Передові процеси окиснення на основі натрію перкарбонату. Огляд

dc.citation.epage11
dc.citation.issue1
dc.citation.spage1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorШепіда, М. В.
dc.contributor.authorСірик, К. М.
dc.contributor.authorSukhatskyi, Yu. V.
dc.contributor.authorShepida, M. V.
dc.contributor.authorSiryk, K. M.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T09:22:42Z
dc.date.available2024-01-22T09:22:42Z
dc.date.created2020-02-21
dc.date.issued2020-02-21
dc.description.abstractРозглянуто переваги натрію перкарбонату як носія “твердого гідрогену пероксиду”, порівняно з гідрогену пероксидом у рідкій фазі. Наведено методи гомогенної (активація ультрафіолетовим випромінюванням, електророзрядною плазмою, в ультразвуковому полі, йонами металів) та гетерогенної (природними та штучно синтезованими мінералами, наночастинками заліза, іммобілізованими на допоміжні матеріали, наночастинками сполук заліза, біметалевими нанокомпозитами, фероценом) активації натрію перкарбонату та їх застосування у передових процесах окиснення органічних сполук на його основі. Встановлено, що кисле середовище ефективніше для гомогенної активації натрію перкарбонату йонами металів (зокрема, Fe2+), а нейтральне або лужне середовище придатніше для гетерогенної активації натрію перкарбонату.
dc.description.abstractThe advantages of sodium percarbonate as a carrier of “solid hydrogen peroxide” compared to hydrogen peroxide in the liquid phase are considered. Methods of homogeneous (activation by ultraviolet radiation, electrodischarge plasma, in ultrasonic field, by metal ions) and heterogeneous (by natural and artificially synthesized minerals, iron nanoparticles that are immobilized on support materials, nanoparticles of iron compounds, bimetallic nanocomposite, ferrocene) activation of sodium percarbonate and their application in advanced oxidation processes of organic compounds based on it are presented. It was found that the acidic environment is more effective for homogeneous activation of sodium percarbonate by metal ions (in particular Fe2+), and a neutral or alkaline environment is more suitable for heterogeneous activation of sodium percarbonate.
dc.format.extent1-11
dc.format.pages11
dc.identifier.citationСухацький Ю. В. Передові процеси окиснення на основі натрію перкарбонату. Огляд / Ю. В. Сухацький, М. В. Шепіда, К. М. Сірик // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 1–11.
dc.identifier.citationenSukhatskyi Yu. V. Sodium percarbonate-based advanced oxidation processes. Reviwe / Yu. V. Sukhatskyi, M. V. Shepida, K. M. Siryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 1–11.
dc.identifier.doidoi.org/10.23939/ctas2022.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60912
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (5), 2022
dc.relation.references1. Pimentel, J. A. I., Dong, C.-D., Garcia-Segura, S., Abarca, R. R. M., Chen, C.-W., & de Luna, M. D. G. (2021). Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. Science of the Total Environment, 781, 146411. DOI: 10.1016/j.scitotenv.2021.146411.
dc.relation.references2. Du, C. H., & Liu, J. R. (2014). A new utilization approach of natural soda ash: to manufacture sodium percarbonate. Latin American Applied Research, 44 (2), 179–183. Retrieved from http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932014000200012.
dc.relation.references3. Pesman, E., Imamoglu, S., Kalyoncu, E. E., & Kırcı, H. (2014). The effects of sodium percarbonate and perborate usage on pulping and flotation deinking instead of hydrogen peroxide. BioResources, 9 (1), 523–536. DOI: 10.15376/biores.9.1.523-536.
dc.relation.references4. Zhang, B.-T., Kuang, L., Teng, Y., Fan, M., & Ma, Y. (2021). Application of percarbonate and peroxymonocarbonate in decontamination technologies. Journal of Environmental Sciences, 105, 100–115. DOI: 10.1016/j.jes.2020.12.031.
dc.relation.references5. Forwood, J. M., Harris, J. O., Landos, M., & Deveney, M. R. (2015). Histological evaluation of sodium percarbonate exposure on the gills of rainbow trout. Diseases of Aquatic Organisms, 114, 263–268. DOI: 10.3354/dao02861.
dc.relation.references6. Yu, X., Kamali, M., Aken, P. V., Appels, L., Van der Bruggen, B., & Dewil, R. (2021). Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. Journal of Water Process Engineering, 39, 101721. DOI: 10.1016/j.jwpe.2020.101721.
dc.relation.references7. Więckol-Ryk, A., Białecka, B., & Thomas, M. (2020). Effect of green oxidizing agent on inhibition of Escherichia coli present in livestock wastes. Water, Air, and Soil Pollution, 231 (9), 466–481. DOI: 10.1007/s11270-020-04824-3.
dc.relation.references8. Srisaikham, S., Isobe, N., & Suksombat, W. (2017). The inhibitory effect of sodium thiocyanate and sodium percarbonate ratios on microorganism growth in raw milk samples as an effective treatment to extend milk quality during storage. Songklanakarin Journal of Science and Technology, 39 (1), 77–89. DOI: 10.14456/sjstpsu.2017.9.
dc.relation.references9. Thoo, R., Siuda, W., & Jasser, I. (2020). The effects of sodium percarbonate generated free oxygen on Daphnia – Implications for the management of harmful algal blooms. Water, 12, 1304–1315. DOI: 10.3390/w12051304.
dc.relation.references10. Cheng, X., Lian, J., Ren, Z., Hou, C., Jin, Y., Zhang, L.,…Liang, H. (2021). Coupling sodium percarbonate (SPC) oxidation and coagulation for membrane fouling mitigation in algae-laden water treatment. Water Research, 204, 117622. DOI: 10.1016/j.watres.2021.117622.
dc.relation.references11. Iskander, S. M., Novak, J., Brazil, B. & He, Z. (2017). Percarbonate oxidation of landfill leachate towards removal of ultraviolet quenchers. Environmental Science: Water Research & Technology, 3 (6), 1162–1170. DOI: 10.1039/C7EW00343A.
dc.relation.references12. Febriana, T. A., Khairiza, M. R., Maulina, R., Utami, T. S., Arbianti, R., & Hermansyah, H. (2020). Concentration optimization of sodium percarbonate as buffering catholyte on stacked microbial desalination cell by utilizing tofu wastewater as a substrate. Engineering Journal, 24 (4), 217–228. DOI: 10.4186/ej.2020.24.4.217.
dc.relation.references13. Liu, X., He, S., Yang, Y., Yao, B., Tang, Y., Luo, L., …Zhou, Y. (2021). A review on percarbonatebased advanced oxidation processes for remediation of organic compounds in water. Environmental Research, 200, 111371. DOI: 10.1016/j.envres.2021.111371.
dc.relation.references14. Ling, X., Deng, J., Ye, C., Cai, A., Ruan, S., Chen, M., & Li, X. (2021). Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization. Science of the Total Environment, 799, 149382. DOI: 10.1016/j.scitotenv.2021.149382.
dc.relation.references15. Dangi, M. B., Urynowicz, M. A., Schultz, C. L., & Budhathoki, S. (2022). A comparison of the soil natural oxidant demand exerted by permanganate, hydrogen peroxide, sodium persulfate, and sodium percarbonate.Environmental Challenges, 7, 100456. DOI: 10.1016/j.envc.2022.100456.
dc.relation.references16. Sablas, M. M., de Luna, M. D. G., Garcia-Segura, S., Chen, C.-W., Chen, C.-F., & Dong, C.-D. (2020). Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Separation and Purification Technology, 250, 117269. DOI: 10.1016/j.seppur.2020.117269.
dc.relation.references17. Hung, C.-M., Chen, C.-W., Huang, C.-P., Tsai, M.-L., Wu, C.-H., Lin, Y.-L., …Dong, C.-D. (2022). Efficacy and cytotoxicity of engineered ferromanganesebearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. Journal of Hazardous Materials, 422, 126922. DOI: 10.1016/j.jhazmat.2021.126922.
dc.relation.references18. Mohammadi, S., Moussavi, G., Yaghmaeian, K., & Giannakis, S. (2022). Development of a percarbonateenhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chemical Engineering Journal, 431 (2), 134064. DOI: 10.1016/j.cej.2021.134064.
dc.relation.references19. Yue-Hua, Z., Chun-Mei, X., & Chang-Hong, G. (2011). Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater. Procedia Environmental Sciences, 10 (B), 1668–1673. DOI: 10.1016/j.proenv.2011.09.262.
dc.relation.references20. Ohura, R., Katayama, A., & Takagishi, T. (1992). Degradation of sulfonated azo dyes with sodium percarbonate. Textile Research Journal, 62 (9), 552–556. DOI: 10.1177/004051759206200909.
dc.relation.references21. Zhang, J., Wang, X., & Dong, C. (2019). Decolorization of triphenylmethane dyes and dye-doped silica microspheres using sodium percarbonate. Desalination and Water Treatment, 153, 312–320. DOI: 10.5004/dwt.2019.23904.
dc.relation.references22. Nalliah, R. E. (2019). Reaction of FD&C Blue 1 with sodium percarbonate: multiple kinetics methods using an inexpensive light meter. Journal of Chemical Education, 96, 1453–1457. DOI: 10.1021/acs.jchemed.8b00589.
dc.relation.references23. Viisimaa, M., & Goi, A. (2014). Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarbon-contaminated soil. Journal of Environmental Engineering and Landscape Management, 22 (1), 30–39. DOI: 10.3846/16486897.2013.804827.
dc.relation.references24. Zhang, Y.-H., Sun, Y.-G., Yue, L.-H., & Guo, C.-H. (2013). Degradation of polycyclic aromatic hydrocarbons contamination in groundwater by sodium percarbonate oxidation. Asian Journal of Chemistry, 25 (11), 5917–5920. DOI: 10.14233/ajchem.2013.14047.
dc.relation.references25. Gao, J., Duan, X., O’Shea, K., & Dionysiou, D. D. (2020). Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion. Water Research, 171, 115394. DOI: 10.1016/j.watres.2019.115394.
dc.relation.references26. Qiu, Z., Rao, G., Wang, L., & Wang, L. (2021). Photo-assisted degradation of naphthalene by sodium percarbonate system. Advances in Environmental Protect, 11 (3), 497–505. DOI: 10.12677/aep.2021.113055.
dc.relation.references27. Ortiz-Marin, A. D., Bandala, E. R., Ramírez, K., Moeller-Chávez, G., Pérez-Estrada, L., Ramírez-Pereda, B.,& Amabilis-Sosa, L. E. (2022). Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reaction Kinetics, Mechanisms and Catalysis, 2022-01-08. DOI: 10.1007/s11144-021-02152-z.
dc.relation.references28. Li, L., Guo, R., Zhang, S., & Yuan, Y. (2022). Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environmental Research, 207, 112176. DOI: 10.1016/j.envres.2021.112176.
dc.relation.references29. Pieczykolan, B., Płonka, I., & Barbusiński, K. (2016). Discoloration of dye wastewater by modified UVFenton process with sodium percarbonate. Architecture Civil Engineering Environment, 9 (4), 135–140. DOI: 10.21307/acee-2016-060.
dc.relation.references30. Kozak, J., & Włodarczyk-Makuła, M. (2018). The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civil and Environmental Engineering Reports, 28 (2), 124–139. DOI: 10.2478/ceer-2018-0024.
dc.relation.references31. Kozak, J., & Włodarczyk-Makuła, M. (2019). The use of sodium carbonate-hydrogen peroxide (2/3) in the modified Fenton reaction to degradation PAHs in coke wastewater. Proceedings, 16 (1), 44–48. DOI: 10.3390/proceedings2019016044.
dc.relation.references32. Wang, T., Jia, H., Guo, X., Xia, T., Qu, G., Sun, Q., & Yin, X. (2018). Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chemical Engineering Journal, 346, 65–76. DOI: 10.1016/j.cej.2018.04.024.
dc.relation.references33. Tang, S., Yuan, D., Rao, Y., Li, M., Shi, G., Gu, J., & Zhang, T. (2019). Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. Journal of Hazardous Materials, 366, 669–676. DOI: 10.1016/j.jhazmat.2018.12.056.
dc.relation.references34. Geng, T., Yi, C., Yi, R., Yang, L., & Nawaz, M. I. (2020). Mechanism and degradation pathways of bisphenol A in aqueous solution by strong ionization discharge. Water, Air, and Soil Pollution, 231 (4), 185–201. DOI: 10.1007/s11270-020-04563-5.
dc.relation.references35. Lin, X., He, J., Xu, L., Fang, Y., & Rao, G. (2020). Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollution and Treatment, 8 (3), 66–76. DOI: 10.12677/wpt.2020.83010.
dc.relation.references36. Eslami, A., Mehdipour, F., Lin, K.-Y. A., Maleksari, H. S., Mirzaei, F., & Ghanbari, F. (2020). Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. Journal of Water Process Engineering, 33, 100998. DOI: 10.1016/j.jwpe.2019.100998.
dc.relation.references37. Ma, J., Yang, X., Jiang, X., Wen, J., Li, J., Zhong, Y., …Wang, Y. (2020). Percarbonate persistence under different water chemistry conditions. Chemical Engineering Journal, 389, 123422. DOI: 10.1016/j.cej.2019.123422.
dc.relation.references38. Tang, P., Jiang, W., Lu, S., Zhang, X., Xue, Y., Qiu, Z., & Sui, Q. (2017). Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environmental Technology, 40 (1), 1–9. DOI: 10.1080/09593330.2017.1393012.
dc.relation.references39. Liang, H., Cui, M., Su, R., Liu, Z., Zhang, J., & Huang, R. (2020). Rapid degradation of p-chlorophenol by the activated percarbonate. Chemical Engineering Transactions, 81, 235–240. DOI: 10.3303/CET2081040.
dc.relation.references40. Farooq, U., Sajid, M., Shan, A., Wang, X., & Lyu, S. (2021). Role of cysteine in enhanced degradation of trichloroethane under ferrous percarbonate system. Chemical Engineering Journal, 423, 130221. DOI: 10.1016/j.cej.2021.130221.
dc.relation.references41. Fu, X., Wei, X., Zhang, W., Yan, W., Wei, P., & Lyu, S. (2022). Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply, 22 (1), 208–219. DOI: 10.2166/ws.2021.278.
dc.relation.references42. Li, L., Huang, J., Hu, X., Zhang, S., Dai, Q., Chai, H., & Gu, L. (2019). Activation of sodium percarbonate by vanadium for the degradation of aniline in water: Mechanism and identification of reactive species. Chemosphere, 215, 647–656. DOI: 10.1016/j.chemosphere.2018.10.047.
dc.relation.references43. Ishizaki, U., Takahashi, I., Sato, K., & Yoshimune, K. (2021). 2-[bis (carboxymethyl) amino] propanoic acid-chelated copper chelate enhances bacterial elimination by sodium percarbonate. Biocontrol Science, 26 (1), 9–15. DOI: 10.4265/bio.26.9.
dc.relation.references44. Li, Y., Dong, H., Li, L., Xiao, J., Xiao, S., & Jin, Z. (2021). Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Research, 202, 117451. DOI: 10.1016/j.watres.2021.117451.
dc.relation.references45. Danish, M., Gu, X., Lu, S., Zhang, X., Fu, X., Xue, Y., …Qureshi, A. S. (2016). The effect of chelating agents on enhancement of 1,1,1-trichloroethane and trichloroethylene degradation by Z-nZVI-catalyzed percarbonate process. Water, Air, and Soil Pollution, 227 (9), 301–314. DOI: 10.1007/s11270-016-3005-x.
dc.relation.references46. Danish, M., Gu, X., Lu, S., Xu, M., Zhang, X., Fu, X., …Nasir, M. (2016). Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator. Research on Chemical Intermediates, 42 (9), 6959–6973. DOI: 10.1007/s11164-016-2509-8.
dc.relation.references47. Farooq, U., Danish, M., Lu, S., Naqvi, M., Gu, X., Fu, X., …Nasir, M. (2017). Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system. Research on Chemical Intermediates, 43 (5), 3219–3236. DOI: 10.1007/s11164-016-2821-3.
dc.relation.references48. Dai, Z., Liang, L., Wang, M., & Du, E. (2019). Degradation of DDTs by nano Fe3O4/sodium percarbonate and their degradation products. Acta Scientiae Circumstantiae, 39 (4), 1183–1190. DOI: 10.13671/j.hjkxxb.2018.0449.
dc.relation.references49. Danish,M., Gu, X., Lu, S., Ahmad, A., Naqvi, M., Farooq, U., …Xue, Y. (2017). Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite. Chemical Engineering Journal, 308, 396–407. DOI: 10.1016/j.cej.2016.09.051.
dc.relation.references50. Danish, M., Gu, X., Lu, S., Brusseau, M. L., Ahmad, A., Naqvi, M., …Miao, Z. (2017). An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite. Applied Catalysis A: General, 531, 177–186. DOI: 10.1016/j.apcata.2016.11.001.
dc.relation.references51. Farooq, U., Danish, M., Lu, S., Brusseau, M. L., Naqvi, M., Fu, X., …Qiu, Z. (2017). Efficient transformation in characteristics of cations supportedreduced graphene oxide nanocomposites for the destruction of trichloroethane. Applied Catalysis A: General, 544, 10–20. DOI: 10.1016/j.apcata.2017.07.007.
dc.relation.references52. Xu, J., Wang, L., Chen, J.-B., Xu, F., Wang, K.-Q., Hou, Z.-F., & Huang, T.-Y. (2020). Degradation of AO7 with magnetic Fe3O4-CuO heterogeneous catalyzed sodium percarbonate system. Environmental Science, 41 (4), 1734–1742. DOI: 10.13227/j.hjkx.201908117.
dc.relation.references53. Wang, Q., Tian, S., & Ning, P. (2014). Ferrocene-catalyzed heterogeneous Fenton-like degradation of Methylene blue: Influence of initial solution pH. Industrial & Engineering Chemistry Research, 53, 6334–6340. DOI: 10.1021/ie500115j.
dc.relation.references54. Lin, K.-Y. A., Lin, J.-T., & Lin, Y.-F. (2017). Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water. Journal of the Taiwan Institute of Chemical Engineers,78, 144–149. DOI: 10.1016/j.jtice.2017.05.017.
dc.relation.references55. Zhang, C., Dong, Y., Li, B., & Li, F. (2018). Comparative study of three solid oxidants as substitutes of H2O2 used in Fe (III)-oxalate complex mediated Fenton system for photocatalytic elimination of reactive azo dye. Journal of Cleaner Production, 177, 245–253. DOI: 10.1016/j.jclepro.2017.12.211.
dc.relation.referencesen1. Pimentel, J. A. I., Dong, C.-D., Garcia-Segura, S., Abarca, R. R. M., Chen, C.-W., & de Luna, M. D. G. (2021). Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. Science of the Total Environment, 781, 146411. DOI: 10.1016/j.scitotenv.2021.146411.
dc.relation.referencesen2. Du, C. H., & Liu, J. R. (2014). A new utilization approach of natural soda ash: to manufacture sodium percarbonate. Latin American Applied Research, 44 (2), 179–183. Retrieved from http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932014000200012.
dc.relation.referencesen3. Pesman, E., Imamoglu, S., Kalyoncu, E. E., & Kırcı, H. (2014). The effects of sodium percarbonate and perborate usage on pulping and flotation deinking instead of hydrogen peroxide. BioResources, 9 (1), 523–536. DOI: 10.15376/biores.9.1.523-536.
dc.relation.referencesen4. Zhang, B.-T., Kuang, L., Teng, Y., Fan, M., & Ma, Y. (2021). Application of percarbonate and peroxymonocarbonate in decontamination technologies. Journal of Environmental Sciences, 105, 100–115. DOI: 10.1016/j.jes.2020.12.031.
dc.relation.referencesen5. Forwood, J. M., Harris, J. O., Landos, M., & Deveney, M. R. (2015). Histological evaluation of sodium percarbonate exposure on the gills of rainbow trout. Diseases of Aquatic Organisms, 114, 263–268. DOI: 10.3354/dao02861.
dc.relation.referencesen6. Yu, X., Kamali, M., Aken, P. V., Appels, L., Van der Bruggen, B., & Dewil, R. (2021). Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. Journal of Water Process Engineering, 39, 101721. DOI: 10.1016/j.jwpe.2020.101721.
dc.relation.referencesen7. Więckol-Ryk, A., Białecka, B., & Thomas, M. (2020). Effect of green oxidizing agent on inhibition of Escherichia coli present in livestock wastes. Water, Air, and Soil Pollution, 231 (9), 466–481. DOI: 10.1007/s11270-020-04824-3.
dc.relation.referencesen8. Srisaikham, S., Isobe, N., & Suksombat, W. (2017). The inhibitory effect of sodium thiocyanate and sodium percarbonate ratios on microorganism growth in raw milk samples as an effective treatment to extend milk quality during storage. Songklanakarin Journal of Science and Technology, 39 (1), 77–89. DOI: 10.14456/sjstpsu.2017.9.
dc.relation.referencesen9. Thoo, R., Siuda, W., & Jasser, I. (2020). The effects of sodium percarbonate generated free oxygen on Daphnia – Implications for the management of harmful algal blooms. Water, 12, 1304–1315. DOI: 10.3390/w12051304.
dc.relation.referencesen10. Cheng, X., Lian, J., Ren, Z., Hou, C., Jin, Y., Zhang, L.,…Liang, H. (2021). Coupling sodium percarbonate (SPC) oxidation and coagulation for membrane fouling mitigation in algae-laden water treatment. Water Research, 204, 117622. DOI: 10.1016/j.watres.2021.117622.
dc.relation.referencesen11. Iskander, S. M., Novak, J., Brazil, B. & He, Z. (2017). Percarbonate oxidation of landfill leachate towards removal of ultraviolet quenchers. Environmental Science: Water Research & Technology, 3 (6), 1162–1170. DOI: 10.1039/P.7EW00343A.
dc.relation.referencesen12. Febriana, T. A., Khairiza, M. R., Maulina, R., Utami, T. S., Arbianti, R., & Hermansyah, H. (2020). Concentration optimization of sodium percarbonate as buffering catholyte on stacked microbial desalination cell by utilizing tofu wastewater as a substrate. Engineering Journal, 24 (4), 217–228. DOI: 10.4186/ej.2020.24.4.217.
dc.relation.referencesen13. Liu, X., He, S., Yang, Y., Yao, B., Tang, Y., Luo, L., …Zhou, Y. (2021). A review on percarbonatebased advanced oxidation processes for remediation of organic compounds in water. Environmental Research, 200, 111371. DOI: 10.1016/j.envres.2021.111371.
dc.relation.referencesen14. Ling, X., Deng, J., Ye, C., Cai, A., Ruan, S., Chen, M., & Li, X. (2021). Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization. Science of the Total Environment, 799, 149382. DOI: 10.1016/j.scitotenv.2021.149382.
dc.relation.referencesen15. Dangi, M. B., Urynowicz, M. A., Schultz, C. L., & Budhathoki, S. (2022). A comparison of the soil natural oxidant demand exerted by permanganate, hydrogen peroxide, sodium persulfate, and sodium percarbonate.Environmental Challenges, 7, 100456. DOI: 10.1016/j.envc.2022.100456.
dc.relation.referencesen16. Sablas, M. M., de Luna, M. D. G., Garcia-Segura, S., Chen, C.-W., Chen, C.-F., & Dong, C.-D. (2020). Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Separation and Purification Technology, 250, 117269. DOI: 10.1016/j.seppur.2020.117269.
dc.relation.referencesen17. Hung, C.-M., Chen, C.-W., Huang, C.-P., Tsai, M.-L., Wu, C.-H., Lin, Y.-L., …Dong, C.-D. (2022). Efficacy and cytotoxicity of engineered ferromanganesebearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. Journal of Hazardous Materials, 422, 126922. DOI: 10.1016/j.jhazmat.2021.126922.
dc.relation.referencesen18. Mohammadi, S., Moussavi, G., Yaghmaeian, K., & Giannakis, S. (2022). Development of a percarbonateenhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chemical Engineering Journal, 431 (2), 134064. DOI: 10.1016/j.cej.2021.134064.
dc.relation.referencesen19. Yue-Hua, Z., Chun-Mei, X., & Chang-Hong, G. (2011). Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater. Procedia Environmental Sciences, 10 (B), 1668–1673. DOI: 10.1016/j.proenv.2011.09.262.
dc.relation.referencesen20. Ohura, R., Katayama, A., & Takagishi, T. (1992). Degradation of sulfonated azo dyes with sodium percarbonate. Textile Research Journal, 62 (9), 552–556. DOI: 10.1177/004051759206200909.
dc.relation.referencesen21. Zhang, J., Wang, X., & Dong, C. (2019). Decolorization of triphenylmethane dyes and dye-doped silica microspheres using sodium percarbonate. Desalination and Water Treatment, 153, 312–320. DOI: 10.5004/dwt.2019.23904.
dc.relation.referencesen22. Nalliah, R. E. (2019). Reaction of FD&C Blue 1 with sodium percarbonate: multiple kinetics methods using an inexpensive light meter. Journal of Chemical Education, 96, 1453–1457. DOI: 10.1021/acs.jchemed.8b00589.
dc.relation.referencesen23. Viisimaa, M., & Goi, A. (2014). Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarbon-contaminated soil. Journal of Environmental Engineering and Landscape Management, 22 (1), 30–39. DOI: 10.3846/16486897.2013.804827.
dc.relation.referencesen24. Zhang, Y.-H., Sun, Y.-G., Yue, L.-H., & Guo, C.-H. (2013). Degradation of polycyclic aromatic hydrocarbons contamination in groundwater by sodium percarbonate oxidation. Asian Journal of Chemistry, 25 (11), 5917–5920. DOI: 10.14233/ajchem.2013.14047.
dc.relation.referencesen25. Gao, J., Duan, X., O’Shea, K., & Dionysiou, D. D. (2020). Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion. Water Research, 171, 115394. DOI: 10.1016/j.watres.2019.115394.
dc.relation.referencesen26. Qiu, Z., Rao, G., Wang, L., & Wang, L. (2021). Photo-assisted degradation of naphthalene by sodium percarbonate system. Advances in Environmental Protect, 11 (3), 497–505. DOI: 10.12677/aep.2021.113055.
dc.relation.referencesen27. Ortiz-Marin, A. D., Bandala, E. R., Ramírez, K., Moeller-Chávez, G., Pérez-Estrada, L., Ramírez-Pereda, B.,& Amabilis-Sosa, L. E. (2022). Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reaction Kinetics, Mechanisms and Catalysis, 2022-01-08. DOI: 10.1007/s11144-021-02152-z.
dc.relation.referencesen28. Li, L., Guo, R., Zhang, S., & Yuan, Y. (2022). Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environmental Research, 207, 112176. DOI: 10.1016/j.envres.2021.112176.
dc.relation.referencesen29. Pieczykolan, B., Płonka, I., & Barbusiński, K. (2016). Discoloration of dye wastewater by modified UVFenton process with sodium percarbonate. Architecture Civil Engineering Environment, 9 (4), 135–140. DOI: 10.21307/acee-2016-060.
dc.relation.referencesen30. Kozak, J., & Włodarczyk-Makuła, M. (2018). The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civil and Environmental Engineering Reports, 28 (2), 124–139. DOI: 10.2478/ceer-2018-0024.
dc.relation.referencesen31. Kozak, J., & Włodarczyk-Makuła, M. (2019). The use of sodium carbonate-hydrogen peroxide (2/3) in the modified Fenton reaction to degradation PAHs in coke wastewater. Proceedings, 16 (1), 44–48. DOI: 10.3390/proceedings2019016044.
dc.relation.referencesen32. Wang, T., Jia, H., Guo, X., Xia, T., Qu, G., Sun, Q., & Yin, X. (2018). Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chemical Engineering Journal, 346, 65–76. DOI: 10.1016/j.cej.2018.04.024.
dc.relation.referencesen33. Tang, S., Yuan, D., Rao, Y., Li, M., Shi, G., Gu, J., & Zhang, T. (2019). Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. Journal of Hazardous Materials, 366, 669–676. DOI: 10.1016/j.jhazmat.2018.12.056.
dc.relation.referencesen34. Geng, T., Yi, C., Yi, R., Yang, L., & Nawaz, M. I. (2020). Mechanism and degradation pathways of bisphenol A in aqueous solution by strong ionization discharge. Water, Air, and Soil Pollution, 231 (4), 185–201. DOI: 10.1007/s11270-020-04563-5.
dc.relation.referencesen35. Lin, X., He, J., Xu, L., Fang, Y., & Rao, G. (2020). Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollution and Treatment, 8 (3), 66–76. DOI: 10.12677/wpt.2020.83010.
dc.relation.referencesen36. Eslami, A., Mehdipour, F., Lin, K.-Y. A., Maleksari, H. S., Mirzaei, F., & Ghanbari, F. (2020). Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. Journal of Water Process Engineering, 33, 100998. DOI: 10.1016/j.jwpe.2019.100998.
dc.relation.referencesen37. Ma, J., Yang, X., Jiang, X., Wen, J., Li, J., Zhong, Y., …Wang, Y. (2020). Percarbonate persistence under different water chemistry conditions. Chemical Engineering Journal, 389, 123422. DOI: 10.1016/j.cej.2019.123422.
dc.relation.referencesen38. Tang, P., Jiang, W., Lu, S., Zhang, X., Xue, Y., Qiu, Z., & Sui, Q. (2017). Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environmental Technology, 40 (1), 1–9. DOI: 10.1080/09593330.2017.1393012.
dc.relation.referencesen39. Liang, H., Cui, M., Su, R., Liu, Z., Zhang, J., & Huang, R. (2020). Rapid degradation of p-chlorophenol by the activated percarbonate. Chemical Engineering Transactions, 81, 235–240. DOI: 10.3303/CET2081040.
dc.relation.referencesen40. Farooq, U., Sajid, M., Shan, A., Wang, X., & Lyu, S. (2021). Role of cysteine in enhanced degradation of trichloroethane under ferrous percarbonate system. Chemical Engineering Journal, 423, 130221. DOI: 10.1016/j.cej.2021.130221.
dc.relation.referencesen41. Fu, X., Wei, X., Zhang, W., Yan, W., Wei, P., & Lyu, S. (2022). Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply, 22 (1), 208–219. DOI: 10.2166/ws.2021.278.
dc.relation.referencesen42. Li, L., Huang, J., Hu, X., Zhang, S., Dai, Q., Chai, H., & Gu, L. (2019). Activation of sodium percarbonate by vanadium for the degradation of aniline in water: Mechanism and identification of reactive species. Chemosphere, 215, 647–656. DOI: 10.1016/j.chemosphere.2018.10.047.
dc.relation.referencesen43. Ishizaki, U., Takahashi, I., Sato, K., & Yoshimune, K. (2021). 2-[bis (carboxymethyl) amino] propanoic acid-chelated copper chelate enhances bacterial elimination by sodium percarbonate. Biocontrol Science, 26 (1), 9–15. DOI: 10.4265/bio.26.9.
dc.relation.referencesen44. Li, Y., Dong, H., Li, L., Xiao, J., Xiao, S., & Jin, Z. (2021). Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Research, 202, 117451. DOI: 10.1016/j.watres.2021.117451.
dc.relation.referencesen45. Danish, M., Gu, X., Lu, S., Zhang, X., Fu, X., Xue, Y., …Qureshi, A. S. (2016). The effect of chelating agents on enhancement of 1,1,1-trichloroethane and trichloroethylene degradation by Z-nZVI-catalyzed percarbonate process. Water, Air, and Soil Pollution, 227 (9), 301–314. DOI: 10.1007/s11270-016-3005-x.
dc.relation.referencesen46. Danish, M., Gu, X., Lu, S., Xu, M., Zhang, X., Fu, X., …Nasir, M. (2016). Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator. Research on Chemical Intermediates, 42 (9), 6959–6973. DOI: 10.1007/s11164-016-2509-8.
dc.relation.referencesen47. Farooq, U., Danish, M., Lu, S., Naqvi, M., Gu, X., Fu, X., …Nasir, M. (2017). Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system. Research on Chemical Intermediates, 43 (5), 3219–3236. DOI: 10.1007/s11164-016-2821-3.
dc.relation.referencesen48. Dai, Z., Liang, L., Wang, M., & Du, E. (2019). Degradation of DDTs by nano Fe3O4/sodium percarbonate and their degradation products. Acta Scientiae Circumstantiae, 39 (4), 1183–1190. DOI: 10.13671/j.hjkxxb.2018.0449.
dc.relation.referencesen49. Danish,M., Gu, X., Lu, S., Ahmad, A., Naqvi, M., Farooq, U., …Xue, Y. (2017). Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite. Chemical Engineering Journal, 308, 396–407. DOI: 10.1016/j.cej.2016.09.051.
dc.relation.referencesen50. Danish, M., Gu, X., Lu, S., Brusseau, M. L., Ahmad, A., Naqvi, M., …Miao, Z. (2017). An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite. Applied Catalysis A: General, 531, 177–186. DOI: 10.1016/j.apcata.2016.11.001.
dc.relation.referencesen51. Farooq, U., Danish, M., Lu, S., Brusseau, M. L., Naqvi, M., Fu, X., …Qiu, Z. (2017). Efficient transformation in characteristics of cations supportedreduced graphene oxide nanocomposites for the destruction of trichloroethane. Applied Catalysis A: General, 544, 10–20. DOI: 10.1016/j.apcata.2017.07.007.
dc.relation.referencesen52. Xu, J., Wang, L., Chen, J.-B., Xu, F., Wang, K.-Q., Hou, Z.-F., & Huang, T.-Y. (2020). Degradation of AO7 with magnetic Fe3O4-CuO heterogeneous catalyzed sodium percarbonate system. Environmental Science, 41 (4), 1734–1742. DOI: 10.13227/j.hjkx.201908117.
dc.relation.referencesen53. Wang, Q., Tian, S., & Ning, P. (2014). Ferrocene-catalyzed heterogeneous Fenton-like degradation of Methylene blue: Influence of initial solution pH. Industrial & Engineering Chemistry Research, 53, 6334–6340. DOI: 10.1021/ie500115j.
dc.relation.referencesen54. Lin, K.-Y. A., Lin, J.-T., & Lin, Y.-F. (2017). Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water. Journal of the Taiwan Institute of Chemical Engineers,78, 144–149. DOI: 10.1016/j.jtice.2017.05.017.
dc.relation.referencesen55. Zhang, C., Dong, Y., Li, B., & Li, F. (2018). Comparative study of three solid oxidants as substitutes of H2O2 used in Fe (III)-oxalate complex mediated Fenton system for photocatalytic elimination of reactive azo dye. Journal of Cleaner Production, 177, 245–253. DOI: 10.1016/j.jclepro.2017.12.211.
dc.relation.urihttp://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932014000200012
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectнатрію перкарбонат
dc.subjectгідрогену пероксид
dc.subjectпередові процеси окиснення
dc.subjectактивація
dc.subjectгідроксильні радикали
dc.subjectорганічні сполуки
dc.subjectнаночастинки заліза
dc.subjectsodium percarbonate
dc.subjecthydrogen peroxide
dc.subjectadvanced oxidation processes
dc.subjectactivation
dc.subjecthydroxyl radicals
dc.subjectorganic compounds
dc.subjectiron nanoparticles
dc.titleПередові процеси окиснення на основі натрію перкарбонату. Огляд
dc.title.alternativeSodium percarbonate-based advanced oxidation processes. Reviwe
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v5n1_Sukhatskyi_Yu_V-Sodium_percarbonate_1-11.pdf
Size:
964.65 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v5n1_Sukhatskyi_Yu_V-Sodium_percarbonate_1-11__COVER.png
Size:
462.63 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: