Прогнозування споживання електроенергії за допомогою ансамблю моделей машинного навчання

dc.citation.epage29
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал інформаційних технологій
dc.citation.spage20
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorВишневський, О. К.
dc.contributor.authorЖуравчак, Л. М.
dc.contributor.authorVyshnevskyy, O. K.
dc.contributor.authorZhuravchak, L. M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:25:57Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДосліджено використання моделей машинного навчання для прогнозування електроспоживання інтелектуальної мережі. З’ясовано, що попереднє оброблення даних збільшує продуктивність моделі прогнозування споживання енергії, а методи машинного навчання підвищують її точність завдяки інтеграції кількох алгоритмів та оптимізації гіперпараметрів. Виявлено, що ансамблева модель, яка поєднує низку моделей із різними структурними характеристиками, забезпечує вищу точність прогнозування, ніж кожна модель зокрема. Запропоновано вибір базових моделей із різною будовою: лінійні, рекурсивні, деревоподібні. Вибрано набір даних із часовими рядами кліматичних показників, а також попитом на електроспоживання, досліджено вплив кліматичних характеристик на прогнозовану величину електроспоживання, виконано кореляційний і автокореляційний аналіз. Побудовано базові моделі (авторегресії, регресії опорних векторів, випадкового лісу, довгої короткочасної пам’яті та екстремального посилення градієнта), здійснено їх навчання як слабких учнів та обчислено їхні похибки (середню квадратичну, абсолютну і відносну) між фактичними і прогнозованими значеннями електроспоживання. Здійснено оптимізацію гіперпараметрів базових моделей методом табличного пошуку. Побудовано ансамблеву модель прогнозування (сильного учня) як лінійну комбінацію прогнозів слабких учнів зі зваженими коефіцієнтами. Вагові коефіцієнти для кожного алгоритму оптимізовано за допомогою функції втрат середньоквадратичної похибки за методом найменших квадратів для послідовностей. Встановлено, що запропонована ансамблева модель показала менші значення похибки порівняно із окремими базовими моделями. Тому її використання для прогнозування споживання електроенергії забезпечить вищу точність, ніж кожна окрема базова модель.
dc.description.abstractThe use of machine learning models for electricity consumption prediction for smart grid has been investigated. It was found that data pre-processing can improve the performance of the energy consumption prediction model, while machine learning algorithms can improve model prediction accuracy through the integration of multiple algorithms and hyperparameter optimization. It was found that the ensemble learning method can provide better prediction accuracy than each individual method by combining the strong features of different methods that have different structural characteristics. Based on this idea, a choice of basic models with different structures was offered – linear, recursive, tree-like. We have used for research publicly available dataset containing time series of electric power demand and weather data. The influence of climatic characteristics on the predicted value (electric power demand) was studied, correlation and autocorrelation analysis were carried out. Individual basic models for electric power demand prediction were built and trained using Autoregression, Support Vector Regression, Random Forest, Long Short-Term Memory and Extreme Gradient Boosting. Thentesting of forecasting errors (Root Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error) between actual power consumption and predicted values was carried out. Optimization of the hyperparameters of each weak learner of the integrated model was carried out using the grid search method. An ensemble model (strong learner) for forecasting electricity consumption based linear combination of several basic models' forecasts (weak learners) with weighting coefficients was presented. The weighting coefficients of individual models' forecasts have been established and then optimized using the root-mean-square error loss function with the sequential least-squares optimization algorithm. It was established that the proposed ensemble model for forecasting electricity consumption showed smaller error metrics compared to individual basic models. Therefore, the results demonstrated the effectiveness of our proposed ensemble model, it can be used to predict electricity consumption with greater accuracy and outperform the individual models with different structure, considering each base models' advantages.
dc.format.extent20-29
dc.format.pages10
dc.identifier.citationВишневський О. К. Прогнозування споживання електроенергії за допомогою ансамблю моделей машинного навчання / О. К. Вишневський, Л. М. Журавчак // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 2. — С. 20–29.
dc.identifier.citationenVyshnevskyy O. K. Forecasting the electricity consumption using an ensemble of machine learning models / O. K. Vyshnevskyy, L. M. Zhuravchak // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 20–29.
dc.identifier.doidoi.org/10.23939/ujit2024.01.020
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120429
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал інформаційних технологій, 2 (6), 2024
dc.relation.ispartofUkrainian Journal of Information Technology, 2 (6), 2024
dc.relation.references1. Luo, X., & Oyedele, L. O. (2022). A self-adaptive deep learning model for building electricity load prediction with moving horizon. Machine Learning with Applications, 7, 100257. https://doi.org/10.1016/j.mlwa.2022.100257
dc.relation.references2. Sanzana, M. R., Maul, T., Wong, J. Y., Abdulrazic, M. O. M., & Yip, C.-C. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, 141, 104445. https://doi.org/10.1016/j.autcon.2022.104445
dc.relation.references3. Liu, H., Liang, J., Liu, Y., & Wu, H. (2023). A Review of Data-Driven Building Energy Prediction. Buildings, 13(2), 532. https://doi.org/10.3390/buildings13020532
dc.relation.references4. Salam, A., & Hibaoui, A. E. (2018). Comparison of Machine Learning Algorithms for the Power Consumption Prediction: Case Study of Tetouan city. 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), 1‑5. https://doi.org/10.1109/IRSEC.2018.8703007
dc.relation.references5. Abdulwahed Salam, A. E. H. (2018). Power Consumption of Tetouan City Dataset. UCI Machine Learning Repository. https://doi.org/10.24432/C5B034
dc.relation.references6. Shapi, M. K. M., Ramli, N. A., & Awalin, L. J. (2021). Energy consumption prediction by using machine learning for smart building: Case study in Malaysia. Developments in the Built Environment, 5, 100037. https://doi.org/10.1016/j.dibe.2020.100037
dc.relation.references7. Faiq, M., Geok Tan, K., Pao Liew, C., Hossain, F., Tso, C.-P., Li Lim, L., Khang Wong, A. Y., & Mohd Shah, Z. (2023). Prediction of energy consumption in campus buildings using long short-term memory. Alexandria Engineering Journal, 67, 65‑76. https://doi.org/10.1016/j.aej.2022.12.015
dc.relation.references8. Wang, Z., Hong, T., & Piette, M. A. (2020). Building thermal load prediction through shallow machine learning and deep learning. Applied Energy, 263, 114683. https://doi.org/10.1016/j.apenergy.2020.114683
dc.relation.references9. Miraki, A., Parviainen, P., & Arghandeh, R. (2024). Electricity demand forecasting at distribution and household levels using explainable causal graph neural network. Energy and AI, 16, 100368. https://doi.org/10.1016/j.egyai.2024.100368
dc.relation.references10. Hammoudeh, A., & Dupont, S. (2022). The prediction of residential building consumption using profiling and time encoding. Procedia Computer Science, 210, 7‑11. https://doi.org/10.1016/j.procs.2022.10.113
dc.relation.references11. Jogunola, O., Adebisi, B., Hoang, K. V., Tsado, Y., Popoola, S. I., Hammoudeh, M., & Nawaz, R. (2022). CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption. Energies, 15(3), 810. https://doi.org/10.3390/en15030810
dc.relation.references12. Geche, F., Batyuk, A., Mulesa, O., & Voloshchuk, V. (2020). The Combined Time Series Forecasting Model. 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 272‑275. https://doi.org/10.1109/DSMP47368.2020.9204311
dc.relation.references13. Vyshnevskyy, O., & Zhuravchak, L. (2023). Semantic Models for Buildings Energy Management. 2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT), 1‑4. https://doi.org/10.1109/CSIT61576.2023.10324108
dc.relation.references14. Yakovyna, V. S., & Symets І.І. (2021). Software defect prediction using neural network ensemble. Scientific Bulletin of UNFU, 31(6), 104-111. https://doi.org/10.36930/40310616
dc.relation.references15. Li, Z., Qian, X., Li, L., & Xia, Z. (2024). Time series prediction model based on autoregression weight network. Engineering Reports, 6(4), e12756. https://doi.org/10.1002/eng2.12756
dc.relation.references16. Manno, A., Intini, M., Jabali, O., Malucelli, F., & Rando, D. (2024). An ensemble of artificial neural network models to forecast hourly energy demand. Optimization and Engineering. https://doi.org/10.1007/s11081-024-09883-7
dc.relation.references17. Tsalikidis, N., Mystakidis, A., Tjortjis, C., Koukaras, P., & Ioannidis, D. (2024). Energy load forecasting: One-step ahead hybrid model utilizing ensembling. Computing, 106(1), 241‑273. https://doi.org/10.1007/s00607-023-01217-2
dc.relation.references18. AlKandari, M., & Ahmad, I. (2024). Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Applied Computing and Informatics, 20(3/4), 231‑250. https://doi.org/10.1016/j.aci.2019.11.002
dc.relation.references19. Wu, N., Green, B., Ben, X., & O'Banion, S. (2020). Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case (arXiv:2001.08317). arXiv. http://arxiv.org/abs/2001.08317
dc.relation.references20. Liu, D., & Wang, H. (2024). Time series analysis model for forecasting unsteady electric load in buildings. Energy and Built Environment, 5(6), 900‑910. https://doi.org/10.1016/j.enbenv.2023.07.003
dc.relation.referencesen1. Luo, X., & Oyedele, L. O. (2022). A self-adaptive deep learning model for building electricity load prediction with moving horizon. Machine Learning with Applications, 7, 100257. https://doi.org/10.1016/j.mlwa.2022.100257
dc.relation.referencesen2. Sanzana, M. R., Maul, T., Wong, J. Y., Abdulrazic, M. O. M., & Yip, C.-C. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, 141, 104445. https://doi.org/10.1016/j.autcon.2022.104445
dc.relation.referencesen3. Liu, H., Liang, J., Liu, Y., & Wu, H. (2023). A Review of Data-Driven Building Energy Prediction. Buildings, 13(2), 532. https://doi.org/10.3390/buildings13020532
dc.relation.referencesen4. Salam, A., & Hibaoui, A. E. (2018). Comparison of Machine Learning Algorithms for the Power Consumption Prediction: Case Study of Tetouan city. 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), 1‑5. https://doi.org/10.1109/IRSEC.2018.8703007
dc.relation.referencesen5. Abdulwahed Salam, A. E. H. (2018). Power Consumption of Tetouan City Dataset. UCI Machine Learning Repository. https://doi.org/10.24432/P.5B034
dc.relation.referencesen6. Shapi, M. K. M., Ramli, N. A., & Awalin, L. J. (2021). Energy consumption prediction by using machine learning for smart building: Case study in Malaysia. Developments in the Built Environment, 5, 100037. https://doi.org/10.1016/j.dibe.2020.100037
dc.relation.referencesen7. Faiq, M., Geok Tan, K., Pao Liew, C., Hossain, F., Tso, C.-P., Li Lim, L., Khang Wong, A. Y., & Mohd Shah, Z. (2023). Prediction of energy consumption in campus buildings using long short-term memory. Alexandria Engineering Journal, 67, 65‑76. https://doi.org/10.1016/j.aej.2022.12.015
dc.relation.referencesen8. Wang, Z., Hong, T., & Piette, M. A. (2020). Building thermal load prediction through shallow machine learning and deep learning. Applied Energy, 263, 114683. https://doi.org/10.1016/j.apenergy.2020.114683
dc.relation.referencesen9. Miraki, A., Parviainen, P., & Arghandeh, R. (2024). Electricity demand forecasting at distribution and household levels using explainable causal graph neural network. Energy and AI, 16, 100368. https://doi.org/10.1016/j.egyai.2024.100368
dc.relation.referencesen10. Hammoudeh, A., & Dupont, S. (2022). The prediction of residential building consumption using profiling and time encoding. Procedia Computer Science, 210, 7‑11. https://doi.org/10.1016/j.procs.2022.10.113
dc.relation.referencesen11. Jogunola, O., Adebisi, B., Hoang, K. V., Tsado, Y., Popoola, S. I., Hammoudeh, M., & Nawaz, R. (2022). CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption. Energies, 15(3), 810. https://doi.org/10.3390/en15030810
dc.relation.referencesen12. Geche, F., Batyuk, A., Mulesa, O., & Voloshchuk, V. (2020). The Combined Time Series Forecasting Model. 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 272‑275. https://doi.org/10.1109/DSMP47368.2020.9204311
dc.relation.referencesen13. Vyshnevskyy, O., & Zhuravchak, L. (2023). Semantic Models for Buildings Energy Management. 2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT), 1‑4. https://doi.org/10.1109/CSIT61576.2023.10324108
dc.relation.referencesen14. Yakovyna, V. S., & Symets I.I. (2021). Software defect prediction using neural network ensemble. Scientific Bulletin of UNFU, 31(6), 104-111. https://doi.org/10.36930/40310616
dc.relation.referencesen15. Li, Z., Qian, X., Li, L., & Xia, Z. (2024). Time series prediction model based on autoregression weight network. Engineering Reports, 6(4), e12756. https://doi.org/10.1002/eng2.12756
dc.relation.referencesen16. Manno, A., Intini, M., Jabali, O., Malucelli, F., & Rando, D. (2024). An ensemble of artificial neural network models to forecast hourly energy demand. Optimization and Engineering. https://doi.org/10.1007/s11081-024-09883-7
dc.relation.referencesen17. Tsalikidis, N., Mystakidis, A., Tjortjis, C., Koukaras, P., & Ioannidis, D. (2024). Energy load forecasting: One-step ahead hybrid model utilizing ensembling. Computing, 106(1), 241‑273. https://doi.org/10.1007/s00607-023-01217-2
dc.relation.referencesen18. AlKandari, M., & Ahmad, I. (2024). Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Applied Computing and Informatics, 20(3/4), 231‑250. https://doi.org/10.1016/j.aci.2019.11.002
dc.relation.referencesen19. Wu, N., Green, B., Ben, X., & O'Banion, S. (2020). Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case (arXiv:2001.08317). arXiv. http://arxiv.org/abs/2001.08317
dc.relation.referencesen20. Liu, D., & Wang, H. (2024). Time series analysis model for forecasting unsteady electric load in buildings. Energy and Built Environment, 5(6), 900‑910. https://doi.org/10.1016/j.enbenv.2023.07.003
dc.relation.urihttps://doi.org/10.1016/j.mlwa.2022.100257
dc.relation.urihttps://doi.org/10.1016/j.autcon.2022.104445
dc.relation.urihttps://doi.org/10.3390/buildings13020532
dc.relation.urihttps://doi.org/10.1109/IRSEC.2018.8703007
dc.relation.urihttps://doi.org/10.24432/C5B034
dc.relation.urihttps://doi.org/10.1016/j.dibe.2020.100037
dc.relation.urihttps://doi.org/10.1016/j.aej.2022.12.015
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2020.114683
dc.relation.urihttps://doi.org/10.1016/j.egyai.2024.100368
dc.relation.urihttps://doi.org/10.1016/j.procs.2022.10.113
dc.relation.urihttps://doi.org/10.3390/en15030810
dc.relation.urihttps://doi.org/10.1109/DSMP47368.2020.9204311
dc.relation.urihttps://doi.org/10.1109/CSIT61576.2023.10324108
dc.relation.urihttps://doi.org/10.36930/40310616
dc.relation.urihttps://doi.org/10.1002/eng2.12756
dc.relation.urihttps://doi.org/10.1007/s11081-024-09883-7
dc.relation.urihttps://doi.org/10.1007/s00607-023-01217-2
dc.relation.urihttps://doi.org/10.1016/j.aci.2019.11.002
dc.relation.urihttp://arxiv.org/abs/2001.08317
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2023.07.003
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectчасові ряди
dc.subjectрегресія
dc.subjectенергія
dc.subjectпотужність
dc.subjectнейронні мережі
dc.subjecttime series
dc.subjectregression
dc.subjectenergy
dc.subjectpower
dc.subjectneural networks
dc.titleПрогнозування споживання електроенергії за допомогою ансамблю моделей машинного навчання
dc.title.alternativeForecasting the electricity consumption using an ensemble of machine learning models
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n2_Vyshnevskyy_O_K-Forecasting_the_electricity_20-29.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n2_Vyshnevskyy_O_K-Forecasting_the_electricity_20-29__COVER.png
Size:
1.72 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: