Method of determination of the railway rolling stock coordinates within the track circuit

dc.citation.epage47
dc.citation.issue1
dc.citation.spage38
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationUkrainian State University of Science and Technologies
dc.contributor.authorVoznyak, Oleh
dc.contributor.authorBuriak, Serhii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-05T07:55:31Z
dc.date.available2023-07-05T07:55:31Z
dc.date.created2023-06-30
dc.date.issued2023-06-30
dc.description.abstractМетою цієї роботи є вирішення однієї з важливих проблем на залізничному транспорті – контроль за положенням рухомих одиниць в межах перегонів. Для вирішення цієї проблеми запропоновано метод постійного моніторингу рейкового кола із визначенням координати накладання поїзного шунта в шунтовому режимі роботи. Оскільки у складі моделі є первинні параметри рейкової лінії, які з часом можуть змінювати свої значення, то запропоновано їх визначати в іншому (нормальному) режимі роботи рейкового кола. Отже, відповідно до запропонованої моделі, спочатку здійснюється визначення вторинних та первинних параметрів рейкового кола у нормальному режимі роботи рейкового кола. Далі, вже у шунтовому режимі його роботи, отримані параметри використовуються під час визначення координати рухомої одиниці. За цим методом, насамперед, визначається режим роботи рейкового кола, який полягає у визначенні стану за його вхідним імпедансом. Виконання цього кроку здійснюється у два етапи: на першому етапі, за станом колійного реле, констатується факт, що рейкове коло не працює у нормальному режимі роботи, а на другому – за значенням вхідного імпедансу рейкової лінії відокремлюється шунтовий режим від контрольного. У шунтовому режимі роботи рейкової лінії визначається координата, а за потреби – швидкість та прискорення рухомої одиниці, яка знаходиться у межах цього рейкового кола. Для підвищення точності визначення зазначених параметрів, у нормальному режимі роботи рейкового кола, за виміряними значеннями струму, напруги і фазового зсуву між ними, уточняються значення вторинних параметрів рейкової лінії шляхом розв’язання оберненої задачі. Зазначений метод не потребує проведення значного об’єму обчислень та дає змогу визначити вторинні параметри рейкової лінії, а через них – і опір її ізоляції. Використання окресленого методу дає змогу визначати відстань, а за потреби – швидкість та прискорення рухомої одиниці, яка знаходиться в межах рейкового кола. Отримані параметри можна використати для контролю за рухомими рейковими одиницями на перегонах між станціями. Застосування цього методу також може бути корисним на ділянках наближення до залізничних переїздів з метою реалізації фіксованого часу сповіщення. Крім цього, завдяки використанню окресленої моделі, можливо також, у контрольному режимі роботи визначати і координату пошкодження рейкової лінії, що дасть змогу зменшити витрати часу на виявлення та усунення пошкодження.
dc.description.abstractThis work aims to solve one of the essential problems in railway transport – control over the position of moving units within the race. A method of constant monitoring of the track circuit with a determination of the coordinate of the train shunt placement in the shunt mode of working is proposed to solve this problem. Since the model includes the primary parameters of the track circuit, which may change their values over time, it is suggested to determine them in another (normal) working mode of the track circuit. Therefore, according to the proposed model, the secondary and primary parameters of the track circuit are first determined in the track circuit's normal work mode. Next, already in the shunt mode of its work, the obtained parameters are used to determine the coordinates of the moving unit. According to this method, firstly, the work mode of the track circuit is determined, which consists in determining the state by its input impedance. This step is performed in two stages. In the first stage, based on the state of the track relay, the fact that the track circuit doesn't work in normal mode is verified. In the second stage, the shunt mode is separated from the control mode by the value of the track circuit input impedance. In the shunt mode of the track circuit operation, the coordinate and, if necessary, the speed and acceleration of the moving unit located within the given track circuit are determined. In the normal mode of the track circuit line operation, the values of its secondary parameters are specified based on the measured values of current, voltage, and phase shift between them. This operation is performed to increase the precision of the speed and acceleration determination by solving an inverse problem. In the control mode of the track circuit operation, it is possible to determine the coordinates of damage. This method does not require a significant volume of calculations. It makes it possible to determine the secondary parameters of the track circuit and through them, the resistance of its insulation. Using this method makes it possible to determine the distance and, if necessary, the speed and acceleration of a moving unit within the track circuit. The resulting parameters can be used for positioning moving rolling stock on runs between stations. The application of this method can also be useful in sections of the railway crossings approach to implement a fixed warning time. In addition, thanks to the use of the outlined model, in the control mode of the track circuit operation,is possible to determine the damage coordinate. It will make it possible to reduce the time spent on damage detection and elimination
dc.format.extent38-47
dc.format.pages10
dc.identifier.citationVoznyak O. Method of determination of the railway rolling stock coordinates within the track circuit / Oleh Voznyak, Serhii Buriak // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 4. — No 1. — P. 38–47.
dc.identifier.citationenVoznyak O., Buriak S. (2023) Method of determination of the railway rolling stock coordinates within the track circuit. Transport Technologies (Lviv), vol. 4, no 1, pp. 38-47.
dc.identifier.doihttps://doi.org/10.23939/tt2023.01.038
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59384
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTransport Technologies, 1 (4), 2023
dc.relation.references1. Theeg G. & Vlasenko S. (2020) Railway Signalling & Interlocking. 3ed Edition. Germany, Leverkusen: PMC Media House GmbH. (in English)
dc.relation.references2. National Academies of Sciences, Engineering, and Medicine. (2018). A Transit Agency Guide to Evaluating Secondary Train Detection/Protection Systems in Communications-Based Train Control Systems. doi: 10.17226/25063 (in English)
dc.relation.references3. Aliev, R. (2021). A Rail line model with distributed parameters of track circuit. IOP Conference Series: Materials Science and Engineering, 1152(1) (pp. 012018). doi: 10.1088/1757-899X/1152/1/012018 (in English)
dc.relation.references4. Lorang, X., Kerbal, S., Lemarchand, L., Le Cam, V., & Mogoro, J. J. (2018). New detection criteria and shunting monitoring in railway track circuit receivers. In IWSHM-RS 2018, 2nd International Workshop on Structural Health Monitoring for Railway Systems (pp. 1–10). (in English)
dc.relation.references5. Hellman, A. D., & Poirier, P. J. (2019). Analysis of non-track-circuit highway-rail grade crossing train detection technologies (No. DOT/FRA/ORD-19/47). United States. Federal Railroad Administration. Office of Research, Development & Technology. (in English)
dc.relation.references6. Withers, J. (2021). Track Circuit Shunting Performance Study [Research Results] (No. RR 21-13). United States. Department of Transportation. Federal Railroad Administration. Office of Research, Development & Technology. (in English)
dc.relation.references7. Zhang, B. G., Ma, W. J., & Chang, G. W. (2019). Diagnosis approach on compensation capacitor fault of jointless track circuit based on simulated annealing algorithm. In Advances in Computer Communication and Computational Sciences: Proceedings of IC4S 2017, 1 (pp. 417–426). doi: 10.1007/978-981-13-0341-8_38 (in English)
dc.relation.references8. Serdiuk, T., Feliziani, M., & Serdiuk, K. (2018). About electromagnetic compatibility of track circuits with the traction supply system of railway. In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE) (pp. 242–247). doi: 10.1109/EMCEurope.2018.8485034 (in English)
dc.relation.references9. Sadikov, A. N. (2021). Analysis of promising systems for monitoring the state of rail lines for the railways of the Republic of Uzbekistan. European Scholar Journal (ESJ), 2(8). 81–83 (in English)
dc.relation.references10. Honcharov, K. V. (2013). Povyshenie ustojchivosti tonalnyh relsovyh cepej v usloviyah fluktuacij soprotivleniya ballasta [Improving the stability of tonal track circuits under fluctuations of ballast resistance]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu [Science and progress of transport. Bulletin of the Dnipropetrovsk National University of Railway Transport], 6(48), 23–31. doi: 10.15802/stp2013/19674 (in Russian)
dc.relation.references11. Zagirnyak, M., Prus, V., Rodkin, D., Zachepa, Y., & Chenchevoi, V. (2019). A refined method for the calculation of steel losses at alternating current. Archives of electrical engineering, 68(2), 295–308. doi: 10.24425/aee.2019.128269 (in English)
dc.relation.references12. Boteler, D. H. (2021). Modeling geomagnetic interference on railway signaling track circuits. Space Weather, 19, e2020SW002609. doi: 10.1029/2020SW002609 (in English)
dc.relation.references13. Lucca, G. (2019). Influence of railway line characteristics in inductive interference on railway track circuits. IET Science, Measurement & Technology, 13(1), 9–16. doi: 10.1049/iet-smt.2018.5021 (in English)
dc.relation.references14. Mielnik, R., Sulowicz, M., Ludwinek, K., & Jaskiewicz, M. (2018). The reliability of critical systems in railway transport based on the track rail circuit. Analysis and Simulation of Electrical and Computer Systems, 377–393. doi: 10.1007/978-3-319-63949-9_25 (in English)
dc.relation.references15. Mariscotti, A. (2020). Impact of rail impedance intrinsic variability on railway system operation, EMC and safety. International Journal of Electrical and Computer Engineering, 11(1), 17–26. doi: 10.11591/ijece.v11i1.pp17-26 (in English)
dc.relation.references16. Havryliuk, V., & Nibaruta, R. (2022, September). Mathematical model of the induced AC interference in DC rails of a double-track system. In 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC) (pp. 133–135). doi: 10.1109/APEMC53576.2022.9888737 (in English)
dc.relation.references17. Aliev, R. M. (2021). Mathematical model of a tonal rail chain without insulating joints with current receiver in shunt mode. Transport and Telecommunication Journal, 22(3), 312–320. doi: 10.2478/ttj-2021-0024 (in English)
dc.relation.references18. Havryliuk, V. I., Voznyak, O. M., & Meleshko, V. V. (2016). Improving the positioning accuracy of train on the approach section to the railway crossing. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu [Science and progress of transport. Bulletin of the Dnipropetrovsk National University of Railway Transport], 1(61), 9–18. doi: 10.15802/stp2016/60936 (in English)
dc.relation.references19. Aliev, R. M., & Aliev, M. M. (2021). Mathematical model of the sensor for controling the condition of the track section with an adaptive receiver at the free condition of the controlled section. In Journal of Physics: Conference Series, 1973(1), 012021. doi: 10.1088/1742-6596/1973/1/012021 (in English)
dc.relation.references20. Voznyak, O. (2020). Sposib vyznachennia vtorynnych parametriv reikovoi linii [The method of determining the rail line secondary parameters] (Patent of Ukraine No 144462). Retrieved from: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=271638 (in Ukrainian)
dc.relation.references21. Voznyak, O. M., & Havryliuk, V. I. (ed.) (2019). Zabezpechennia bezpeky ruchu na zaliznychnych pereizdach: Monohrafiia. [Ensuring traffic safety at railway crossings: Monograph]. Vydavnyctvo DNUZT [publishing house DNURT] (in Ukrainian).
dc.relation.referencesen1. Theeg G. & Vlasenko S. (2020) Railway Signalling & Interlocking. 3ed Edition. Germany, Leverkusen: PMC Media House GmbH. (in English)
dc.relation.referencesen2. National Academies of Sciences, Engineering, and Medicine. (2018). A Transit Agency Guide to Evaluating Secondary Train Detection/Protection Systems in Communications-Based Train Control Systems. doi: 10.17226/25063 (in English)
dc.relation.referencesen3. Aliev, R. (2021). A Rail line model with distributed parameters of track circuit. IOP Conference Series: Materials Science and Engineering, 1152(1) (pp. 012018). doi: 10.1088/1757-899X/1152/1/012018 (in English)
dc.relation.referencesen4. Lorang, X., Kerbal, S., Lemarchand, L., Le Cam, V., & Mogoro, J. J. (2018). New detection criteria and shunting monitoring in railway track circuit receivers. In IWSHM-RS 2018, 2nd International Workshop on Structural Health Monitoring for Railway Systems (pp. 1–10). (in English)
dc.relation.referencesen5. Hellman, A. D., & Poirier, P. J. (2019). Analysis of non-track-circuit highway-rail grade crossing train detection technologies (No. DOT/FRA/ORD-19/47). United States. Federal Railroad Administration. Office of Research, Development & Technology. (in English)
dc.relation.referencesen6. Withers, J. (2021). Track Circuit Shunting Performance Study [Research Results] (No. RR 21-13). United States. Department of Transportation. Federal Railroad Administration. Office of Research, Development & Technology. (in English)
dc.relation.referencesen7. Zhang, B. G., Ma, W. J., & Chang, G. W. (2019). Diagnosis approach on compensation capacitor fault of jointless track circuit based on simulated annealing algorithm. In Advances in Computer Communication and Computational Sciences: Proceedings of IC4S 2017, 1 (pp. 417–426). doi: 10.1007/978-981-13-0341-8_38 (in English)
dc.relation.referencesen8. Serdiuk, T., Feliziani, M., & Serdiuk, K. (2018). About electromagnetic compatibility of track circuits with the traction supply system of railway. In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE) (pp. 242–247). doi: 10.1109/EMCEurope.2018.8485034 (in English)
dc.relation.referencesen9. Sadikov, A. N. (2021). Analysis of promising systems for monitoring the state of rail lines for the railways of the Republic of Uzbekistan. European Scholar Journal (ESJ), 2(8). 81–83 (in English)
dc.relation.referencesen10. Honcharov, K. V. (2013). Povyshenie ustojchivosti tonalnyh relsovyh cepej v usloviyah fluktuacij soprotivleniya ballasta [Improving the stability of tonal track circuits under fluctuations of ballast resistance]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu [Science and progress of transport. Bulletin of the Dnipropetrovsk National University of Railway Transport], 6(48), 23–31. doi: 10.15802/stp2013/19674 (in Russian)
dc.relation.referencesen11. Zagirnyak, M., Prus, V., Rodkin, D., Zachepa, Y., & Chenchevoi, V. (2019). A refined method for the calculation of steel losses at alternating current. Archives of electrical engineering, 68(2), 295–308. doi: 10.24425/aee.2019.128269 (in English)
dc.relation.referencesen12. Boteler, D. H. (2021). Modeling geomagnetic interference on railway signaling track circuits. Space Weather, 19, e2020SW002609. doi: 10.1029/2020SW002609 (in English)
dc.relation.referencesen13. Lucca, G. (2019). Influence of railway line characteristics in inductive interference on railway track circuits. IET Science, Measurement & Technology, 13(1), 9–16. doi: 10.1049/iet-smt.2018.5021 (in English)
dc.relation.referencesen14. Mielnik, R., Sulowicz, M., Ludwinek, K., & Jaskiewicz, M. (2018). The reliability of critical systems in railway transport based on the track rail circuit. Analysis and Simulation of Electrical and Computer Systems, 377–393. doi: 10.1007/978-3-319-63949-9_25 (in English)
dc.relation.referencesen15. Mariscotti, A. (2020). Impact of rail impedance intrinsic variability on railway system operation, EMC and safety. International Journal of Electrical and Computer Engineering, 11(1), 17–26. doi: 10.11591/ijece.v11i1.pp17-26 (in English)
dc.relation.referencesen16. Havryliuk, V., & Nibaruta, R. (2022, September). Mathematical model of the induced AC interference in DC rails of a double-track system. In 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC) (pp. 133–135). doi: 10.1109/APEMC53576.2022.9888737 (in English)
dc.relation.referencesen17. Aliev, R. M. (2021). Mathematical model of a tonal rail chain without insulating joints with current receiver in shunt mode. Transport and Telecommunication Journal, 22(3), 312–320. doi: 10.2478/ttj-2021-0024 (in English)
dc.relation.referencesen18. Havryliuk, V. I., Voznyak, O. M., & Meleshko, V. V. (2016). Improving the positioning accuracy of train on the approach section to the railway crossing. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu [Science and progress of transport. Bulletin of the Dnipropetrovsk National University of Railway Transport], 1(61), 9–18. doi: 10.15802/stp2016/60936 (in English)
dc.relation.referencesen19. Aliev, R. M., & Aliev, M. M. (2021). Mathematical model of the sensor for controling the condition of the track section with an adaptive receiver at the free condition of the controlled section. In Journal of Physics: Conference Series, 1973(1), 012021. doi: 10.1088/1742-6596/1973/1/012021 (in English)
dc.relation.referencesen20. Voznyak, O. (2020). Sposib vyznachennia vtorynnych parametriv reikovoi linii [The method of determining the rail line secondary parameters] (Patent of Ukraine No 144462). Retrieved from: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=271638 (in Ukrainian)
dc.relation.referencesen21. Voznyak, O. M., & Havryliuk, V. I. (ed.) (2019). Zabezpechennia bezpeky ruchu na zaliznychnych pereizdach: Monohrafiia. [Ensuring traffic safety at railway crossings: Monograph]. Vydavnyctvo DNUZT [publishing house DNURT] (in Ukrainian).
dc.relation.urihttps://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=271638
dc.rights.holder© Національний університет „Львівська політехніка“, 2023
dc.rights.holder© O. Voznyak, S. Buriak, 2023
dc.subjectрейкове коло
dc.subjectвхідний імпеданс
dc.subjectкоордината рухомої одиниці
dc.subjectпараметри руху
dc.subjectпідвищення стану безпеки
dc.subjecttrack circuits
dc.subjectinput impedance
dc.subjectmoving unit coordinate
dc.subjectmovement parameters
dc.subjectsafety improvement
dc.titleMethod of determination of the railway rolling stock coordinates within the track circuit
dc.title.alternativeМетод визначення координати залізничної рухомої одиниці в межах рейкового кола
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2023v4n1_Voznyak_O-Method_of_determination_of_38-47.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description: