Features of the influence of seasonal variation of soil moisture on vertical movements of the earth’s surface

dc.citation.epage23
dc.citation.issue2(27)
dc.citation.journalTitleГеодинаміка : науковий журнал
dc.citation.spage16
dc.contributor.affiliationПолтавська гравіметрична обсерваторія Інституту геофізики ім. С. І. Субботіна НАН України
dc.contributor.affiliationПолтавський національний технічний університет імені Юрія Кондратюка
dc.contributor.affiliationPoltava Gravimetric Observatory of Subbotin Institute of Geophysics of NAS of Ukraine
dc.contributor.affiliationPoltava National Technical Yuri Kondratyuk University
dc.contributor.authorПавлик, В. Г.
dc.contributor.authorКутний, А. М.
dc.contributor.authorКальник, О. П.
dc.contributor.authorPavlyk, V. G.
dc.contributor.authorKutnyi, A. M.
dc.contributor.authorKalnyk, O. P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-06-14T20:25:12Z
dc.date.available2020-06-14T20:25:12Z
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.description.abstractМетою досліджень є експериментальне встановлення найсприятливіших умов визначення вертикальних рухів земної поверхні з погляду мінімального впливу варіацій вологи ґрунту на результати спостережень. Геодезичний моніторинг деформаційних процесів на геодинамічних полігонах (ГП) відбувається переважно без урахування впливу екзогенних чинників метеорологічного походження на динаміку земної поверхні та реперів. Для успішного виділення тектонічних чи техногенних рухів з усього спектра зареєстрованих переміщень земної поверхні потрібно вилучити їх гідрометеорологічну складову. Одним із видів метеорологічного впливу на динаміку земної поверхні та реперів є об’ємні деформації набряклих ґрунтів внаслідок варіації їх вологості. Вони зумовлюють сезонні вертикальні рухи, величина яких залежить від фізичних та мінералогічних властивостей ґрунту, особливостей навколишнього середовища та амплітуди річних коливань температури і вологи. Методика досліджень передбачала паралельні спостереження у двох пунктах за вертикальними рухами і вологістю верхнього однометрового шару ґрунту на ГП у Полтаві за період 2006–2015 рр. Основним результатом роботи є встановлення нелінійного характеру дії сезонних змін вологи ґрунту на вертикальні переміщення земної поверхні залежно від абсолютного значення вологості. Якщо вологість ґрунту перевищує його максимальну молекулярну вологомісткість (ММВ), то її варіації не впливають на динаміку землі. Це пояснюється різним механізмом вертикальної інфільтрації води в ґрунті залежно від його водонасиченості. У разі значної вологості ґрунту її подальші зміни зумовлені переважно капілярними та гравітаційними силами, які не викликають деформацій і вертикальних переміщень земної поверхні. Науковою новизною досліджень є встановлення важливої ролі ММВ ґрунту в генерації вертикальних рухів земної поверхні та реперів внаслідок варіацій вологи. Практична значущість роботи полягає у можливості мінімізації впливу гідрометеорологічних чинників на результати високоточних спостережень за динамікою земної поверхні. Отримані результати можна використовувати для організації високоточних спостережень за вертикальними рухами на ГП та їх інтерпретації.
dc.description.abstractThe purpose of the research is to establish experimentally the most favorable conditions for determining the vertical movements of the Earth's surface in terms of the minimal influence of variations of soil moisture on the results of observations. Geodetic monitoring of deformation processes at geodynamic testing grounds (GTG) occurs mainly without taking into account the influence of factors on the dynamics of the Earth's surface and benchmarks. To successfully separate tectonic or anthropogenic movements from all recorded motions of the Earth's surface, it is necessary to exclude their hydrometeorological component. One type of meteorological impact on the dynamics of the Earth's surface and benchmarks is the volumetric deformation of the swelling soils due to the variation of their moisture. They cause seasonal vertical movements, the magnitude of which depends on the physical and mineralogical properties of the soil, the characteristics of the environment, and the amplitude of annual fluctuations in temperature and moisture. The research methodology included the parallel observations at two points of vertical movements and moisture of the top one-meter layers of soil at GTS in Poltava for the period 2006 to 2015. The main result is the determination of a nonlinear nature of the effect of seasonal changes of soil moisture on the vertical displacement of the Earth's surface, depending on the absolute values of moisture. If soil moisture exceeds its maximum molecular moisture content (MMMC), then its variations do not affect the dynamics of the ground. This is explained by the different mechanism of vertical infiltration of water in the soil, depending on its water saturation. At high levels of soil moisture, further changes are caused mainly by capillary and gravitational forces that do not cause deformations and vertical movements of the Earth's surface. The scientific novelty of this research is to establish the important role of the MMMC of soil in the generation of vertical movements of the Earth's surface and benchmarks due to variations in its moisture. The practical significance of the work lies in the possibility of minimizing the influence of hydrometeorological factors on the results of high-precision observations of the dynamics of the Earth's surface. The results obtained can be used in the organization of high-precision observations of vertical movements on the GTG and their interpretation.
dc.format.extent16-23
dc.format.pages8
dc.identifier.citationPavlyk V. G. Features of the influence of seasonal variation of soil moisture on vertical movements of the earth’s surface / V. G. Pavlyk, A. M. Kutnyi, O. P. Kalnyk // Geodynamics : SCIENTIFIC JOURNAL. — Lviv : Lviv Politechnic Publishing House, 2019. — No 2(27). — P. 16–23.
dc.identifier.citationenPavlyk V. G. Features of the influence of seasonal variation of soil moisture on vertical movements of the earth’s surface / V. G. Pavlyk, A. M. Kutnyi, O. P. Kalnyk // Geodynamics : SCIENTIFIC JOURNAL. — Lviv : Lviv Politechnic Publishing House, 2019. — No 2(27). — P. 16–23.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52219
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка : науковий журнал, 2(27), 2019
dc.relation.ispartofGeodynamics : SCIENTIFIC JOURNAL, 2(27), 2019
dc.relation.referencesAtlas of natural conditions and natural resources of
dc.relation.referencesthe Ukrainian SSR. (1979). Moscow: GUGK (in
dc.relation.referencesRussian).
dc.relation.referencesChimitdorzhiev, T. N., Dagurov, P. N., Zakharov,
dc.relation.referencesA. I., Tatkov, G. I., Bykov, M. E., Dmitriev, A. V.,
dc.relation.referencesBaldanov, N. D., Muhorin, E. A., & Milheev, E. U.
dc.relation.references(2013). Estimation of seasonal deformations of
dc.relation.referencesmarshy soil by radar interferometry and geodetic
dc.relation.referencesleveling techniques. Cryosphere of the Earth,
dc.relation.referencesXVII (1), 80–87 (in Russian).
dc.relation.referencesClarke, P. J., Lavallée, D. A., Blewitt, G., & Dam, T. V.
dc.relation.references(2007). Basis functions for the consistent and
dc.relation.referencesaccurate representation of surface mass
dc.relation.referencesloading. Geophysical Journal
dc.relation.referencesInternational, 171(1), 1-10. doi: 10.1111/j.1365-246x.2007.03493.x.
dc.relation.referencesDam, T. V., Wahr, J., Milly, P. C. D., Shmakin, A. B.,
dc.relation.referencesBlewitt, G., Lavallée, D., & Larson, K. M. (2001).
dc.relation.referencesCrustal displacements due to continental water
dc.relation.referencesloading. Geophysical Research Letters, 28(4), 651–654. doi: 10.1029/2000gl012120.
dc.relation.referencesDemoulin, A. (2004). Reconciling geodetic and
dc.relation.referencesgeological rates of vertical crustal motion in
dc.relation.referencesintraplate regions. Earth and Planetary Science
dc.relation.referencesLetters, 221(1-4), 91–101. doi: 10.1016/s0012-821x(04)00110-4.
dc.relation.referencesDong, D., Fang, P., Bock, Y., Cheng, M. K., &
dc.relation.referencesMiyazaki, S. I. (2002). Anatomy of apparent
dc.relation.referencesseasonal variations from GPS-derived site position
dc.relation.referencestime series. Journal of Geophysical Research:
dc.relation.referencesSolid Earth, 107(B4), ETG-9. doi: 10.1029/2001JB000573
dc.relation.referencesFeldman, G. M. (1988) The movement of moisture in
dc.relation.referencesthawed and freezing soils. Novosibirsk: Science
dc.relation.references(in Russian).
dc.relation.referencesFerretti, A., Savio, G., Barzaghi, R., Borghi, A.,
dc.relation.referencesMusazzi, S., Novali, F., ... & Rocca, F. (2007).
dc.relation.referencesSubmillimeter accuracy of InSAR time series:
dc.relation.referencesExperimental validation. IEEE Transactions on
dc.relation.referencesGeoscience and Remote Sensing, 45(5), 1142–1153. doi: 10.1109/TGRS.2007.894440
dc.relation.referencesGrushka, I. G. (2005) Methods and means of
dc.relation.referencesmeasuring the moisture of materials and mediums.
dc.relation.referencesScientific Works of UkrNDHMI, 254, 169–187 (in
dc.relation.referencesUkrainian).
dc.relation.referencesHooper, A., Bekaert, D., Spaans, K., & Arıkan, M.
dc.relation.references(2012). Recent advances in SAR interferometry
dc.relation.referencestime series analysis for measuring crustal
dc.relation.referencesdeformation. Tectonophysics, 514, 1–13. doi: 10.1016/j.tecto.2011.10.013
dc.relation.referencesJi, K. H., & Herring, T. A. (2012). Correlation
dc.relation.referencesbetween changes in groundwater levels and
dc.relation.referencessurface deformation from GPS measurements in
dc.relation.referencesthe San Gabriel Valley, California.
dc.relation.referencesGeophysical Research Letters, 39(1). doi: 10.1029/2011GL050195
dc.relation.referencesLyon, T. J., Filmer, M. S., & Featherstone, W. E.
dc.relation.references(2018). On the Use of Repeat Leveling for the
dc.relation.referencesDetermination of Vertical Land Motion: Artifacts,
dc.relation.referencesAliasing, and Extrapolation Errors. Journal of
dc.relation.referencesGeophysical Research: Solid Earth, 123(8), 7021-7039. doi: 10.1029/2018JB015705
dc.relation.referencesNicolas, J., Nocquet, J.-M., Camp, M. V., Dam, T. V.,
dc.relation.referencesBoy, J.-P., Hinderer, J., … Amalvict, M. (2006).
dc.relation.referencesSeasonal effect on vertical positioning by Satellite
dc.relation.referencesLaser Ranging and Global Positioning System and
dc.relation.referenceson absolute gravity at the OCA geodetic station,
dc.relation.referencesGrasse, France. Geophysical Journal International, 167(3), 1127–1137. doi: 10.1111/j.1365-246x.2006.03205.x
dc.relation.referencesPavlyk, V. G., Kutniy, A. M., Kryptova, V. V., &
dc.relation.referencesTyshchuk, M. F. (1996). Influence of soil moisture
dc.relation.referenceson seasonal vertical deformations of the Earth's
dc.relation.referencessurface. Geodesy, cartography and aerial
dc.relation.referencesphotography, 57, 55–64 (in Ukrainian).
dc.relation.referencesPavlyk, V. G. (1999). Investigation of seasonal
dc.relation.referenceshydrothermal deformations of the Earth's surface
dc.relation.referencesat different depths. Geodesy, cartography and
dc.relation.referencesaerial photography, 59,19–23 (in Ukrainian).
dc.relation.referencesPavlyk, V. G. (2010). Seasonal hydrothermal vertical
dc.relation.referencesmotions of the Earth's surface under conditions of
dc.relation.referencesdifferent granulometric composition of soils.
dc.relation.referencesGeodynamics, 1 (9), 22–27 (in Ukrainian).
dc.relation.referencesPavlyk, V. G. (2011). Influence of atmospheric
dc.relation.referencesprecipitation on vertical movements of Earth's
dc.relation.referencessurface in geodynamic micropolygon in Poltava.
dc.relation.referencesRabbel, W., & Zchau, J. (1985) Static deformations
dc.relation.referencesand gravity changes at the Earth’s surface due to
dc.relation.referencesatmospheric loading. Journal of Geophysics, 56(2), 81–99.
dc.relation.referencesRusanov, B. S. (1961). Hydrothermal motions of the
dc.relation.referencesEarth's surface. Moscow: USSR Academy of
dc.relation.referencesSciences (in Russian).
dc.relation.referencesSmirnov, N. І., & Dunin-Barkovsky, I. V. (1965) The
dc.relation.referencescourse of probability theory and mathematical
dc.relation.referencesstatistics. Moscow: Higher school (in Russian).
dc.relation.referencesSzczerbowski, Z. (2009). Toward the reliability of
dc.relation.referencesgeodetic surveys in study of geodynamics – a
dc.relation.referencesproblem of influence of seasonal variations. Acta
dc.relation.referencesGeodynamica Et Geomaterialia, Vol. 6, No. 3
dc.relation.references(155), 253–263.
dc.relation.referencesTsytovich N. A. (1973). Mechanics of soils. Moscow:
dc.relation.referencesHigher school (in Russian).
dc.relation.referencesVittuari, L., Gottardi, G., & Tini, M. A. (2015).
dc.relation.referencesMonumentations of control points for the
dc.relation.referencesmeasurement of soil vertical movements and their
dc.relation.referencesinteractions with ground water contents.
dc.relation.referencesGeomatics, Natural Hazards and Risk, 6(5–7), 439–453. doi: 10.1080/19475705.2013.873084
dc.relation.referencesZurowski, A. (1971). Remarks on the stability of
dc.relation.referencessome benchmarks in Zulawy Wislanych. Geodetic
dc.relation.referencesReview, 43(2), 507–509 (in Polish).
dc.relation.referencesenAtlas of natural conditions and natural resources of
dc.relation.referencesenthe Ukrainian SSR. (1979). Moscow: GUGK (in
dc.relation.referencesenRussian).
dc.relation.referencesenChimitdorzhiev, T. N., Dagurov, P. N., Zakharov,
dc.relation.referencesenA. I., Tatkov, G. I., Bykov, M. E., Dmitriev, A. V.,
dc.relation.referencesenBaldanov, N. D., Muhorin, E. A., & Milheev, E. U.
dc.relation.referencesen(2013). Estimation of seasonal deformations of
dc.relation.referencesenmarshy soil by radar interferometry and geodetic
dc.relation.referencesenleveling techniques. Cryosphere of the Earth,
dc.relation.referencesenXVII (1), 80–87 (in Russian).
dc.relation.referencesenClarke, P. J., Lavallée, D. A., Blewitt, G., & Dam, T. V.
dc.relation.referencesen(2007). Basis functions for the consistent and
dc.relation.referencesenaccurate representation of surface mass
dc.relation.referencesenloading. Geophysical Journal
dc.relation.referencesenInternational, 171(1), 1-10. doi: 10.1111/j.1365-246x.2007.03493.x.
dc.relation.referencesenDam, T. V., Wahr, J., Milly, P. C. D., Shmakin, A. B.,
dc.relation.referencesenBlewitt, G., Lavallée, D., & Larson, K. M. (2001).
dc.relation.referencesenCrustal displacements due to continental water
dc.relation.referencesenloading. Geophysical Research Letters, 28(4), 651–654. doi: 10.1029/2000gl012120.
dc.relation.referencesenDemoulin, A. (2004). Reconciling geodetic and
dc.relation.referencesengeological rates of vertical crustal motion in
dc.relation.referencesenintraplate regions. Earth and Planetary Science
dc.relation.referencesenLetters, 221(1-4), 91–101. doi: 10.1016/s0012-821x(04)00110-4.
dc.relation.referencesenDong, D., Fang, P., Bock, Y., Cheng, M. K., &
dc.relation.referencesenMiyazaki, S. I. (2002). Anatomy of apparent
dc.relation.referencesenseasonal variations from GPS-derived site position
dc.relation.referencesentime series. Journal of Geophysical Research:
dc.relation.referencesenSolid Earth, 107(B4), ETG-9. doi: 10.1029/2001JB000573
dc.relation.referencesenFeldman, G. M. (1988) The movement of moisture in
dc.relation.referencesenthawed and freezing soils. Novosibirsk: Science
dc.relation.referencesen(in Russian).
dc.relation.referencesenFerretti, A., Savio, G., Barzaghi, R., Borghi, A.,
dc.relation.referencesenMusazzi, S., Novali, F., ... & Rocca, F. (2007).
dc.relation.referencesenSubmillimeter accuracy of InSAR time series:
dc.relation.referencesenExperimental validation. IEEE Transactions on
dc.relation.referencesenGeoscience and Remote Sensing, 45(5), 1142–1153. doi: 10.1109/TGRS.2007.894440
dc.relation.referencesenGrushka, I. G. (2005) Methods and means of
dc.relation.referencesenmeasuring the moisture of materials and mediums.
dc.relation.referencesenScientific Works of UkrNDHMI, 254, 169–187 (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenHooper, A., Bekaert, D., Spaans, K., & Arıkan, M.
dc.relation.referencesen(2012). Recent advances in SAR interferometry
dc.relation.referencesentime series analysis for measuring crustal
dc.relation.referencesendeformation. Tectonophysics, 514, 1–13. doi: 10.1016/j.tecto.2011.10.013
dc.relation.referencesenJi, K. H., & Herring, T. A. (2012). Correlation
dc.relation.referencesenbetween changes in groundwater levels and
dc.relation.referencesensurface deformation from GPS measurements in
dc.relation.referencesenthe San Gabriel Valley, California.
dc.relation.referencesenGeophysical Research Letters, 39(1). doi: 10.1029/2011GL050195
dc.relation.referencesenLyon, T. J., Filmer, M. S., & Featherstone, W. E.
dc.relation.referencesen(2018). On the Use of Repeat Leveling for the
dc.relation.referencesenDetermination of Vertical Land Motion: Artifacts,
dc.relation.referencesenAliasing, and Extrapolation Errors. Journal of
dc.relation.referencesenGeophysical Research: Solid Earth, 123(8), 7021-7039. doi: 10.1029/2018JB015705
dc.relation.referencesenNicolas, J., Nocquet, J.-M., Camp, M. V., Dam, T. V.,
dc.relation.referencesenBoy, J.-P., Hinderer, J., … Amalvict, M. (2006).
dc.relation.referencesenSeasonal effect on vertical positioning by Satellite
dc.relation.referencesenLaser Ranging and Global Positioning System and
dc.relation.referencesenon absolute gravity at the OCA geodetic station,
dc.relation.referencesenGrasse, France. Geophysical Journal International, 167(3), 1127–1137. doi: 10.1111/j.1365-246x.2006.03205.x
dc.relation.referencesenPavlyk, V. G., Kutniy, A. M., Kryptova, V. V., &
dc.relation.referencesenTyshchuk, M. F. (1996). Influence of soil moisture
dc.relation.referencesenon seasonal vertical deformations of the Earth's
dc.relation.referencesensurface. Geodesy, cartography and aerial
dc.relation.referencesenphotography, 57, 55–64 (in Ukrainian).
dc.relation.referencesenPavlyk, V. G. (1999). Investigation of seasonal
dc.relation.referencesenhydrothermal deformations of the Earth's surface
dc.relation.referencesenat different depths. Geodesy, cartography and
dc.relation.referencesenaerial photography, 59,19–23 (in Ukrainian).
dc.relation.referencesenPavlyk, V. G. (2010). Seasonal hydrothermal vertical
dc.relation.referencesenmotions of the Earth's surface under conditions of
dc.relation.referencesendifferent granulometric composition of soils.
dc.relation.referencesenGeodynamics, 1 (9), 22–27 (in Ukrainian).
dc.relation.referencesenPavlyk, V. G. (2011). Influence of atmospheric
dc.relation.referencesenprecipitation on vertical movements of Earth's
dc.relation.referencesensurface in geodynamic micropolygon in Poltava.
dc.relation.referencesenRabbel, W., & Zchau, J. (1985) Static deformations
dc.relation.referencesenand gravity changes at the Earth’s surface due to
dc.relation.referencesenatmospheric loading. Journal of Geophysics, 56(2), 81–99.
dc.relation.referencesenRusanov, B. S. (1961). Hydrothermal motions of the
dc.relation.referencesenEarth's surface. Moscow: USSR Academy of
dc.relation.referencesenSciences (in Russian).
dc.relation.referencesenSmirnov, N. I., & Dunin-Barkovsky, I. V. (1965) The
dc.relation.referencesencourse of probability theory and mathematical
dc.relation.referencesenstatistics. Moscow: Higher school (in Russian).
dc.relation.referencesenSzczerbowski, Z. (2009). Toward the reliability of
dc.relation.referencesengeodetic surveys in study of geodynamics – a
dc.relation.referencesenproblem of influence of seasonal variations. Acta
dc.relation.referencesenGeodynamica Et Geomaterialia, Vol. 6, No. 3
dc.relation.referencesen(155), 253–263.
dc.relation.referencesenTsytovich N. A. (1973). Mechanics of soils. Moscow:
dc.relation.referencesenHigher school (in Russian).
dc.relation.referencesenVittuari, L., Gottardi, G., & Tini, M. A. (2015).
dc.relation.referencesenMonumentations of control points for the
dc.relation.referencesenmeasurement of soil vertical movements and their
dc.relation.referenceseninteractions with ground water contents.
dc.relation.referencesenGeomatics, Natural Hazards and Risk, 6(5–7), 439–453. doi: 10.1080/19475705.2013.873084
dc.relation.referencesenZurowski, A. (1971). Remarks on the stability of
dc.relation.referencesensome benchmarks in Zulawy Wislanych. Geodetic
dc.relation.referencesenReview, 43(2), 507–509 (in Polish).
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2019
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder© Pavlyk V. G., Kutnyi A. M., Kalnyk O. P.
dc.subjectповторне нівелювання
dc.subjectсезонні вертикальні рухи земної поверхні
dc.subjectвологість ґрунту
dc.subjectстійкість реперів
dc.subjectrepeat leveling
dc.subjectseasonal vertical movements of the Earth's surface
dc.subjectsoil moisture
dc.subjectbenchmarks stability
dc.subject.udc528.481
dc.subject.udc551.242
dc.titleFeatures of the influence of seasonal variation of soil moisture on vertical movements of the earth’s surface
dc.title.alternativeОсобливості впливу сезонних варіацій вологи ґрунту на вертикальні рухи земної поверхні
dc.typeArticle

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Plain Text
Description: