Electrically conductive composite materials based on polyvinylpyrrolidone copolymers with combined fillers

dc.citation.epage143
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage137
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University in Košice
dc.contributor.authorГриценко, О. М.
dc.contributor.authorДулебова, Л.
dc.contributor.authorБаран, Н. М.
dc.contributor.authorГриценко, Т. О.
dc.contributor.authorВолошкевич, П. П.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorDulebova, L.
dc.contributor.authorBaran, N. M.
dc.contributor.authorGrytsenko, T. O.
dc.contributor.authorVoloshkevych, P. P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:45Z
dc.date.available2024-02-09T09:24:45Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractМетодом полімеризаційного наповнення одержані композиційні матеріали на основі кополімерів полівінілпіролідону з 2-гідроксіетилметакрилатом із комбінованими наповнювачами, які складаються з порошків металів та графіту. Розроблені матеріали характеризуються достатньо високими фізико-механічними властивостями, підвищеною електропровідністю та водовмістом. Встановлено, що додавання графіту до металонаповнених кополімерів підвищує чутливість електричного опору композитів до зміни вологи.
dc.description.abstractComposite materials based on copolymers of polyvinylpyrrolidone and 2-hydroxyethylmethacrylate with combined fillers consisting of metal powders and graphite were obtained by the method of polymerization filling. The developed materials are characterized by sufficiently high physical and mechanical properties, increased electrical conductivity and water content. It was established that the addition of graphite to metal-filled copolymers increases the sensitivity of the electrical resistance of composites to moisture changes.
dc.format.extent137-143
dc.format.pages7
dc.identifier.citationElectrically conductive composite materials based on polyvinylpyrrolidone copolymers with combined fillers / O. M. Grytsenko, L. Dulebova, N. M. Baran, T. O. Grytsenko, P. P. Voloshkevych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 137–143.
dc.identifier.citationenElectrically conductive composite materials based on polyvinylpyrrolidone copolymers with combined fillers / O. M. Grytsenko, L. Dulebova, N. M. Baran, T. O. Grytsenko, P. P. Voloshkevych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 137–143.
dc.identifier.doidoi.org/10.23939/ctas2023.01.137
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61184
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S. K., Bajpai, M. (2007). Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach. Journal of Macromolecular Science, 45, 107–119. doi:10.1080/10601320701683470.
dc.relation.references2. Los, P., Lukomska, A., Jeziorska, R. (2021). Metalpolymer composites for electromagnetic interference shielding applications.Polimery, 61, 663–669. doi:10.14314/polimery.2016.663.
dc.relation.references3. Nicolais, L., Carotenuto, G. (2005). Metalpolymer nanocomposites. New Jersey: John Wiley & Sons. doi:10.1002/0471695432.
dc.relation.references4. Yaman, K. (2022). Fractal characterization of electrical conductivity and mechanical properties of copper particulate polyester matrix composites using image processing. Polymer Bulletin, 79, 3309–3332. https://doi.org/10.1007/s00289-021-03665-2.
dc.relation.references5. Kucherenko, A., Moravskyi, V., Kuznetsova, M., Grytsenko, O., Masyuk, A., Dulebova, L. (2020). Regularities of obtaining metal-filled polymer composites. A. Pogrebnjak, M. Pogorielov, R. Viter, (еds.). Nanomaterials in Biomedical Application and Biosensors (NAP-2019), 59–66. Singapore: Springer. doi: 10.1007/978-981-15-3996-1_6.
dc.relation.references6. Wang, L., Wang, H., Huang, X. W., Song, X., Hu, M., Tang, L., Xue, H., Gao, J. (2018). Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. Journal of Materials Chemistry, 6(47), 24523–24533. doi:10.1039/c8ta07847e.
dc.relation.references7. Li, H., Yang, P., Pageni, P., Tang, C. (2017). Recent advances in metal-containing polymer hydrogels. Macromolecular Rapid Communications, 38(14), 1–20. doi:10.1002/marc.201700109.
dc.relation.references8. Naseem, K., Begum, R., Farooqi, Z. (2018). Platinum nanoparticles fabricated multiresponsive microgel composites: Synthesis, characterization, and applications. Polymer Composites, 39(7), 2167–2180. https://doi.org/10.1002/pc.24212.
dc.relation.references9. Burhannuddin, N., Nordin, N., Mazlan, S., Aziz, S., Kuwano, N., Jamari, S. (2021). Physicochemical characterization and rheological properties of magnetic elastomers containing different shapes of corroded carbonyl iron particles. Scientific Reports, 11, 868. https://doi.org/10.1038/s41598-020-80539-z.
dc.relation.references10. Ranga Reddy, P., Mohana Raju, K., Subbarami Reddy, N. (2013). A review on polymer nanocomposites: monometallic and bimetallic nanoparticles for biomedicial, optical and engineering applications. Chemical Science Review and Letters, 1(4), 228–235.
dc.relation.references11. Rozik, N., Asaad, J., Mansour, S., Gomaa, E. (2016). Effect of aluminum and aluminum/nickel hybrid fillers on the properties of epoxy composites. Proceedings of the Institution of Mechanical Engineers, 230(2), 550–557. https://doi.org/10.1177/1464420715581523.
dc.relation.references12. Amoabeng, D., Velankar, S. (2017). A review of conductive polymer composites filled with low melting point metal alloys. Polymer Engineering & Science, 58, 1010–1019. https://doi.org/10.1002/pen.24774.
dc.relation.references13. Echeverria, C., Fernandes, S., Godinho, M., Borges, J., Soares, P. (2018). Functional stimuli-responsive gels: hydrogels and microgels. Gels, 4(2), 54. doi: 10.3390/gels4020054.
dc.relation.references14. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., Loh, X. J. (2015). Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multifunctional materials. Advanced Science, 2(1–2), 1400010. doi:10.1002/advs.201400010.
dc.relation.references15. Biondi, M., Borzacchiello, A., Mayol, L., Ambrosio, L. (2015). Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels, 1(2), 162–178. https://doi.org/10.3390/gels1020162.
dc.relation.references16. Schexnailder P., Schmidt, G. (2009). Nanocomposite polymer hydrogels. Colloid and polymer science, 287, 1–11. https://doi.org/10.1007/s00396-008-1949-0.
dc.relation.references17. Grytsenko, O., Pukach, P., Suberlyak, O., Shakhovska, N., Karovič, V. (2021). Usage of mathematical modeling and optimization in development of hydrogel medical dressings production. Electronics, 10(5), 1–10. https://doi.org/10.3390/electronics10050620.
dc.relation.references18. Spanoudaki, A., Fragiadakis, D., Vartzeli- Nikaki, K., Pissis, P., Hernandez, J. C. R., Pradas, M. M. (2006). Nanostructured and nanocomposite hydrogels for biomedical applications. Blitz, J. P., Gunko, V. M. (eds.), Surface Chemistry in Biomedical and Environmental Science, 229–240. Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X_20.
dc.relation.references19. Urban, G. A., Weiss, T. (2009). Hydrogels for biosensors. G. Gerlach, K. F. Arndt (еds.), Hydrogel sensors and actuators, 197–220. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-75645-3_6.
dc.relation.references20. Tan, N. P. B., Lee, C. H., Li, P. (2016). Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers, 8, 105–118. https://doi.org/10.3390/polym8040105.
dc.relation.references21. Dong, W., Yao, D., Yang, L. Soft bimodal sensor array based on conductive hydrogel for driving status monitoring. Sensors, 20, 1641. https://doi.org/10.3390/s20061641.
dc.relation.references22. Koerner, J., Leu, H-Y, Magda, J., Reiche, C. F., Solzbacher, F. (2018). Fast-reacting smart hydrogel-based sensor platform for biomedical applications. TechConnect Briefs, 3, 206–208.
dc.relation.references23. Suberlyak, O. V., Skorokhoda, V. Y., Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236–238.
dc.relation.references24. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu “Lvivska politekhnika”, 414, 82–85. http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf.
dc.relation.references25. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynskyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 488, 300–303. http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf.
dc.relation.references26. Suberlyak, O., Hishchak, Kh., Grytsenko, O., Ostapchuk, A. (2009). Doslidzhennya polimeryzatsiyi polivinilpirolidon-( met)akrylatnykh kompozytsiy v prysutnosti dribnodyspersnykh poroshkiv metaliv. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 644, 283–289. https://ena.lpnu.ua/handle/ntb/2650.
dc.relation.references27. Grytsenko, O., Baran, N., Dulebova, L., Berezhnyy, B. (2022). The effect of the filler nature on the properties of hydrogels based on polyvinylpyrrolidone copolymers. Scientific notes of Taurida National V. I. Vernadsky University series “Technical Sciences”, 33(72), 211–216. https://doi.org/10.32782/2663-5941/2022.6/29.
dc.relation.references28. Grytsenko, O., Dulebova, L., Spišák, E., Berezhnyy, B. (2022). New materials based on polyvinylpyrrolidonecontaining copolymers with ferromagnetic fillers. Materials, 15(15),5183-1–5183-21. https://doi.org/10.3390/ma15155183.
dc.relation.references29. Grytsenko, О., Horbenko, N., Gayduk, A., Suberlyak, O. (2016). Using of Metal-filled Polymer Hydrogels for Conductometric Moisture Gages. Scientific Bulletin of UNFU, 26(1), 223–229. https://doi.org/10.15421/40260141/.
dc.relation.references30. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G. Berezhnyy, B. (2020). Formation features of tubular products on the basis of composite hydrogels. Chemistry & chemical technology, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312.
dc.relation.references31. Suberlyak, О., Hrytsenko, O., Hishchak Kh. (2008). Synthesis of new conducting materials on the basis of polymer hydrogels. Chemistry & сhemical technology, 2(2), 99–104. https://science.lpnu.ua/jcct/all-volumes-andissues/volume-2-number-2-2008/synthesis-newconducting-materials-basis-polymer.
dc.relation.references32. Gul, V. Ye., Shenfil, L. Z. (1984). Elektroprovodyashchiye polimernyye kompozitsii. Moskva: Khimiya.
dc.relation.referencesen1. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S. K., Bajpai, M. (2007). Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach. Journal of Macromolecular Science, 45, 107–119. doi:10.1080/10601320701683470.
dc.relation.referencesen2. Los, P., Lukomska, A., Jeziorska, R. (2021). Metalpolymer composites for electromagnetic interference shielding applications.Polimery, 61, 663–669. doi:10.14314/polimery.2016.663.
dc.relation.referencesen3. Nicolais, L., Carotenuto, G. (2005). Metalpolymer nanocomposites. New Jersey: John Wiley & Sons. doi:10.1002/0471695432.
dc.relation.referencesen4. Yaman, K. (2022). Fractal characterization of electrical conductivity and mechanical properties of copper particulate polyester matrix composites using image processing. Polymer Bulletin, 79, 3309–3332. https://doi.org/10.1007/s00289-021-03665-2.
dc.relation.referencesen5. Kucherenko, A., Moravskyi, V., Kuznetsova, M., Grytsenko, O., Masyuk, A., Dulebova, L. (2020). Regularities of obtaining metal-filled polymer composites. A. Pogrebnjak, M. Pogorielov, R. Viter, (eds.). Nanomaterials in Biomedical Application and Biosensors (NAP-2019), 59–66. Singapore: Springer. doi: 10.1007/978-981-15-3996-1_6.
dc.relation.referencesen6. Wang, L., Wang, H., Huang, X. W., Song, X., Hu, M., Tang, L., Xue, H., Gao, J. (2018). Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. Journal of Materials Chemistry, 6(47), 24523–24533. doi:10.1039/P.8ta07847e.
dc.relation.referencesen7. Li, H., Yang, P., Pageni, P., Tang, C. (2017). Recent advances in metal-containing polymer hydrogels. Macromolecular Rapid Communications, 38(14), 1–20. doi:10.1002/marc.201700109.
dc.relation.referencesen8. Naseem, K., Begum, R., Farooqi, Z. (2018). Platinum nanoparticles fabricated multiresponsive microgel composites: Synthesis, characterization, and applications. Polymer Composites, 39(7), 2167–2180. https://doi.org/10.1002/pc.24212.
dc.relation.referencesen9. Burhannuddin, N., Nordin, N., Mazlan, S., Aziz, S., Kuwano, N., Jamari, S. (2021). Physicochemical characterization and rheological properties of magnetic elastomers containing different shapes of corroded carbonyl iron particles. Scientific Reports, 11, 868. https://doi.org/10.1038/s41598-020-80539-z.
dc.relation.referencesen10. Ranga Reddy, P., Mohana Raju, K., Subbarami Reddy, N. (2013). A review on polymer nanocomposites: monometallic and bimetallic nanoparticles for biomedicial, optical and engineering applications. Chemical Science Review and Letters, 1(4), 228–235.
dc.relation.referencesen11. Rozik, N., Asaad, J., Mansour, S., Gomaa, E. (2016). Effect of aluminum and aluminum/nickel hybrid fillers on the properties of epoxy composites. Proceedings of the Institution of Mechanical Engineers, 230(2), 550–557. https://doi.org/10.1177/1464420715581523.
dc.relation.referencesen12. Amoabeng, D., Velankar, S. (2017). A review of conductive polymer composites filled with low melting point metal alloys. Polymer Engineering & Science, 58, 1010–1019. https://doi.org/10.1002/pen.24774.
dc.relation.referencesen13. Echeverria, C., Fernandes, S., Godinho, M., Borges, J., Soares, P. (2018). Functional stimuli-responsive gels: hydrogels and microgels. Gels, 4(2), 54. doi: 10.3390/gels4020054.
dc.relation.referencesen14. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., Loh, X. J. (2015). Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multifunctional materials. Advanced Science, 2(1–2), 1400010. doi:10.1002/advs.201400010.
dc.relation.referencesen15. Biondi, M., Borzacchiello, A., Mayol, L., Ambrosio, L. (2015). Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels, 1(2), 162–178. https://doi.org/10.3390/gels1020162.
dc.relation.referencesen16. Schexnailder P., Schmidt, G. (2009). Nanocomposite polymer hydrogels. Colloid and polymer science, 287, 1–11. https://doi.org/10.1007/s00396-008-1949-0.
dc.relation.referencesen17. Grytsenko, O., Pukach, P., Suberlyak, O., Shakhovska, N., Karovič, V. (2021). Usage of mathematical modeling and optimization in development of hydrogel medical dressings production. Electronics, 10(5), 1–10. https://doi.org/10.3390/electronics10050620.
dc.relation.referencesen18. Spanoudaki, A., Fragiadakis, D., Vartzeli- Nikaki, K., Pissis, P., Hernandez, J. C. R., Pradas, M. M. (2006). Nanostructured and nanocomposite hydrogels for biomedical applications. Blitz, J. P., Gunko, V. M. (eds.), Surface Chemistry in Biomedical and Environmental Science, 229–240. Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X_20.
dc.relation.referencesen19. Urban, G. A., Weiss, T. (2009). Hydrogels for biosensors. G. Gerlach, K. F. Arndt (eds.), Hydrogel sensors and actuators, 197–220. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-75645-3_6.
dc.relation.referencesen20. Tan, N. P. B., Lee, C. H., Li, P. (2016). Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers, 8, 105–118. https://doi.org/10.3390/polym8040105.
dc.relation.referencesen21. Dong, W., Yao, D., Yang, L. Soft bimodal sensor array based on conductive hydrogel for driving status monitoring. Sensors, 20, 1641. https://doi.org/10.3390/s20061641.
dc.relation.referencesen22. Koerner, J., Leu, H-Y, Magda, J., Reiche, C. F., Solzbacher, F. (2018). Fast-reacting smart hydrogel-based sensor platform for biomedical applications. TechConnect Briefs, 3, 206–208.
dc.relation.referencesen23. Suberlyak, O. V., Skorokhoda, V. Y., Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236–238.
dc.relation.referencesen24. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu "Lvivska politekhnika", 414, 82–85. http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf.
dc.relation.referencesen25. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynskyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 488, 300–303. http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf.
dc.relation.referencesen26. Suberlyak, O., Hishchak, Kh., Grytsenko, O., Ostapchuk, A. (2009). Doslidzhennya polimeryzatsiyi polivinilpirolidon-( met)akrylatnykh kompozytsiy v prysutnosti dribnodyspersnykh poroshkiv metaliv. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 644, 283–289. https://ena.lpnu.ua/handle/ntb/2650.
dc.relation.referencesen27. Grytsenko, O., Baran, N., Dulebova, L., Berezhnyy, B. (2022). The effect of the filler nature on the properties of hydrogels based on polyvinylpyrrolidone copolymers. Scientific notes of Taurida National V. I. Vernadsky University series "Technical Sciences", 33(72), 211–216. https://doi.org/10.32782/2663-5941/2022.6/29.
dc.relation.referencesen28. Grytsenko, O., Dulebova, L., Spišák, E., Berezhnyy, B. (2022). New materials based on polyvinylpyrrolidonecontaining copolymers with ferromagnetic fillers. Materials, 15(15),5183-1–5183-21. https://doi.org/10.3390/ma15155183.
dc.relation.referencesen29. Grytsenko, O., Horbenko, N., Gayduk, A., Suberlyak, O. (2016). Using of Metal-filled Polymer Hydrogels for Conductometric Moisture Gages. Scientific Bulletin of UNFU, 26(1), 223–229. https://doi.org/10.15421/40260141/.
dc.relation.referencesen30. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G. Berezhnyy, B. (2020). Formation features of tubular products on the basis of composite hydrogels. Chemistry & chemical technology, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312.
dc.relation.referencesen31. Suberlyak, O., Hrytsenko, O., Hishchak Kh. (2008). Synthesis of new conducting materials on the basis of polymer hydrogels. Chemistry & shemical technology, 2(2), 99–104. https://science.lpnu.ua/jcct/all-volumes-andissues/volume-2-number-2-2008/synthesis-newconducting-materials-basis-polymer.
dc.relation.referencesen32. Gul, V. Ye., Shenfil, L. Z. (1984). Elektroprovodyashchiye polimernyye kompozitsii. Moskva: Khimiya.
dc.relation.urihttps://doi.org/10.1007/s00289-021-03665-2
dc.relation.urihttps://doi.org/10.1002/pc.24212
dc.relation.urihttps://doi.org/10.1038/s41598-020-80539-z
dc.relation.urihttps://doi.org/10.1177/1464420715581523
dc.relation.urihttps://doi.org/10.1002/pen.24774
dc.relation.urihttps://doi.org/10.3390/gels1020162
dc.relation.urihttps://doi.org/10.1007/s00396-008-1949-0
dc.relation.urihttps://doi.org/10.3390/electronics10050620
dc.relation.urihttps://doi.org/10.1007/1-4020-4741-X_20
dc.relation.urihttps://doi.org/10.1007/978-3-540-75645-3_6
dc.relation.urihttps://doi.org/10.3390/polym8040105
dc.relation.urihttps://doi.org/10.3390/s20061641
dc.relation.urihttp://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf
dc.relation.urihttp://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf
dc.relation.urihttps://ena.lpnu.ua/handle/ntb/2650
dc.relation.urihttps://doi.org/10.32782/2663-5941/2022.6/29
dc.relation.urihttps://doi.org/10.3390/ma15155183
dc.relation.urihttps://doi.org/10.15421/40260141/
dc.relation.urihttps://doi.org/10.23939/chcht14.03.312
dc.relation.urihttps://science.lpnu.ua/jcct/all-volumes-andissues/volume-2-number-2-2008/synthesis-newconducting-materials-basis-polymer
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectкомпозиційні гідрогелі
dc.subjectкополімери
dc.subjectполівінілпіролідон
dc.subject2-гідроксіетилмет-акрилат
dc.subjectелектропровідність
dc.subjectcomposite hydrogels
dc.subjectcopolymers
dc.subjectpolyvinylpyrrolidone
dc.subject2-hydroxyethylmethacrylate
dc.subjectelectrical conductivity
dc.titleElectrically conductive composite materials based on polyvinylpyrrolidone copolymers with combined fillers
dc.title.alternativeЕлектропровідні композиційні матеріали на основі кополімерів полівінілпіролідону з комбінованими наповнювачами
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v6n1_Grytsenko_O_M-Electrically_conductive_137-143.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v6n1_Grytsenko_O_M-Electrically_conductive_137-143__COVER.png
Size:
499.9 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: