GPS signal jamming effect in Svalbard Island and its elimination by using GLONASS, Galileo and Beidou satellites

dc.citation.epage14
dc.citation.issue98
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage5
dc.contributor.affiliationТехнічний університет Йилдиз
dc.contributor.affiliationУніверситет Онсекіз Март
dc.contributor.affiliationYıldız Technical University
dc.contributor.affiliationÇanakkale Onsekiz Mart University
dc.contributor.authorПірті, Атінч
dc.contributor.authorЮджел, Мехмет Алі
dc.contributor.authorPirti, Atinç
dc.contributor.authorYücel, Mehmet Ali
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T09:36:12Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОстрови Шпіцберген розташовані в Північному Льодовитому океані, посередині між Норвегією та Північним полюсом. Через це Шпіцберген має низку особливих властивостей, які роблять його цікавим регіоном для вивчення взаємодії між атмосферою, морським льодом і океаном. У цьому дослідженні оцінювались супутникові сигнали трьох ГНСС-пунктів (NABG, NYA2 і NYAL) на острові Шпіцберген у Баренцевому морі. 8 січня 2022 року у вимірюваннях на цих трьох ГНСС-пунктах було помічено ефекти глушіння сигналу. З вимірювань на двох ГНСС-пунктах (NYA2, NYAL) було очевидно, що супутники ГЛОНАСС, Galileo та Beidou також були записані в приймачі, а також супутники GPS. З цієї причини вплив ефекту глушіння сигналів GPS на точність позиціонування було досліджено як статичним, так і кінематичним методами. Крім того, як статична, так і кінематична обробка в цих двох ГНСС-пунктах була виконана за допомогою супутникових комбінацій ГЛОНАСС-Галілео-Бейдоу, щоб усунути ефект перешкод GPS. Хоча ефект перешкод GPS не досягається у великих значеннях у статичному процесі, коли в кінематичному процесі використовуються лише супутники GPS, цей ефект досягає приблизно 5 метрів як максимальна різниця горизонтальних координат. У значеннях перепаду висот максимальний перепад становив близько 15 метрів. У той час як отримані різниці координат між кінематичним процесом і статичним процесом, виконаними за допомогою супутників GLONASS-Galileo-Beidou, становили близько 5 см, значення висоти досягали приблизно 10 см. На островах Шпіцберген, коли сигнали GPS піддаються перешкодам, задовільні результати були отримані за допомогою супутників ГЛОНАСС-Galileo-Beidou.
dc.description.abstractThe Svalbard Islands are located in the Arctic Ocean, halfway between Norway and the North Pole. Because of this, the Svalbard Islands exhibit a number of special properties that make it an interesting region for studying interactions between the atmosphere, sea ice, and ocean. In this study, satellite signals of three points (NABG, NYA2 and NYAL) on the island of Svalbard in the Barents Sea were examined. On January 8, 2022, signal jamming effects appeared at all three points. From these two points (NYA2, NYAL), it was obvious that GLONASS, Galileo and Beidou satellites were also recorded in the receivers as well as GPS satellites. For this reason, the effect of the jamming effect on the GPS signals on the position accuracy was investigated using both static and kinematic methods. In addition, both static and kinematic processing at these two points was performed with GLONASS-Galileo-Beidou satellite combinations in order to eliminate the GPS jamming effect. Although the GPS jamming effect is not obtained in large values ​​in the static process, when only GPS satellites are used in the kinematic process, it reaches approximately 5 meters as the maximum horizontal coordinate difference. The maximum height difference recorded was approximately 15 meters. The difference in coordinates between the kinematic and static processes, as determined through the use of GLONASS, Galileo, and Beidou satellites, was around 5 cm. However, in terms of height values, it reached up to about 10 cm. In the Svalbard Islands, when GPS signals are exposed to interference, satisfactory results were obtained by using GLONASS-Galileo-Beidou satellites.
dc.format.extent5-14
dc.format.pages10
dc.identifier.citationPirti A. GPS signal jamming effect in Svalbard Island and its elimination by using GLONASS, Galileo and Beidou satellites / Pirti Atinç, Yücel Mehmet Ali // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 98. — P. 5–14.
dc.identifier.citationenPirti A. GPS signal jamming effect in Svalbard Island and its elimination by using GLONASS, Galileo and Beidou satellites / Pirti Atinç, Yücel Mehmet Ali // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 98. — P. 5–14.
dc.identifier.doidoi.org/10.23939/istcgcap2023.98.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64172
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 98, 2023
dc.relation.ispartofGeodesy, cartography and aerial photography, 98, 2023
dc.relation.referencesAerospace Security (2022. Arctic Circle GPS Jamming, https://aerospace.csis.org/data/gps-jamming-in-the-arcticcircle/#:~:text=GPS%20signal%20loss%20was%20reported,January%209%20and%2010,%202019.&text=In
dc.relation.referencesAghadadashfam, M., Mosavi, M. R., & Rezaei, M. J. (2020). A new post-correlation anti-jamming technique for GPS receivers. GPS solutions, 24, 1–16. https://doi.org/10.1007/s10291-020-01004-y
dc.relation.referencesBorio, D., Dovis, F., Kuusniemi, H., & Presti, L. L. (2016). Impact and detection of GNSS jammers on consumer grade satellite navigation receivers. Proceedings of the IEEE, 104(6), 1233–1245. https://doi.org/10.1109/JPROC.2016.2543266
dc.relation.referencesBorio, D., & Gioia, C. (2021). Interference mitigation: impact on GNSS timing. GPS Solutions, 25(2), 37. https://doi.org/10.1007/s10291-020-01075-x
dc.relation.referencesCRFS (2019). How to deal with GPS jamming and spoofing. CRFS, February 21, https://www.crfs.com/blog/how-to-deal-with-gps-jamming-and-spoofing/.
dc.relation.referencesDunnigan, J. (2013). A Solution for the Jammer Threat. Report Page, November 21, https://www.strategypage.com/dls/articles/A-Solution-For-The-GPSJammer-Threat-11-21- 2013.asp.
dc.relation.referencesFaria, L. D. A., Silvestre, C. A. D. M., & Correia, M. A. F. (2016). GPS-dependent systems: Vulnerabilities to electromagnetic attacks. Journal of Aerospace Technology and Management, 8, 423–430. https://doi.org/ 10.5028/jatm.v8i4.632
dc.relation.referencesFu, Z., Hornbostel, A., Hammesfahr, J., & Konovaltsev, A. (2003). Suppression of multipath and jamming signals by digital beamforming for GPS/Galileo applications. GPS solutions, 6, 257–264. https://doi.org/10.1007/s10291-002-0042-2
dc.relation.referencesGao, G. X., Heng, L., Walter, T., & Enge, P. (2012). Breaking the ice: Navigation in the Arctic. In Global Navigation Satellite Systems: Report of a Joint Workshop of the National Academy of Engineering and the Chinese Academy of Engineering, pp. 229–238. National Academies Press.
dc.relation.referencesGlomsvoll, O., & Bonenberg, L. K. (2017). GNSS jamming resilience for close to shore navigation in the Northern Sea. The Journal of Navigation, 70(1), 33–48. https://doi.org/ 10.1017/S0373463316000473 Gorski, A. (2018). When GPS jammers interfere with military operations. AGI, April 10, https://www.agi.com/news/blog/april-2018/when-gps-jammersinterfere-with-militaryoperation.
dc.relation.referencesGoward, D. (2017). Mass GPS Spoofing Attack in Black Sea? The Maritime Executive, November 7. https://www.maritime-executive.com/editorials/mass-gps-spoofing-attack-in-black-sea
dc.relation.referencesHu, Y., Bian, S., Cao, K., & Ji, B. (2018). GNSS spoofing detection based on new signal quality assessment model. GPS Solutions, 22, 1–13. https://doi.org/ 10.1007/s10291-017-0693-7
dc.relation.referencesJensen, A. B., & Sicard, J.-P. (2010). Challenges for positioning and navigation in the Arctic. Coordinates: A resource on positioning, navigation, and beyond, 6(10), 10–13. https://www.unoosa.org/documents/pdf/psa/activities/2015/RussiaGNSS/Presentations/52.pdf
dc.relation.referencesLinty, N., Minetto, A., Dovis, F., & Spogli, L. (2018). Effects of phase scintillation on the GNSS positioning error during the September 2017 storm at Svalbard. Space Weather, 16(9), 1317–1329. https://agupubs.onlinelibrary.wiley.com/doi/epdf/ 10.1029/2018SW001940
dc.relation.referencesMarcus, M. J. (2014). Growing consumer interest in jamming: spectrum policy implications [Spectrum Policy and Regulatory Issues]. IEEE wireless communications, 21(1), 4–4. https://doi.org/10.1109/MWC.2014.6757888
dc.relation.referencesMartini, P. (2016). China Jamming US Forces’ GPS. Resilient Navigation and Timing Foundation, September 26, https://rntfnd.org/2016/09/26/chinajamming-us-forces-gps/.
dc.relation.referencesMizokami, K. (2016). North Korea Is Jamming GPS Signals. Popular Mechanics, April 5, https://www.popularmechanics.com/military/weapons/a20289/north-korea-jamming-gpssignals/
dc.relation.referencesMosavi, M. R., Rezaei, M. J., Pashaian, M., & Moghaddasi, M. S. (2017). A fast and accurate anti-jamming system based on wavelet packet transform for GPS receivers. GPS solutions, 21, 415–426. https://doi.org/10.1007/s10291-016-0535-z
dc.relation.referencesMoussa, M. M., Osman, A., Tamazin, M., Korenberg, M., Noureldin, A., & NavINST Research Group. (2017). Enhanced GPS narrowband jamming detection using high-resolution spectral estimation. GPS solutions, 21, 475–485. https://doi.org/10.1007/s10291-016-0528-y
dc.relation.referencesNilsen, T. (2019). GPS jamming jeopardizes public safety in Norway’s northernmost region, The Barents Observer. https://thebarentsobserver.com/en/security/2019/01/gps-jamming-jeopardizes-publicsafety-norways-northernmost-region
dc.relation.referencesPırtı, A, & Yucel M. A. (2022). The impact of Russian on GPS signal jamming in the Scandinavian Region, https://www.researchsquare.com/article/rs1856904/v1
dc.relation.referencesPinker, A., & Smith, C. (1999). Vulnerability of the GPS Signal to Jamming. GPS Solutions, 3, 19–27. https://doi.org/10.1007/PL00012788
dc.relation.referencesStaalesen, A. (2018). Norway requests Russia to halt GPS jamming in borderland. The Barents Observer, April 27. https://thebarentsobserver.com/en/security/2018/04/norwayrequests-russia-halt-gpsjamming-borderland.
dc.relation.referencesStopienski, P. (2020). Opportunity to elimination Jamming by the adequate formation of the antenna beam of the GNSS receiver: doctoral dis., in Polish: Możliwości eliminacji Jammingu poprzez adekwatne kształtowanie wiązki antenowej odbiornika GNSS). Master Thesis. PNA, Gdynia 2020.
dc.relation.referencesTrevithick, J. (2018). American General Says “Adversaries” Are Jamming AC-130 Gunships in Syria. The Drive, April 25. https://www.thedrive.com/the-warzone/20404/americangeneral-says-adversaries-arejamming-ac-130-gunships-in-syria.
dc.relation.referencesWang, C. Z., Kong, L. W., Jiang, J., & Lai, Y. C. (2021). Machine learning-based approach to GPS antijamming. GPS Solutions, 25(3), 115. https://doi.org/ 10.1007/s10291-021-01154-7
dc.relation.referencesWestbrook, T. (2019). The global positioning system and military jamming. Journal of Strategic Security, 12(2), 1–16. https://doi.org/10.5038/1944-0472.12.2.1720
dc.relation.referencesWikipedia (2022). Barents Sea. https://en.wikipedia.org/wiki?curid=44060
dc.relation.referencesWorld Wildlife Fund (2008). Barents Sea environment and conservation.
dc.relation.referencesenAerospace Security (2022. Arctic Circle GPS Jamming, https://aerospace.csis.org/data/gps-jamming-in-the-arcticcircle/#:~:text=GPS%20signal%20loss%20was%20reported,January%209%20and%2010,%202019.&text=In
dc.relation.referencesenAghadadashfam, M., Mosavi, M. R., & Rezaei, M. J. (2020). A new post-correlation anti-jamming technique for GPS receivers. GPS solutions, 24, 1–16. https://doi.org/10.1007/s10291-020-01004-y
dc.relation.referencesenBorio, D., Dovis, F., Kuusniemi, H., & Presti, L. L. (2016). Impact and detection of GNSS jammers on consumer grade satellite navigation receivers. Proceedings of the IEEE, 104(6), 1233–1245. https://doi.org/10.1109/JPROC.2016.2543266
dc.relation.referencesenBorio, D., & Gioia, C. (2021). Interference mitigation: impact on GNSS timing. GPS Solutions, 25(2), 37. https://doi.org/10.1007/s10291-020-01075-x
dc.relation.referencesenCRFS (2019). How to deal with GPS jamming and spoofing. CRFS, February 21, https://www.crfs.com/blog/how-to-deal-with-gps-jamming-and-spoofing/.
dc.relation.referencesenDunnigan, J. (2013). A Solution for the Jammer Threat. Report Page, November 21, https://www.strategypage.com/dls/articles/A-Solution-For-The-GPSJammer-Threat-11-21- 2013.asp.
dc.relation.referencesenFaria, L. D. A., Silvestre, C. A. D. M., & Correia, M. A. F. (2016). GPS-dependent systems: Vulnerabilities to electromagnetic attacks. Journal of Aerospace Technology and Management, 8, 423–430. https://doi.org/ 10.5028/jatm.v8i4.632
dc.relation.referencesenFu, Z., Hornbostel, A., Hammesfahr, J., & Konovaltsev, A. (2003). Suppression of multipath and jamming signals by digital beamforming for GPS/Galileo applications. GPS solutions, 6, 257–264. https://doi.org/10.1007/s10291-002-0042-2
dc.relation.referencesenGao, G. X., Heng, L., Walter, T., & Enge, P. (2012). Breaking the ice: Navigation in the Arctic. In Global Navigation Satellite Systems: Report of a Joint Workshop of the National Academy of Engineering and the Chinese Academy of Engineering, pp. 229–238. National Academies Press.
dc.relation.referencesenGlomsvoll, O., & Bonenberg, L. K. (2017). GNSS jamming resilience for close to shore navigation in the Northern Sea. The Journal of Navigation, 70(1), 33–48. https://doi.org/ 10.1017/S0373463316000473 Gorski, A. (2018). When GPS jammers interfere with military operations. AGI, April 10, https://www.agi.com/news/blog/april-2018/when-gps-jammersinterfere-with-militaryoperation.
dc.relation.referencesenGoward, D. (2017). Mass GPS Spoofing Attack in Black Sea? The Maritime Executive, November 7. https://www.maritime-executive.com/editorials/mass-gps-spoofing-attack-in-black-sea
dc.relation.referencesenHu, Y., Bian, S., Cao, K., & Ji, B. (2018). GNSS spoofing detection based on new signal quality assessment model. GPS Solutions, 22, 1–13. https://doi.org/ 10.1007/s10291-017-0693-7
dc.relation.referencesenJensen, A. B., & Sicard, J.-P. (2010). Challenges for positioning and navigation in the Arctic. Coordinates: A resource on positioning, navigation, and beyond, 6(10), 10–13. https://www.unoosa.org/documents/pdf/psa/activities/2015/RussiaGNSS/Presentations/52.pdf
dc.relation.referencesenLinty, N., Minetto, A., Dovis, F., & Spogli, L. (2018). Effects of phase scintillation on the GNSS positioning error during the September 2017 storm at Svalbard. Space Weather, 16(9), 1317–1329. https://agupubs.onlinelibrary.wiley.com/doi/epdf/ 10.1029/2018SW001940
dc.relation.referencesenMarcus, M. J. (2014). Growing consumer interest in jamming: spectrum policy implications [Spectrum Policy and Regulatory Issues]. IEEE wireless communications, 21(1), 4–4. https://doi.org/10.1109/MWC.2014.6757888
dc.relation.referencesenMartini, P. (2016). China Jamming US Forces’ GPS. Resilient Navigation and Timing Foundation, September 26, https://rntfnd.org/2016/09/26/chinajamming-us-forces-gps/.
dc.relation.referencesenMizokami, K. (2016). North Korea Is Jamming GPS Signals. Popular Mechanics, April 5, https://www.popularmechanics.com/military/weapons/a20289/north-korea-jamming-gpssignals/
dc.relation.referencesenMosavi, M. R., Rezaei, M. J., Pashaian, M., & Moghaddasi, M. S. (2017). A fast and accurate anti-jamming system based on wavelet packet transform for GPS receivers. GPS solutions, 21, 415–426. https://doi.org/10.1007/s10291-016-0535-z
dc.relation.referencesenMoussa, M. M., Osman, A., Tamazin, M., Korenberg, M., Noureldin, A., & NavINST Research Group. (2017). Enhanced GPS narrowband jamming detection using high-resolution spectral estimation. GPS solutions, 21, 475–485. https://doi.org/10.1007/s10291-016-0528-y
dc.relation.referencesenNilsen, T. (2019). GPS jamming jeopardizes public safety in Norway’s northernmost region, The Barents Observer. https://thebarentsobserver.com/en/security/2019/01/gps-jamming-jeopardizes-publicsafety-norways-northernmost-region
dc.relation.referencesenPırtı, A, & Yucel M. A. (2022). The impact of Russian on GPS signal jamming in the Scandinavian Region, https://www.researchsquare.com/article/rs1856904/v1
dc.relation.referencesenPinker, A., & Smith, C. (1999). Vulnerability of the GPS Signal to Jamming. GPS Solutions, 3, 19–27. https://doi.org/10.1007/PL00012788
dc.relation.referencesenStaalesen, A. (2018). Norway requests Russia to halt GPS jamming in borderland. The Barents Observer, April 27. https://thebarentsobserver.com/en/security/2018/04/norwayrequests-russia-halt-gpsjamming-borderland.
dc.relation.referencesenStopienski, P. (2020). Opportunity to elimination Jamming by the adequate formation of the antenna beam of the GNSS receiver: doctoral dis., in Polish: Możliwości eliminacji Jammingu poprzez adekwatne kształtowanie wiązki antenowej odbiornika GNSS). Master Thesis. PNA, Gdynia 2020.
dc.relation.referencesenTrevithick, J. (2018). American General Says "Adversaries" Are Jamming AC-130 Gunships in Syria. The Drive, April 25. https://www.thedrive.com/the-warzone/20404/americangeneral-says-adversaries-arejamming-ac-130-gunships-in-syria.
dc.relation.referencesenWang, C. Z., Kong, L. W., Jiang, J., & Lai, Y. C. (2021). Machine learning-based approach to GPS antijamming. GPS Solutions, 25(3), 115. https://doi.org/ 10.1007/s10291-021-01154-7
dc.relation.referencesenWestbrook, T. (2019). The global positioning system and military jamming. Journal of Strategic Security, 12(2), 1–16. https://doi.org/10.5038/1944-0472.12.2.1720
dc.relation.referencesenWikipedia (2022). Barents Sea. https://en.wikipedia.org/wiki?curid=44060
dc.relation.referencesenWorld Wildlife Fund (2008). Barents Sea environment and conservation.
dc.relation.urihttps://aerospace.csis.org/data/gps-jamming-in-the-arcticcircle/#:~:text=GPS%20signal%20loss%20was%20reported,January%209%20and%2010,%202019.&text=In
dc.relation.urihttps://doi.org/10.1007/s10291-020-01004-y
dc.relation.urihttps://doi.org/10.1109/JPROC.2016.2543266
dc.relation.urihttps://doi.org/10.1007/s10291-020-01075-x
dc.relation.urihttps://www.crfs.com/blog/how-to-deal-with-gps-jamming-and-spoofing/
dc.relation.urihttps://www.strategypage.com/dls/articles/A-Solution-For-The-GPSJammer-Threat-11-21-
dc.relation.urihttps://doi.org/
dc.relation.urihttps://doi.org/10.1007/s10291-002-0042-2
dc.relation.urihttps://www.agi.com/news/blog/april-2018/when-gps-jammersinterfere-with-militaryoperation
dc.relation.urihttps://www.maritime-executive.com/editorials/mass-gps-spoofing-attack-in-black-sea
dc.relation.urihttps://www.unoosa.org/documents/pdf/psa/activities/2015/RussiaGNSS/Presentations/52.pdf
dc.relation.urihttps://agupubs.onlinelibrary.wiley.com/doi/epdf/
dc.relation.urihttps://doi.org/10.1109/MWC.2014.6757888
dc.relation.urihttps://rntfnd.org/2016/09/26/chinajamming-us-forces-gps/
dc.relation.urihttps://www.popularmechanics.com/military/weapons/a20289/north-korea-jamming-gpssignals/
dc.relation.urihttps://doi.org/10.1007/s10291-016-0535-z
dc.relation.urihttps://doi.org/10.1007/s10291-016-0528-y
dc.relation.urihttps://thebarentsobserver.com/en/security/2019/01/gps-jamming-jeopardizes-publicsafety-norways-northernmost-region
dc.relation.urihttps://www.researchsquare.com/article/rs1856904/v1
dc.relation.urihttps://doi.org/10.1007/PL00012788
dc.relation.urihttps://thebarentsobserver.com/en/security/2018/04/norwayrequests-russia-halt-gpsjamming-borderland
dc.relation.urihttps://www.thedrive.com/the-warzone/20404/americangeneral-says-adversaries-arejamming-ac-130-gunships-in-syria
dc.relation.urihttps://doi.org/10.5038/1944-0472.12.2.1720
dc.relation.urihttps://en.wikipedia.org/wiki?curid=44060
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectGPS
dc.subjectГЛОНАСС
dc.subjectGalileo
dc.subjectBeidou
dc.subjectглушіння сигналу
dc.subjectострови Шпіцберген
dc.subjectточність
dc.subjectGPS
dc.subjectGLONASS
dc.subjectGalileo
dc.subjectBeidou
dc.subjectSignal Jamming
dc.subjectSvalbard Islands
dc.subjectAccuracy
dc.titleGPS signal jamming effect in Svalbard Island and its elimination by using GLONASS, Galileo and Beidou satellites
dc.title.alternativeВплив глушіння сигналу GPS на острові Шпіцберген і усунення цього глушіння за допомогою супутників ГЛОНАСС, Galıleo та Beıdou
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023n98_Pirti_A-GPS_signal_jamming_effect_in_5-14.pdf
Size:
652.56 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023n98_Pirti_A-GPS_signal_jamming_effect_in_5-14__COVER.png
Size:
565.18 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: