A(n) Assumption in machine learning

Abstract

The commonly used statistical tools in machine learning are two-sample tests for verifying hypotheses on homogeneity, for example, for estimation of corpushomogeneity, testing text authorship and so on. Often, they are effective only for sufficiently large sample (n> 100) and have limited application in situations where the size of samples is small (n < 30). To solve the problem for small samples, methods of reproducing samples are often used: jackknife and bootstrap. We propose and investigate a family of homogeneity measures based on A(n) assumption that are effective both for small and large samples.

Description

Citation

Klyushin D. A(n) Assumption in machine learning / Dmitry Klyushin, Sergey Lyashko, Stanislav Zub // Computational Linguistics and Intelligent Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019. — P. 32–38. — (Paper presentations).

Endorsement

Review

Supplemented By

Referenced By