Strenghening of RC beams by FRC and FRP systems – a review
| dc.citation.epage | 61 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 56 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Терешко, А. Р. | |
| dc.contributor.author | Бліхарський, Я. З. | |
| dc.contributor.author | Tereshko, Andriy | |
| dc.contributor.author | Blikharskyy, Yaroslav | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-04T09:42:48Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | У статті розглядаються дослідження армування залізобетонних елементів цементними фібро-фібро-системами (FRC) та полімерними арматурними фібро-фібро-сітками (FRP). У наш час світова економіка, а разом з нею і будівельна галузь, розвивається швидкими темпами. На ринку з'являються нові матеріали, засоби механізації, будівельна техніка. Завдяки цьому сучасні конструкції вражають своїми формами, масштабами та складністю конструкцій. За станом будівельного виробництва в країні можна судити про стан економіки цієї країни в цілому. Зараз актуальним питанням у світі є використання нових композитних матеріалів у посиленні будівельних конструкцій. До таких матеріалів належать неметалева арматура, ламінати, сітки та полотна на основі високоміцних волокон. При цьому власна вага волокнистих матеріалів дещо мала. Лише одиниці вищезгаданих дослідників виконували посилення експериментальних зразків під навантаженням, тому вплив початкового напружено-деформованого стану на роботу конструкції після посилення практично не вивчався. | |
| dc.description.abstract | The article examines studies on the reinforcement of reinforced concrete elements of cement -based fibro -based fibro systems (FRC) and polymers reinforcement fibro (FRP). Nowadays, the world economy, and with it, the construction industry is developing at a rapid pace. New materials, mechanization, construction equipment are emerging on the market. Due to this, modern structures impress with their shapes, scale and complexity of structures. The state of construction production in the country can be judged on the state of the economy of this country as a whole. Now the urgent issue in the world is the use of new composite materials in the strengthening of building structures. Such materials include non -metallic fittings, laminates, nets and canvases based on high -strength fibers. In this case, the own weight of fiber materials is slightly small. Only units of the above researchers performed enhancement of experimental samples under load, so the influence of the initial stress-deformed state on the work of the structure after amplification was practically not studied. | |
| dc.format.extent | 56-61 | |
| dc.format.pages | 6 | |
| dc.identifier.citation | Tereshko A. Strenghening of RC beams by FRC and FRP systems – a review / Andriy Tereshko, Yaroslav Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 56–61. | |
| dc.identifier.citationen | Tereshko A. Strenghening of RC beams by FRC and FRP systems – a review / Andriy Tereshko, Yaroslav Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 56–61. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2024.02.056 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/117201 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 2 (6), 2024 | |
| dc.relation.ispartof | Theory and Building Practice, 2 (6), 2024 | |
| dc.relation.references | Abdallah, M., Al Mahmoud, F., Tabet-Derraz, M. I., Khelil, A., & Mercier, J. (2021). Experimental and numerical investigation on the effectiveness of NSM and side-NSM CFRP bars for strengthening continuous two-span RC beams. Journal of Building Engineering, 41, 102723. https://doi.org/10.1016/j.jobe.2021.102723 | |
| dc.relation.references | Abdel-Kareem, H. A. (2020). Punching strengthening of concrete slab-column connections using near surface mounted (NSM) carbon fiber reinforced polymer (CFRP) bars. Journal of Engineering Research and Reports, 9(2), 1-14. https://doi.org/10.9734/jerr/2019/v9i217013 | |
| dc.relation.references | Adheem, A. H., Kadhim, M. M., & Jawdhari, A. (2022). Parametric study and improved capacity model for RC beams strengthened with side NSM CFRP bars. Structures, vol. 39, pp. 1118-1134. https://doi.org/10.1016/j.istruc.2022.04.003 | |
| dc.relation.references | Alberti, M. G., Enfedaque, A., Faria, D. M., & Fernández Ruiz, M. (2024). The Potential of Fiber-Reinforced Concrete to Reduce the Environmental Impact of Concrete Construction. Applied Sciences, 14(15), 6629. https://doi.org/2076-3417/14/15/6629 | |
| dc.relation.references | Ascione, F., Napoli, A., & Realfonzo, R. (2020). Experimental and analytical investigation on the bond of SRP systems to concrete. Composite Structures, 242, 112090. https://doi.org/10.1016/j.compstruct.2020.112090 | |
| dc.relation.references | Askar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17, e01189. https://doi.org/10.1016/j.cscm.2022.e01189 | |
| dc.relation.references | Baietti, G., Shahreza, S. K., Santandrea, M., & Carloni, C. (2021). Concrete columns confined with SRP: Effect of the size, cross-sectional shape and amount of confinement. Construction and Building Materials, 275, 121618. https://doi.org/10.1016/j.conbuildmat.2020.121618 | |
| dc.relation.references | Barris, C., Sala, P., Gómez, J., & Torres, L. (2020). Flexural behaviour of FRP reinforced concrete beams strengthened with NSM CFRP strips. Composite Structures, 241, 112059. https://doi.org/10.1016/j.compstruct.2020.112059 | |
| dc.relation.references | Casadei, P., Nanni, A., Alkhrdaji, T., & Thomas, J. (2005). Performance of double-T prestressed concrete beams strengthened with steel reinforcement polymer. Advances in Structural Engineering, 8(4), 427-442. https://doi.org/10.1260/136943305774353124 | |
| dc.relation.references | Elakhras, A. A., Seleem, M. H., & Sallam, H. E. M. (2022). Real fracture toughness of FRC and FGC: size and boundary effects. Archives of Civil and Mechanical Engineering, 22(2), 99. https://doi.org/10.1007/s43452-022-00424-6 | |
| dc.relation.references | Gómez, J., Torres, L., & Barris, C. (2020). Characterization and simulation of the bond response of NSM FRP reinforcement in concrete. Materials, 13(7), 1770. https://doi.org/10.3390/ma13071770 | |
| dc.relation.references | Haddad, R. H., & Yaghmour, E. M. (2020). Side NSM CFRP strips with different profiles for strengthening reinforced concrete beams. Journal of Building Engineering, 32, 101772. https://doi.org/10.1016/j.jobe.2020.101772 | |
| dc.relation.references | Haroon, M., Moon, J. S., & Kim, C. (2021). Performance of reinforced concrete beams strengthened with carbon fiber reinforced polymer strips. Materials, 14(19), 5866. https://doi.org/10.3390/ma14195866 | |
| dc.relation.references | Marzec, I., Suchorzewski, J., & Bobiński, J. (2024). Three dimensional simulations of FRC beams and panels with explicit definition of fibres-concrete interaction. Engineering Structures, 319, 118856. https://doi.org/10.1016/j.engstruct.2024.118856 | |
| dc.relation.references | Mohamed, H. M., Ali, A. H., Hadhood, A., Mousa, S., Abdelazim, W., & Benmokrane, B. (2020). Testing, design, and field implementation of GFRP RC soft-eyes for tunnel construction. Tunnelling and Underground Space Technology, 106, 103626. https://doi.org/10.1016/j.tust.2020.103626 | |
| dc.relation.references | Mukhtar, F., & Jawdhari, A. (2024). RC beams flexurally strengthened with CFRP sheets combined with FRC layer for mitigating debonding failures. Construction and Building Materials, 427, 136274. https://doi.org/10.1016/j.conbuildmat.2024.136274 | |
| dc.relation.references | Nikoloutsopoulos, N., Sotiropoulou, A., & Passa, D. (2023). Deep embedment and NSM techniques for shear strengthening of reinforced concrete slender beams with cFRP ropes. Materials Today: Proceedings, 93, 799-805. https://doi.org/10.1016/j.matpr.2023.07.254 | |
| dc.relation.references | Obaidat, Y. T., Barham, W. S., & Aljarah, A. H. (2020). New anchorage technique for NSM-CFRP flexural strengthened RC beam using steel clamped end plate. Construction and Building Materials, 263, 120246. https://doi.org/10.1016/j.conbuildmat.2020.120246 | |
| dc.relation.references | Panahi, M., Zareei, S. A., & Izadi, A. (2021). Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars. Case Studies in Construction Materials, 15, e00601. https://doi.org/10.1016/j.cscm.2021.e00601 | |
| dc.relation.references | Renić, T., & Kišiček, T. (2021). Ductility of concrete beams reinforced with frp rebars. Buildings, 11(9), 424. https://doi.org/10.3390/buildings11090424 | |
| dc.relation.references | Rossi, P. (2023). Numerical Designing of Fiber Reinforced Concrete Eco-Constructions. Materials, 16(7), 2576. https://doi.org/10.3390/ma16072576 | |
| dc.relation.references | Saha, M. K., & Tan, K. H. (2005, October). GFRP-Bonded RC beams under sustained loading and tropical weathering. In 7th International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS-7) Kansas City, MO, USA, pp. 1379-1396. https://quakewrap.com/frp%20papers/GFRP-BondedRCBeamsunderSustainedLoadingandTropicalWeathering.pdf | |
| dc.relation.references | Siddika, A., Al Mamun, M. A., Ferdous, W., & Alyousef, R. (2020). Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review. Engineering Failure Analysis, 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480 | |
| dc.relation.references | Sneed, L. H., Verre, S., Ombres, L., & Carloni, C. (2022). Flexural behavior RC beams strengthened and repaired with SRP composite. Engineering Structures, 258, 114084. https://doi.org/10.1016/j.engstruct.2022.114084 | |
| dc.relation.references | Yan, Y., Lu, Y., Zhao, Q., & Li, S. (2023). Flexural behavior of pre-damaged and repaired reinforced concrete beams with carbon fiber reinforced polymer grid and engineered cementitious composite. Engineering Structures, 277, 115390. https://doi.org/10.1016/j.engstruct.2022.115390 | |
| dc.relation.referencesen | Abdallah, M., Al Mahmoud, F., Tabet-Derraz, M. I., Khelil, A., & Mercier, J. (2021). Experimental and numerical investigation on the effectiveness of NSM and side-NSM CFRP bars for strengthening continuous two-span RC beams. Journal of Building Engineering, 41, 102723. https://doi.org/10.1016/j.jobe.2021.102723 | |
| dc.relation.referencesen | Abdel-Kareem, H. A. (2020). Punching strengthening of concrete slab-column connections using near surface mounted (NSM) carbon fiber reinforced polymer (CFRP) bars. Journal of Engineering Research and Reports, 9(2), 1-14. https://doi.org/10.9734/jerr/2019/v9i217013 | |
| dc.relation.referencesen | Adheem, A. H., Kadhim, M. M., & Jawdhari, A. (2022). Parametric study and improved capacity model for RC beams strengthened with side NSM CFRP bars. Structures, vol. 39, pp. 1118-1134. https://doi.org/10.1016/j.istruc.2022.04.003 | |
| dc.relation.referencesen | Alberti, M. G., Enfedaque, A., Faria, D. M., & Fernández Ruiz, M. (2024). The Potential of Fiber-Reinforced Concrete to Reduce the Environmental Impact of Concrete Construction. Applied Sciences, 14(15), 6629. https://doi.org/2076-3417/14/15/6629 | |
| dc.relation.referencesen | Ascione, F., Napoli, A., & Realfonzo, R. (2020). Experimental and analytical investigation on the bond of SRP systems to concrete. Composite Structures, 242, 112090. https://doi.org/10.1016/j.compstruct.2020.112090 | |
| dc.relation.referencesen | Askar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17, e01189. https://doi.org/10.1016/j.cscm.2022.e01189 | |
| dc.relation.referencesen | Baietti, G., Shahreza, S. K., Santandrea, M., & Carloni, C. (2021). Concrete columns confined with SRP: Effect of the size, cross-sectional shape and amount of confinement. Construction and Building Materials, 275, 121618. https://doi.org/10.1016/j.conbuildmat.2020.121618 | |
| dc.relation.referencesen | Barris, C., Sala, P., Gómez, J., & Torres, L. (2020). Flexural behaviour of FRP reinforced concrete beams strengthened with NSM CFRP strips. Composite Structures, 241, 112059. https://doi.org/10.1016/j.compstruct.2020.112059 | |
| dc.relation.referencesen | Casadei, P., Nanni, A., Alkhrdaji, T., & Thomas, J. (2005). Performance of double-T prestressed concrete beams strengthened with steel reinforcement polymer. Advances in Structural Engineering, 8(4), 427-442. https://doi.org/10.1260/136943305774353124 | |
| dc.relation.referencesen | Elakhras, A. A., Seleem, M. H., & Sallam, H. E. M. (2022). Real fracture toughness of FRC and FGC: size and boundary effects. Archives of Civil and Mechanical Engineering, 22(2), 99. https://doi.org/10.1007/s43452-022-00424-6 | |
| dc.relation.referencesen | Gómez, J., Torres, L., & Barris, C. (2020). Characterization and simulation of the bond response of NSM FRP reinforcement in concrete. Materials, 13(7), 1770. https://doi.org/10.3390/ma13071770 | |
| dc.relation.referencesen | Haddad, R. H., & Yaghmour, E. M. (2020). Side NSM CFRP strips with different profiles for strengthening reinforced concrete beams. Journal of Building Engineering, 32, 101772. https://doi.org/10.1016/j.jobe.2020.101772 | |
| dc.relation.referencesen | Haroon, M., Moon, J. S., & Kim, C. (2021). Performance of reinforced concrete beams strengthened with carbon fiber reinforced polymer strips. Materials, 14(19), 5866. https://doi.org/10.3390/ma14195866 | |
| dc.relation.referencesen | Marzec, I., Suchorzewski, J., & Bobiński, J. (2024). Three dimensional simulations of FRC beams and panels with explicit definition of fibres-concrete interaction. Engineering Structures, 319, 118856. https://doi.org/10.1016/j.engstruct.2024.118856 | |
| dc.relation.referencesen | Mohamed, H. M., Ali, A. H., Hadhood, A., Mousa, S., Abdelazim, W., & Benmokrane, B. (2020). Testing, design, and field implementation of GFRP RC soft-eyes for tunnel construction. Tunnelling and Underground Space Technology, 106, 103626. https://doi.org/10.1016/j.tust.2020.103626 | |
| dc.relation.referencesen | Mukhtar, F., & Jawdhari, A. (2024). RC beams flexurally strengthened with CFRP sheets combined with FRC layer for mitigating debonding failures. Construction and Building Materials, 427, 136274. https://doi.org/10.1016/j.conbuildmat.2024.136274 | |
| dc.relation.referencesen | Nikoloutsopoulos, N., Sotiropoulou, A., & Passa, D. (2023). Deep embedment and NSM techniques for shear strengthening of reinforced concrete slender beams with cFRP ropes. Materials Today: Proceedings, 93, 799-805. https://doi.org/10.1016/j.matpr.2023.07.254 | |
| dc.relation.referencesen | Obaidat, Y. T., Barham, W. S., & Aljarah, A. H. (2020). New anchorage technique for NSM-CFRP flexural strengthened RC beam using steel clamped end plate. Construction and Building Materials, 263, 120246. https://doi.org/10.1016/j.conbuildmat.2020.120246 | |
| dc.relation.referencesen | Panahi, M., Zareei, S. A., & Izadi, A. (2021). Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars. Case Studies in Construction Materials, 15, e00601. https://doi.org/10.1016/j.cscm.2021.e00601 | |
| dc.relation.referencesen | Renić, T., & Kišiček, T. (2021). Ductility of concrete beams reinforced with frp rebars. Buildings, 11(9), 424. https://doi.org/10.3390/buildings11090424 | |
| dc.relation.referencesen | Rossi, P. (2023). Numerical Designing of Fiber Reinforced Concrete Eco-Constructions. Materials, 16(7), 2576. https://doi.org/10.3390/ma16072576 | |
| dc.relation.referencesen | Saha, M. K., & Tan, K. H. (2005, October). GFRP-Bonded RC beams under sustained loading and tropical weathering. In 7th International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS-7) Kansas City, MO, USA, pp. 1379-1396. https://quakewrap.com/frp%20papers/GFRP-BondedRCBeamsunderSustainedLoadingandTropicalWeathering.pdf | |
| dc.relation.referencesen | Siddika, A., Al Mamun, M. A., Ferdous, W., & Alyousef, R. (2020). Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review. Engineering Failure Analysis, 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480 | |
| dc.relation.referencesen | Sneed, L. H., Verre, S., Ombres, L., & Carloni, C. (2022). Flexural behavior RC beams strengthened and repaired with SRP composite. Engineering Structures, 258, 114084. https://doi.org/10.1016/j.engstruct.2022.114084 | |
| dc.relation.referencesen | Yan, Y., Lu, Y., Zhao, Q., & Li, S. (2023). Flexural behavior of pre-damaged and repaired reinforced concrete beams with carbon fiber reinforced polymer grid and engineered cementitious composite. Engineering Structures, 277, 115390. https://doi.org/10.1016/j.engstruct.2022.115390 | |
| dc.relation.uri | https://doi.org/10.1016/j.jobe.2021.102723 | |
| dc.relation.uri | https://doi.org/10.9734/jerr/2019/v9i217013 | |
| dc.relation.uri | https://doi.org/10.1016/j.istruc.2022.04.003 | |
| dc.relation.uri | https://doi.org/2076-3417/14/15/6629 | |
| dc.relation.uri | https://doi.org/10.1016/j.compstruct.2020.112090 | |
| dc.relation.uri | https://doi.org/10.1016/j.cscm.2022.e01189 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2020.121618 | |
| dc.relation.uri | https://doi.org/10.1016/j.compstruct.2020.112059 | |
| dc.relation.uri | https://doi.org/10.1260/136943305774353124 | |
| dc.relation.uri | https://doi.org/10.1007/s43452-022-00424-6 | |
| dc.relation.uri | https://doi.org/10.3390/ma13071770 | |
| dc.relation.uri | https://doi.org/10.1016/j.jobe.2020.101772 | |
| dc.relation.uri | https://doi.org/10.3390/ma14195866 | |
| dc.relation.uri | https://doi.org/10.1016/j.engstruct.2024.118856 | |
| dc.relation.uri | https://doi.org/10.1016/j.tust.2020.103626 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2024.136274 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2023.07.254 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2020.120246 | |
| dc.relation.uri | https://doi.org/10.1016/j.cscm.2021.e00601 | |
| dc.relation.uri | https://doi.org/10.3390/buildings11090424 | |
| dc.relation.uri | https://doi.org/10.3390/ma16072576 | |
| dc.relation.uri | https://quakewrap.com/frp%20papers/GFRP-BondedRCBeamsunderSustainedLoadingandTropicalWeathering.pdf | |
| dc.relation.uri | https://doi.org/10.1016/j.engfailanal.2020.104480 | |
| dc.relation.uri | https://doi.org/10.1016/j.engstruct.2022.114084 | |
| dc.relation.uri | https://doi.org/10.1016/j.engstruct.2022.115390 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Tereshko A., Blikharskyy Y., 2024 | |
| dc.subject | підсилення | |
| dc.subject | залізобетонні балки | |
| dc.subject | композитні матеріали | |
| dc.subject | FRC | |
| dc.subject | FRP | |
| dc.subject | згинані елементи | |
| dc.subject | reinforcement | |
| dc.subject | reinforced concrete beams | |
| dc.subject | composite materials | |
| dc.subject | FRC | |
| dc.subject | FRP | |
| dc.subject | flexural structures | |
| dc.title | Strenghening of RC beams by FRC and FRP systems – a review | |
| dc.title.alternative | Підсилення залізобетонних балок FRC та FRP системами – огляд літератури | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1