that, through the analysis of the color space of the image and taking into account the laws of visual perception, makes it possible to significantly reduce the size of the image file. This technology is used to solve a number of problems, in particular, the visualization of large files and increase the informativeness of images with complex semantic content. It is established that the reduction of the image file size is achieved through the optimization of the palette and leads to a slight deterioration in the visual quality of image perception. To reduce the visibility of error and create a visual sense of the presence of more different colors in the image than is actually the case, it is proposed to use diffuse pseudo-mixing of colors, which is to model some colors with others. Along with the task of reducing the volume of graphic files based on the optimization of the palette, a similar methodology was developed to increase the informativeness of images through the use of pseudo-colors. By modifying the function of converting the coordinates of color space into color components, a modified approach to the formation of pseudo-color images is proposed, which increases the informativeness of halftone digital images in their visual analysis. | |
dc.format.extent | 78-84 | |
dc.format.pages | 7 | |
dc.identifier.citation | Журавель І. М. Методи підвищення інформативності та зменшення об'єму графічних даних на основі аналізу їх колірного простору / І. М. Журавель, Л. З. Мичуда // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2022. — Том 4. — № 1. — С. 78–84. | |
dc.identifier.citationen | Zhuravel I. M. Visualization and increasing the informativeness of large graphic files / I. M. Zhuravel, L. Z. Mychuda // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 78–84. | |
dc.identifier.doi | doi.org/10.23939/ujit2022.01.078 | |
dc.identifier.issn | 2707-1898 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61525 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Український журнал інформаційних технологій, 1 (4), 2022 | |
dc.relation.ispartof | Ukrainian Journal of Information Technology, 1 (4), 2022 | |
dc.relation.references | [1] Ajay, Kumar, Boyat, Brijendra, & Kumar, Joshi (2015). A Review Paper: Noise Models In Digital Image Processing. SIPIJ, 6(2), 63–75. https://doi.org/10.5121/sipij.2015.6206 | |
dc.relation.references | [2] Andrews, H. C., Tescher, A. G., & Kruger, R. P. (1972). Image processing by digital computers. IEEE Spectrum, 9(7), 20–32. https://doi.org/10.1109/MSPEC.1972.5218964 | |
dc.relation.references | [3] Cheng, Z., Sun, H., Takeuchi, M., & Katto, J. (2020). Learned Image Compression With Discretized Gaussian Mixture Likelihoods and Attention Modules. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7939–7948. https://doi.org/10.1109/CVPR42600.2020.00796 | |
dc.relation.references | [4] Choi, Y., El-Khamy, M., & Lee, J. (2019). Variable Rate Deep Image Compression With a Conditional Autoencoder. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 3146–3154. https://doi.org/10.1109/ICCV.2019.00324 | |
dc.relation.references | [5] Cosman, P. C., Gray, R. M., & Olshe, R. A. (1994). Evaluating Quality of Compressed Medical Images. Proceedings of the IEEE "SNR, Subjective Rating, and Diagnostic Accuracy, 82(6), 919–932. https://doi.org/10.1109/5.286196 | |
dc.relation.references | [6] Franchini, Giorgia, Cavicchioli, Roberto, & Cheng Hu, Jia. (2019). Stochastic Floyd-Steinberg dithering on GPU: image quality and processing time improved, Fifth International Conference on Image Information Processing (ICIIP), November 2019. https://doi.org/10.1109/ICIIP47207.2019.8985831 | |
dc.relation.references | [7] Gonzalez, R. C., & Wintz, P. (1987). Digital Image Processing. Addisson – Wesley. Reading. Massachusetts. 505 p. | |
dc.relation.references | [8] Gordon, R., & Rangayyan, R. M. (1984). Feature enhancement of film mammograms using fixed and adaptive neighbourhood. Applied optics, 23, 560–564. https://doi.org/10.1364/AO.23.000560 | |
dc.relation.references | [9] Hosaka, K. (1986). A new picture quality evaluation method. Proc. International Picture Coding Symposium, Tokyi, Japan, 316–321. | |
dc.relation.references | [10] Hriaznov, A. Iu. (2016). Technique for obtaining pseudo-color x-ray images in dual-energy radiography. Biotechnosphere, 3(33). 17–20. [In Russian]. | |
dc.relation.references | [11] Internet Microscope Technolog (2018). iMicroTec, Inc. Retrieved from: http://www.videotest.ru | |
dc.relation.references | [12] Karimov, A., Kopets, E., Kolev, G., Leonov, S., Scalera, L., & Butusov, D. (2021). Image Preprocessing for Artistic Robotic Painting. Inventions, 6(1), 19. https://doi.org/10.3390/inventions6010019 | |
dc.relation.references | [13] Kumar, P., & Parmar, A. (2020). Versatile Approaches for Medical Image Compression: A Review Procedia Computer Science, 167, 1380–1389. https://doi.org/10.1016/j.procs.2020.03.349 | |
dc.relation.references | [14] Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., & Van Gool, L. (2019). Practical Full Resolution Learned Lossless Image Compression. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10629–10638. https://doi.org/10.1109/CVPR.2019.01088 | |
dc.relation.references | [15] Metallographic Equipment and Consumables (2007). PACE Technologies. Retrieved from: http://www.metallographic.com | |
dc.relation.references | [16] Qian, Lin. (1993). Halftone image quality analysis based on a human vision model, Proc. SPIE 1913, Human Vision, Visual Processing, and Digital Display IV, 8 September 1993. https://doi.org/10.1117/12.152712 | |
dc.relation.references | [17] Rahman, M. A, & Hamada, M. (2019). Lossless Image Compression Techniques: A State-of-the-Art Survey. Symmetry, 11(10), 1274. https://doi.org/10.3390/sym11101274 | |
dc.relation.references | [18] Stokes, Michael, Anderson, Matthew, Chandrasekar, Srinivasan, & Motta, Ricardo (November 5, 1996). A Standard Default Color Space for the Internet: sRGB, Version 1.10. ICC. Retrieved from: https://www.color.org/sRGB.xalter | |
dc.relation.references | [19] Vorobel, R., Zhuravel, I., Opyr, N., & Popov, B. (1998). Image quality enhancement technique for X – ray testing. 2nd International Conference on Computer Methods and Inverse Problems in Nondestructive Testing and Diagnostics, Minsk, 20–23 October 1998. Proceedings, 449–455. | |
dc.relation.references | [20] Zhuravel, I. M. (2019). Computer Analysis of the Distribution of Grain Sizes in the Structure of 12Kh1MF Steel After Operation. Materials Science, 55(4), 187–192. https://doi.org/10.1007/s11003-019-00287-y | |
dc.relation.referencesen | [1] Ajay, Kumar, Boyat, Brijendra, & Kumar, Joshi (2015). A Review Paper: Noise Models In Digital Image Processing. SIPIJ, 6(2), 63–75. https://doi.org/10.5121/sipij.2015.6206 | |
dc.relation.referencesen | [2] Andrews, H. C., Tescher, A. G., & Kruger, R. P. (1972). Image processing by digital computers. IEEE Spectrum, 9(7), 20–32. https://doi.org/10.1109/MSPEC.1972.5218964 | |
dc.relation.referencesen | [3] Cheng, Z., Sun, H., Takeuchi, M., & Katto, J. (2020). Learned Image Compression With Discretized Gaussian Mixture Likelihoods and Attention Modules. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7939–7948. https://doi.org/10.1109/CVPR42600.2020.00796 | |
dc.relation.referencesen | [4] Choi, Y., El-Khamy, M., & Lee, J. (2019). Variable Rate Deep Image Compression With a Conditional Autoencoder. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 3146–3154. https://doi.org/10.1109/ICCV.2019.00324 | |
dc.relation.referencesen | [5] Cosman, P. C., Gray, R. M., & Olshe, R. A. (1994). Evaluating Quality of Compressed Medical Images. Proceedings of the IEEE "SNR, Subjective Rating, and Diagnostic Accuracy, 82(6), 919–932. https://doi.org/10.1109/5.286196 | |
dc.relation.referencesen | [6] Franchini, Giorgia, Cavicchioli, Roberto, & Cheng Hu, Jia. (2019). Stochastic Floyd-Steinberg dithering on GPU: image quality and processing time improved, Fifth International Conference on Image Information Processing (ICIIP), November 2019. https://doi.org/10.1109/ICIIP47207.2019.8985831 | |
dc.relation.referencesen | [7] Gonzalez, R. C., & Wintz, P. (1987). Digital Image Processing. Addisson – Wesley. Reading. Massachusetts. 505 p. | |
dc.relation.referencesen | [8] Gordon, R., & Rangayyan, R. M. (1984). Feature enhancement of film mammograms using fixed and adaptive neighbourhood. Applied optics, 23, 560–564. https://doi.org/10.1364/AO.23.000560 | |
dc.relation.referencesen | [9] Hosaka, K. (1986). A new picture quality evaluation method. Proc. International Picture Coding Symposium, Tokyi, Japan, 316–321. | |
dc.relation.referencesen | [10] Hriaznov, A. Iu. (2016). Technique for obtaining pseudo-color x-ray images in dual-energy radiography. Biotechnosphere, 3(33). 17–20. [In Russian]. | |
dc.relation.referencesen | [11] Internet Microscope Technolog (2018). iMicroTec, Inc. Retrieved from: http://www.videotest.ru | |
dc.relation.referencesen | [12] Karimov, A., Kopets, E., Kolev, G., Leonov, S., Scalera, L., & Butusov, D. (2021). Image Preprocessing for Artistic Robotic Painting. Inventions, 6(1), 19. https://doi.org/10.3390/inventions6010019 | |
dc.relation.referencesen | [13] Kumar, P., & Parmar, A. (2020). Versatile Approaches for Medical Image Compression: A Review Procedia Computer Science, 167, 1380–1389. https://doi.org/10.1016/j.procs.2020.03.349 | |
dc.relation.referencesen | [14] Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., & Van Gool, L. (2019). Practical Full Resolution Learned Lossless Image Compression. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10629–10638. https://doi.org/10.1109/CVPR.2019.01088 | |
dc.relation.referencesen | [15] Metallographic Equipment and Consumables (2007). PACE Technologies. Retrieved from: http://www.metallographic.com | |
dc.relation.referencesen | [16] Qian, Lin. (1993). Halftone image quality analysis based on a human vision model, Proc. SPIE 1913, Human Vision, Visual Processing, and Digital Display IV, 8 September 1993. https://doi.org/10.1117/12.152712 | |
dc.relation.referencesen | [17] Rahman, M. A, & Hamada, M. (2019). Lossless Image Compression Techniques: A State-of-the-Art Survey. Symmetry, 11(10), 1274. https://doi.org/10.3390/sym11101274 | |
dc.relation.referencesen | [18] Stokes, Michael, Anderson, Matthew, Chandrasekar, Srinivasan, & Motta, Ricardo (November 5, 1996). A Standard Default Color Space for the Internet: sRGB, Version 1.10. ICC. Retrieved from: https://www.color.org/sRGB.xalter | |
dc.relation.referencesen | [19] Vorobel, R., Zhuravel, I., Opyr, N., & Popov, B. (1998). Image quality enhancement technique for X – ray testing. 2nd International Conference on Computer Methods and Inverse Problems in Nondestructive Testing and Diagnostics, Minsk, 20–23 October 1998. Proceedings, 449–455. | |
dc.relation.referencesen | [20] Zhuravel, I. M. (2019). Computer Analysis of the Distribution of Grain Sizes in the Structure of 12Kh1MF Steel After Operation. Materials Science, 55(4), 187–192. https://doi.org/10.1007/s11003-019-00287-y | |
dc.relation.uri | https://doi.org/10.5121/sipij.2015.6206 | |
dc.relation.uri | https://doi.org/10.1109/MSPEC.1972.5218964 | |
dc.relation.uri | https://doi.org/10.1109/CVPR42600.2020.00796 | |
dc.relation.uri | https://doi.org/10.1109/ICCV.2019.00324 | |
dc.relation.uri | https://doi.org/10.1109/5.286196 | |
dc.relation.uri | https://doi.org/10.1109/ICIIP47207.2019.8985831 | |
dc.relation.uri | https://doi.org/10.1364/AO.23.000560 | |
dc.relation.uri | http://www.videotest.ru | |
dc.relation.uri | https://doi.org/10.3390/inventions6010019 | |
dc.relation.uri | https://doi.org/10.1016/j.procs.2020.03.349 | |
dc.relation.uri | https://doi.org/10.1109/CVPR.2019.01088 | |
dc.relation.uri | http://www.metallographic.com | |
dc.relation.uri | https://doi.org/10.1117/12.152712 | |
dc.relation.uri | https://doi.org/10.3390/sym11101274 | |
dc.relation.uri | https://www.color.org/sRGB.xalter | |
dc.relation.uri | https://doi.org/10.1007/s11003-019-00287-y | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | цифрове зображення | |
dc.subject | колірний простір | |
dc.subject | псевдокольори | |
dc.subject | дифузійне змішування кольорів | |
dc.subject | digital image | |
dc.subject | color space | |
dc.subject | pseudo-colors | |
dc.subject | diffuse color mixing | |
dc.title | Методи підвищення інформативності та зменшення об'єму графічних даних на основі аналізу їх колірного простору | |
dc.title.alternative | Visualization and increasing the informativeness of large graphic files | |
dc.type | Article |
Files
License bundle
1 - 1 of 1