Improvement of the system for cleaning dust gas flows using an aerodynamic insert

dc.citation.epage64
dc.citation.issue1
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage59
dc.citation.volume9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorLatsyk, Nataliia
dc.contributor.authorPetrushka, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-07T09:02:40Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractAir pollution is becoming a problem due to inefficient technological processes that accompany the mechanical processing of solid materials in various industries, including metalworking and woodworking, coal enrichment, coal burning in thermal power plants, metallurgy and construction materials industries. The problem is relevant for cement factories, since some of them use outdated equipment. Fine dust in this context becomes particularly important because the particle size of this dust affects the quality and grade of the concrete produced. Given the specifics of cement production and the goals of our research, which are to effectively collect small particles, it is important to note that wet cement production methods are not the best solution. The ideal solution for the problem of cleaning dust and gas flows in the cement industry is the use of a two-stage dust collection system, which combines an advanced cyclone and a bag filter. The system's periodic shaking mechanism allows for effective capture and control of fine dust particles, ensuring high quality cement production and reducing environmental impact. The combination of a cyclone, an acoustic coalescer and a block of bag filters, which is equipped with a periodic cleaning mechanism, as well as the addition of a system for collecting fine dust using a collector funnel, will split the collected dust into two fractions: fine (a = 10−5 to 10−7 m) and coarse (a > 10-4 m). The first fraction can be used to produce high-quality cement of high cost in the cement industry. The second fraction returns to the main technological process at its finishing stage.
dc.format.extent59-64
dc.format.pages6
dc.identifier.citationLatsyk N. Improvement of the system for cleaning dust gas flows using an aerodynamic insert / Nataliia Latsyk, Ihor Petrushka // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 59–64.
dc.identifier.citationenLatsyk N. Improvement of the system for cleaning dust gas flows using an aerodynamic insert / Nataliia Latsyk, Ihor Petrushka // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 59–64.
dc.identifier.doidoi.org/10.23939/ep2024.01.059
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64514
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 1 (9), 2024
dc.relation.ispartofEnvironmental Problems, 1 (9), 2024
dc.relation.referencesBatluk, V., & Paranyak, N. (2012). Building a performance factors model for a new design dust collector. Econtechmod an international quartery journal, 1(3), 3–7. Retrieved from https://bibliotekanauki.pl/articles/411141
dc.relation.referencesDubynin, A. I., Khanik, Y. M. Maystruk, V. V., & Havryliv, R. I. (2005). Direct-flow cyclone with coaxial insert. Analysis of work. Chemical industry of Ukraine, 3, 26–28.
dc.relation.referencesGrave, J. C., Paulo, C .I., Petit, H. A., & Irassar, E. F. (2021). Optimal design of cyclones in series for the separation of multicomponent mixtures of Portland cement. EPJ Web of Conferences, 249, 12003. doi: https://doi.org/10.1051/epjconf/202124912003
dc.relation.referencesPolytrenco, M. S., Polupindko, M.S., & Paranyak, N. M. (2015). Increasing the efficiency of dust removal systems using developed modified devices. Interuniversity College, “Scientific Notes”, 52, 54-59. Retrieved from http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Nge_2015_1_4
dc.relation.referencesPetrushka, I .M., Latsyk, N. V., & Kulik, M. P. (2022). UA Patent No. u202202724 Ukrainskyi instytut intelektualnoi vlasnosti (Ukrpatent). Retrieved from https://base.uipv.org/searchInvStat/showclaimdetails.php?IdClaim=349406&resId=1
dc.relation.referencesPlashikhin, S.V., Serebryansky, D. A., & Beznosik, Yu. A. (2010). Experimental studies of a cyclofilter in the process of catching cement dust. Bulletin of NTU “hPI”: New solutions in modern technologies, 1(57), 3–6. Retrieved from http://vestnik2079-5459.khpi.edu.ua/article/view/46623
dc.relation.referencesRatushnyak, G. S., & Lyalyuk, O. G. (2005). Technical means of cleaning gas emissions. Vinnitsa: VNTU. Retrieved from http://ir.lib.vntu.edu.ua/handle/123456789/7027?show=full
dc.relation.referencesSerebryansky, D. O., Plashikhin, S. V., Beznosik, Yu. O., & Nabok, O. M. (2014). Mathematical modeling of dust gas flow cleaning in cyclone dust collector. Eastern European Journal of Entrepreneurial Technology, 2(10(68), 11–16. doi: https://doi.org/10.15587/1729-4061.2014.23351
dc.relation.referencesYakuba, O. R., Savchenko-Pererva, M.Yu., & Sabadash, S.M. (2017). Mechanical dust collectors and filters in the technology of complex cleaning of food dust-like products. Monograph. Sumy, SNAU. Retrieved from https://repo.snau.edu.ua/bitstream/123456789/5289/1/%D0%9C%D0%BE%D0%BD.pdf
dc.relation.referencesenBatluk, V., & Paranyak, N. (2012). Building a performance factors model for a new design dust collector. Econtechmod an international quartery journal, 1(3), 3–7. Retrieved from https://bibliotekanauki.pl/articles/411141
dc.relation.referencesenDubynin, A. I., Khanik, Y. M. Maystruk, V. V., & Havryliv, R. I. (2005). Direct-flow cyclone with coaxial insert. Analysis of work. Chemical industry of Ukraine, 3, 26–28.
dc.relation.referencesenGrave, J. C., Paulo, C .I., Petit, H. A., & Irassar, E. F. (2021). Optimal design of cyclones in series for the separation of multicomponent mixtures of Portland cement. EPJ Web of Conferences, 249, 12003. doi: https://doi.org/10.1051/epjconf/202124912003
dc.relation.referencesenPolytrenco, M. S., Polupindko, M.S., & Paranyak, N. M. (2015). Increasing the efficiency of dust removal systems using developed modified devices. Interuniversity College, "Scientific Notes", 52, 54-59. Retrieved from http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&P.21COM=S&2_S21P03=FILA=&2_S21STR=Nge_2015_1_4
dc.relation.referencesenPetrushka, I .M., Latsyk, N. V., & Kulik, M. P. (2022). UA Patent No. u202202724 Ukrainskyi instytut intelektualnoi vlasnosti (Ukrpatent). Retrieved from https://base.uipv.org/searchInvStat/showclaimdetails.php?IdClaim=349406&resId=1
dc.relation.referencesenPlashikhin, S.V., Serebryansky, D. A., & Beznosik, Yu. A. (2010). Experimental studies of a cyclofilter in the process of catching cement dust. Bulletin of NTU "hPI": New solutions in modern technologies, 1(57), 3–6. Retrieved from http://vestnik2079-5459.khpi.edu.ua/article/view/46623
dc.relation.referencesenRatushnyak, G. S., & Lyalyuk, O. G. (2005). Technical means of cleaning gas emissions. Vinnitsa: VNTU. Retrieved from http://ir.lib.vntu.edu.ua/handle/123456789/7027?show=full
dc.relation.referencesenSerebryansky, D. O., Plashikhin, S. V., Beznosik, Yu. O., & Nabok, O. M. (2014). Mathematical modeling of dust gas flow cleaning in cyclone dust collector. Eastern European Journal of Entrepreneurial Technology, 2(10(68), 11–16. doi: https://doi.org/10.15587/1729-4061.2014.23351
dc.relation.referencesenYakuba, O. R., Savchenko-Pererva, M.Yu., & Sabadash, S.M. (2017). Mechanical dust collectors and filters in the technology of complex cleaning of food dust-like products. Monograph. Sumy, SNAU. Retrieved from https://repo.snau.edu.ua/bitstream/123456789/5289/1/%D0%9C%D0%BE%D0%BD.pdf
dc.relation.urihttps://bibliotekanauki.pl/articles/411141
dc.relation.urihttps://doi.org/10.1051/epjconf/202124912003
dc.relation.urihttp://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Nge_2015_1_4
dc.relation.urihttps://base.uipv.org/searchInvStat/showclaimdetails.php?IdClaim=349406&resId=1
dc.relation.urihttp://vestnik2079-5459.khpi.edu.ua/article/view/46623
dc.relation.urihttp://ir.lib.vntu.edu.ua/handle/123456789/7027?show=full
dc.relation.urihttps://doi.org/10.15587/1729-4061.2014.23351
dc.relation.urihttps://repo.snau.edu.ua/bitstream/123456789/5289/1/%D0%9C%D0%BE%D0%BD.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Latsyk N., Petrushka I., 2024
dc.subjectair
dc.subjectcement industry
dc.subjectcleaning
dc.subjectdust flows
dc.titleImprovement of the system for cleaning dust gas flows using an aerodynamic insert
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n1_Latsyk_N-Improvement_of_the_system_59-64.pdf
Size:
4 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n1_Latsyk_N-Improvement_of_the_system_59-64__COVER.png
Size:
1.14 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: