Strenghening of RC beams by FRC and FRP systems – a review

dc.citation.epage61
dc.citation.issue2
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage56
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТерешко, А. Р.
dc.contributor.authorБліхарський, Я. З.
dc.contributor.authorTereshko, Andriy
dc.contributor.authorBlikharskyy, Yaroslav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-04T09:42:48Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractУ статті розглядаються дослідження армування залізобетонних елементів цементними фібро-фібро-системами (FRC) та полімерними арматурними фібро-фібро-сітками (FRP). У наш час світова економіка, а разом з нею і будівельна галузь, розвивається швидкими темпами. На ринку з'являються нові матеріали, засоби механізації, будівельна техніка. Завдяки цьому сучасні конструкції вражають своїми формами, масштабами та складністю конструкцій. За станом будівельного виробництва в країні можна судити про стан економіки цієї країни в цілому. Зараз актуальним питанням у світі є використання нових композитних матеріалів у посиленні будівельних конструкцій. До таких матеріалів належать неметалева арматура, ламінати, сітки та полотна на основі високоміцних волокон. При цьому власна вага волокнистих матеріалів дещо мала. Лише одиниці вищезгаданих дослідників виконували посилення експериментальних зразків під навантаженням, тому вплив початкового напружено-деформованого стану на роботу конструкції після посилення практично не вивчався.
dc.description.abstractThe article examines studies on the reinforcement of reinforced concrete elements of cement -based fibro -based fibro systems (FRC) and polymers reinforcement fibro (FRP). Nowadays, the world economy, and with it, the construction industry is developing at a rapid pace. New materials, mechanization, construction equipment are emerging on the market. Due to this, modern structures impress with their shapes, scale and complexity of structures. The state of construction production in the country can be judged on the state of the economy of this country as a whole. Now the urgent issue in the world is the use of new composite materials in the strengthening of building structures. Such materials include non -metallic fittings, laminates, nets and canvases based on high -strength fibers. In this case, the own weight of fiber materials is slightly small. Only units of the above researchers performed enhancement of experimental samples under load, so the influence of the initial stress-deformed state on the work of the structure after amplification was practically not studied.
dc.format.extent56-61
dc.format.pages6
dc.identifier.citationTereshko A. Strenghening of RC beams by FRC and FRP systems – a review / Andriy Tereshko, Yaroslav Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 56–61.
dc.identifier.citationenTereshko A. Strenghening of RC beams by FRC and FRP systems – a review / Andriy Tereshko, Yaroslav Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 56–61.
dc.identifier.doidoi.org/10.23939/jtbp2024.02.056
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117201
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 2 (6), 2024
dc.relation.ispartofTheory and Building Practice, 2 (6), 2024
dc.relation.referencesAbdallah, M., Al Mahmoud, F., Tabet-Derraz, M. I., Khelil, A., & Mercier, J. (2021). Experimental and numerical investigation on the effectiveness of NSM and side-NSM CFRP bars for strengthening continuous two-span RC beams. Journal of Building Engineering, 41, 102723. https://doi.org/10.1016/j.jobe.2021.102723
dc.relation.referencesAbdel-Kareem, H. A. (2020). Punching strengthening of concrete slab-column connections using near surface mounted (NSM) carbon fiber reinforced polymer (CFRP) bars. Journal of Engineering Research and Reports, 9(2), 1-14. https://doi.org/10.9734/jerr/2019/v9i217013
dc.relation.referencesAdheem, A. H., Kadhim, M. M., & Jawdhari, A. (2022). Parametric study and improved capacity model for RC beams strengthened with side NSM CFRP bars. Structures, vol. 39, pp. 1118-1134. https://doi.org/10.1016/j.istruc.2022.04.003
dc.relation.referencesAlberti, M. G., Enfedaque, A., Faria, D. M., & Fernández Ruiz, M. (2024). The Potential of Fiber-Reinforced Concrete to Reduce the Environmental Impact of Concrete Construction. Applied Sciences, 14(15), 6629. https://doi.org/2076-3417/14/15/6629
dc.relation.referencesAscione, F., Napoli, A., & Realfonzo, R. (2020). Experimental and analytical investigation on the bond of SRP systems to concrete. Composite Structures, 242, 112090. https://doi.org/10.1016/j.compstruct.2020.112090
dc.relation.referencesAskar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17, e01189. https://doi.org/10.1016/j.cscm.2022.e01189
dc.relation.referencesBaietti, G., Shahreza, S. K., Santandrea, M., & Carloni, C. (2021). Concrete columns confined with SRP: Effect of the size, cross-sectional shape and amount of confinement. Construction and Building Materials, 275, 121618. https://doi.org/10.1016/j.conbuildmat.2020.121618
dc.relation.referencesBarris, C., Sala, P., Gómez, J., & Torres, L. (2020). Flexural behaviour of FRP reinforced concrete beams strengthened with NSM CFRP strips. Composite Structures, 241, 112059. https://doi.org/10.1016/j.compstruct.2020.112059
dc.relation.referencesCasadei, P., Nanni, A., Alkhrdaji, T., & Thomas, J. (2005). Performance of double-T prestressed concrete beams strengthened with steel reinforcement polymer. Advances in Structural Engineering, 8(4), 427-442. https://doi.org/10.1260/136943305774353124
dc.relation.referencesElakhras, A. A., Seleem, M. H., & Sallam, H. E. M. (2022). Real fracture toughness of FRC and FGC: size and boundary effects. Archives of Civil and Mechanical Engineering, 22(2), 99. https://doi.org/10.1007/s43452-022-00424-6
dc.relation.referencesGómez, J., Torres, L., & Barris, C. (2020). Characterization and simulation of the bond response of NSM FRP reinforcement in concrete. Materials, 13(7), 1770. https://doi.org/10.3390/ma13071770
dc.relation.referencesHaddad, R. H., & Yaghmour, E. M. (2020). Side NSM CFRP strips with different profiles for strengthening reinforced concrete beams. Journal of Building Engineering, 32, 101772. https://doi.org/10.1016/j.jobe.2020.101772
dc.relation.referencesHaroon, M., Moon, J. S., & Kim, C. (2021). Performance of reinforced concrete beams strengthened with carbon fiber reinforced polymer strips. Materials, 14(19), 5866. https://doi.org/10.3390/ma14195866
dc.relation.referencesMarzec, I., Suchorzewski, J., & Bobiński, J. (2024). Three dimensional simulations of FRC beams and panels with explicit definition of fibres-concrete interaction. Engineering Structures, 319, 118856. https://doi.org/10.1016/j.engstruct.2024.118856
dc.relation.referencesMohamed, H. M., Ali, A. H., Hadhood, A., Mousa, S., Abdelazim, W., & Benmokrane, B. (2020). Testing, design, and field implementation of GFRP RC soft-eyes for tunnel construction. Tunnelling and Underground Space Technology, 106, 103626. https://doi.org/10.1016/j.tust.2020.103626
dc.relation.referencesMukhtar, F., & Jawdhari, A. (2024). RC beams flexurally strengthened with CFRP sheets combined with FRC layer for mitigating debonding failures. Construction and Building Materials, 427, 136274. https://doi.org/10.1016/j.conbuildmat.2024.136274
dc.relation.referencesNikoloutsopoulos, N., Sotiropoulou, A., & Passa, D. (2023). Deep embedment and NSM techniques for shear strengthening of reinforced concrete slender beams with cFRP ropes. Materials Today: Proceedings, 93, 799-805. https://doi.org/10.1016/j.matpr.2023.07.254
dc.relation.referencesObaidat, Y. T., Barham, W. S., & Aljarah, A. H. (2020). New anchorage technique for NSM-CFRP flexural strengthened RC beam using steel clamped end plate. Construction and Building Materials, 263, 120246. https://doi.org/10.1016/j.conbuildmat.2020.120246
dc.relation.referencesPanahi, M., Zareei, S. A., & Izadi, A. (2021). Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars. Case Studies in Construction Materials, 15, e00601. https://doi.org/10.1016/j.cscm.2021.e00601
dc.relation.referencesRenić, T., & Kišiček, T. (2021). Ductility of concrete beams reinforced with frp rebars. Buildings, 11(9), 424. https://doi.org/10.3390/buildings11090424
dc.relation.referencesRossi, P. (2023). Numerical Designing of Fiber Reinforced Concrete Eco-Constructions. Materials, 16(7), 2576. https://doi.org/10.3390/ma16072576
dc.relation.referencesSaha, M. K., & Tan, K. H. (2005, October). GFRP-Bonded RC beams under sustained loading and tropical weathering. In 7th International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS-7) Kansas City, MO, USA, pp. 1379-1396. https://quakewrap.com/frp%20papers/GFRP-BondedRCBeamsunderSustainedLoadingandTropicalWeathering.pdf
dc.relation.referencesSiddika, A., Al Mamun, M. A., Ferdous, W., & Alyousef, R. (2020). Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review. Engineering Failure Analysis, 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480
dc.relation.referencesSneed, L. H., Verre, S., Ombres, L., & Carloni, C. (2022). Flexural behavior RC beams strengthened and repaired with SRP composite. Engineering Structures, 258, 114084. https://doi.org/10.1016/j.engstruct.2022.114084
dc.relation.referencesYan, Y., Lu, Y., Zhao, Q., & Li, S. (2023). Flexural behavior of pre-damaged and repaired reinforced concrete beams with carbon fiber reinforced polymer grid and engineered cementitious composite. Engineering Structures, 277, 115390. https://doi.org/10.1016/j.engstruct.2022.115390
dc.relation.referencesenAbdallah, M., Al Mahmoud, F., Tabet-Derraz, M. I., Khelil, A., & Mercier, J. (2021). Experimental and numerical investigation on the effectiveness of NSM and side-NSM CFRP bars for strengthening continuous two-span RC beams. Journal of Building Engineering, 41, 102723. https://doi.org/10.1016/j.jobe.2021.102723
dc.relation.referencesenAbdel-Kareem, H. A. (2020). Punching strengthening of concrete slab-column connections using near surface mounted (NSM) carbon fiber reinforced polymer (CFRP) bars. Journal of Engineering Research and Reports, 9(2), 1-14. https://doi.org/10.9734/jerr/2019/v9i217013
dc.relation.referencesenAdheem, A. H., Kadhim, M. M., & Jawdhari, A. (2022). Parametric study and improved capacity model for RC beams strengthened with side NSM CFRP bars. Structures, vol. 39, pp. 1118-1134. https://doi.org/10.1016/j.istruc.2022.04.003
dc.relation.referencesenAlberti, M. G., Enfedaque, A., Faria, D. M., & Fernández Ruiz, M. (2024). The Potential of Fiber-Reinforced Concrete to Reduce the Environmental Impact of Concrete Construction. Applied Sciences, 14(15), 6629. https://doi.org/2076-3417/14/15/6629
dc.relation.referencesenAscione, F., Napoli, A., & Realfonzo, R. (2020). Experimental and analytical investigation on the bond of SRP systems to concrete. Composite Structures, 242, 112090. https://doi.org/10.1016/j.compstruct.2020.112090
dc.relation.referencesenAskar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17, e01189. https://doi.org/10.1016/j.cscm.2022.e01189
dc.relation.referencesenBaietti, G., Shahreza, S. K., Santandrea, M., & Carloni, C. (2021). Concrete columns confined with SRP: Effect of the size, cross-sectional shape and amount of confinement. Construction and Building Materials, 275, 121618. https://doi.org/10.1016/j.conbuildmat.2020.121618
dc.relation.referencesenBarris, C., Sala, P., Gómez, J., & Torres, L. (2020). Flexural behaviour of FRP reinforced concrete beams strengthened with NSM CFRP strips. Composite Structures, 241, 112059. https://doi.org/10.1016/j.compstruct.2020.112059
dc.relation.referencesenCasadei, P., Nanni, A., Alkhrdaji, T., & Thomas, J. (2005). Performance of double-T prestressed concrete beams strengthened with steel reinforcement polymer. Advances in Structural Engineering, 8(4), 427-442. https://doi.org/10.1260/136943305774353124
dc.relation.referencesenElakhras, A. A., Seleem, M. H., & Sallam, H. E. M. (2022). Real fracture toughness of FRC and FGC: size and boundary effects. Archives of Civil and Mechanical Engineering, 22(2), 99. https://doi.org/10.1007/s43452-022-00424-6
dc.relation.referencesenGómez, J., Torres, L., & Barris, C. (2020). Characterization and simulation of the bond response of NSM FRP reinforcement in concrete. Materials, 13(7), 1770. https://doi.org/10.3390/ma13071770
dc.relation.referencesenHaddad, R. H., & Yaghmour, E. M. (2020). Side NSM CFRP strips with different profiles for strengthening reinforced concrete beams. Journal of Building Engineering, 32, 101772. https://doi.org/10.1016/j.jobe.2020.101772
dc.relation.referencesenHaroon, M., Moon, J. S., & Kim, C. (2021). Performance of reinforced concrete beams strengthened with carbon fiber reinforced polymer strips. Materials, 14(19), 5866. https://doi.org/10.3390/ma14195866
dc.relation.referencesenMarzec, I., Suchorzewski, J., & Bobiński, J. (2024). Three dimensional simulations of FRC beams and panels with explicit definition of fibres-concrete interaction. Engineering Structures, 319, 118856. https://doi.org/10.1016/j.engstruct.2024.118856
dc.relation.referencesenMohamed, H. M., Ali, A. H., Hadhood, A., Mousa, S., Abdelazim, W., & Benmokrane, B. (2020). Testing, design, and field implementation of GFRP RC soft-eyes for tunnel construction. Tunnelling and Underground Space Technology, 106, 103626. https://doi.org/10.1016/j.tust.2020.103626
dc.relation.referencesenMukhtar, F., & Jawdhari, A. (2024). RC beams flexurally strengthened with CFRP sheets combined with FRC layer for mitigating debonding failures. Construction and Building Materials, 427, 136274. https://doi.org/10.1016/j.conbuildmat.2024.136274
dc.relation.referencesenNikoloutsopoulos, N., Sotiropoulou, A., & Passa, D. (2023). Deep embedment and NSM techniques for shear strengthening of reinforced concrete slender beams with cFRP ropes. Materials Today: Proceedings, 93, 799-805. https://doi.org/10.1016/j.matpr.2023.07.254
dc.relation.referencesenObaidat, Y. T., Barham, W. S., & Aljarah, A. H. (2020). New anchorage technique for NSM-CFRP flexural strengthened RC beam using steel clamped end plate. Construction and Building Materials, 263, 120246. https://doi.org/10.1016/j.conbuildmat.2020.120246
dc.relation.referencesenPanahi, M., Zareei, S. A., & Izadi, A. (2021). Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars. Case Studies in Construction Materials, 15, e00601. https://doi.org/10.1016/j.cscm.2021.e00601
dc.relation.referencesenRenić, T., & Kišiček, T. (2021). Ductility of concrete beams reinforced with frp rebars. Buildings, 11(9), 424. https://doi.org/10.3390/buildings11090424
dc.relation.referencesenRossi, P. (2023). Numerical Designing of Fiber Reinforced Concrete Eco-Constructions. Materials, 16(7), 2576. https://doi.org/10.3390/ma16072576
dc.relation.referencesenSaha, M. K., & Tan, K. H. (2005, October). GFRP-Bonded RC beams under sustained loading and tropical weathering. In 7th International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS-7) Kansas City, MO, USA, pp. 1379-1396. https://quakewrap.com/frp%20papers/GFRP-BondedRCBeamsunderSustainedLoadingandTropicalWeathering.pdf
dc.relation.referencesenSiddika, A., Al Mamun, M. A., Ferdous, W., & Alyousef, R. (2020). Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review. Engineering Failure Analysis, 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480
dc.relation.referencesenSneed, L. H., Verre, S., Ombres, L., & Carloni, C. (2022). Flexural behavior RC beams strengthened and repaired with SRP composite. Engineering Structures, 258, 114084. https://doi.org/10.1016/j.engstruct.2022.114084
dc.relation.referencesenYan, Y., Lu, Y., Zhao, Q., & Li, S. (2023). Flexural behavior of pre-damaged and repaired reinforced concrete beams with carbon fiber reinforced polymer grid and engineered cementitious composite. Engineering Structures, 277, 115390. https://doi.org/10.1016/j.engstruct.2022.115390
dc.relation.urihttps://doi.org/10.1016/j.jobe.2021.102723
dc.relation.urihttps://doi.org/10.9734/jerr/2019/v9i217013
dc.relation.urihttps://doi.org/10.1016/j.istruc.2022.04.003
dc.relation.urihttps://doi.org/2076-3417/14/15/6629
dc.relation.urihttps://doi.org/10.1016/j.compstruct.2020.112090
dc.relation.urihttps://doi.org/10.1016/j.cscm.2022.e01189
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.121618
dc.relation.urihttps://doi.org/10.1016/j.compstruct.2020.112059
dc.relation.urihttps://doi.org/10.1260/136943305774353124
dc.relation.urihttps://doi.org/10.1007/s43452-022-00424-6
dc.relation.urihttps://doi.org/10.3390/ma13071770
dc.relation.urihttps://doi.org/10.1016/j.jobe.2020.101772
dc.relation.urihttps://doi.org/10.3390/ma14195866
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2024.118856
dc.relation.urihttps://doi.org/10.1016/j.tust.2020.103626
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2024.136274
dc.relation.urihttps://doi.org/10.1016/j.matpr.2023.07.254
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.120246
dc.relation.urihttps://doi.org/10.1016/j.cscm.2021.e00601
dc.relation.urihttps://doi.org/10.3390/buildings11090424
dc.relation.urihttps://doi.org/10.3390/ma16072576
dc.relation.urihttps://quakewrap.com/frp%20papers/GFRP-BondedRCBeamsunderSustainedLoadingandTropicalWeathering.pdf
dc.relation.urihttps://doi.org/10.1016/j.engfailanal.2020.104480
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2022.114084
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2022.115390
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Tereshko A., Blikharskyy Y., 2024
dc.subjectпідсилення
dc.subjectзалізобетонні балки
dc.subjectкомпозитні матеріали
dc.subjectFRC
dc.subjectFRP
dc.subjectзгинані елементи
dc.subjectreinforcement
dc.subjectreinforced concrete beams
dc.subjectcomposite materials
dc.subjectFRC
dc.subjectFRP
dc.subjectflexural structures
dc.titleStrenghening of RC beams by FRC and FRP systems – a review
dc.title.alternativeПідсилення залізобетонних балок FRC та FRP системами – огляд літератури
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n2_Tereshko_A-Strenghening_of_RC_beams_56-61.pdf
Size:
710.14 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n2_Tereshko_A-Strenghening_of_RC_beams_56-61__COVER.png
Size:
403.35 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: