Use of modular technologies for the construction of low-rise housing in Kazakhstan

dc.citation.epage35
dc.citation.issue2
dc.citation.journalTitleАрхітектурні дослідження
dc.citation.spage21
dc.contributor.affiliationМіжнародна освітня корпорація, Казахська головна архітектурно-будівельна академія
dc.contributor.affiliationМіжнародна освітня корпорація, Казахська головна архітектурно-будівельна академія
dc.contributor.affiliationКиргизький державний технічний університет ім. І. Раззакова
dc.contributor.affiliationМіжнародна освітня корпорація, Казахська головна архітектурно-будівельна академія
dc.contributor.affiliationМіжнародна освітня корпорація, Казахська головна архітектурно-будівельна академія
dc.contributor.affiliationInternational Educational Corporation, Kazakh Leading Academy of Architecture and Civil Engineering
dc.contributor.affiliationInternational Educational Corporation, Kazakh Leading Academy of Architecture and Civil Engineering
dc.contributor.affiliationKyrgyz State Technical University named after I. Razzakov
dc.contributor.affiliationInternational Educational Corporation, Kazakh Leading Academy of Architecture and Civil Engineering
dc.contributor.affiliationInternational Educational Corporation, Kazakh Leading Academy of Architecture and Civil Engineering
dc.contributor.authorОстапенко, Інна
dc.contributor.authorСайбулатова, Арай
dc.contributor.authorОмуралієв, Дуйшобек
dc.contributor.authorСеітова, Нігара
dc.contributor.authorБектурганова, Каміла
dc.contributor.authorOstapenko, Inna
dc.contributor.authorSaibulatova, Aray
dc.contributor.authorOmuraliev, Duishobek
dc.contributor.authorSeitova, Nigara
dc.contributor.authorBekturganova, Kamila
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-24T13:27:12Z
dc.date.created2025-11-10
dc.date.issued2025-11-10
dc.description.abstractМета цього дослідження – розробка архітектурної моделі точкової модульної реконструкції, орієнтованої на стійке оновлення житлових кварталів з урахуванням міжнародних стандартів екологічної та соціальної ефективності, а також специфіки щільної міської забудови південних регіонів Казахстану. На основі архітектурно-планувального аналізу, містобудівної експертизи, оцінювання нормативної застосовності, а також контент-аналізу і SWOT-аналізу в статті було здійснено комплексне оцінювання потенціалу модульного домобудівництва та інтеграції екоагроархітектурних рішень у житлове середовище південних регіонів Казахстану. Було сформовано інтегративну модель точкової трансформації застарілих мікрорайонів з використанням модульного будівництва, реалізація якої можлива без відселення мешканців і з мінімальними часовими, фінансовими та соціальними витратами. Структура моделі включає надбудовні блоки, що зводяться на міцних будівлях для розширення житлового фонду; вставні модульні секції, що розміщуються в міжкорпусних просторах для ущільнення та функціонального урізноманітнення забудови; а також громадські ядра, адаптовані до локальних потреб. Рішення базуються на результатах обстеження районів Алмати і враховують кліматичні, демографічні та нормативні особливості регіону. У дослідженні особливу увагу було приділено інтеграції елементів екоагроархітектури – тепличних модулів, агроплатформ, вертикального озеленення і дворикових компостних станцій – у структуру житлової забудови. Проведені розрахунки та аналіз показали, що застосування цих рішень дає змогу знизити теплове навантаження на будівлі до 25 %, збільшити коефіцієнт озеленення території до 25 %, а також скоротити умовний вуглецевий слід на 18 % у розрахунку на один квартал. Крім того, такі елементи сприяють розвитку мікроспільнот, що самозабезпечуються, активізуючи локальне міське землеробство і залучаючи мешканців до формування середовища. Це зміцнює соціальну згуртованість і розширює функціональне використання внутрішньоквартальних просторів. Представлена модель відповідає нормативам Республіки Казахстан і міжнародним орієнтирам сталого розвитку, переосмислюючи прибудинковий простір як багаторівневу екосистему з рекреаційними, громадськими та аграрними функціями
dc.description.abstractThe study aimed to develop an architectural model of point modular reconstruction focused on sustainable renovation of residential neighbourhoods, incorporating international standards of environmental and social efficiency, as well as the specifics of dense urban development in the southern regions of Kazakhstan. Based on architectural and planning analysis, urban planning expertise, assessment of regulatory applicability, as well as content analysis and SWOT analysis, the article provides a comprehensive assessment of the potential of modular housing and integration of eco-agro-architectural solutions into the living environment of the southern regions of Kazakhstan. An integrative model was developed for the point transformation of outdated neighbourhoods using modular construction, which can be implemented without resettling residents and with minimal time, financial and social costs. The structure of the model includes superstructure blocks erected on solid buildings to expand the housing stock; plug-in modular sections placed in inter-building spaces to compact and diversify the development; and community cores adapted to local needs. The decisions are based on the results of a survey of Almaty’s districts and accommodate the region’s climatic, demographic and regulatory characteristics. The study addressed the integration of eco-agro-architecture elements such as greenhouse modules, agro-platforms, vertical gardening and courtyard composting stations into the structure of residential development. The calculations and analysis demonstrated that the use of these solutions can reduce the heat load on buildings by up to 25%, increase the greening factor by up to 25%, and reduce the conditional carbon footprint by 18% per quarter. In addition, such elements contribute to the development of self-sufficient micro-communities, activating local urban agriculture and involving residents in shaping the environment. This strengthens social cohesion and expands the functional use of intra-quarter spaces. The presented model complies with the norms of the Republic of Kazakhstan and international guidelines for sustainable development, rethinking the local space as a multi-level ecosystem with recreational, social and agricultural functions
dc.format.extent21-35
dc.format.pages15
dc.identifier.citationUse of modular technologies for the construction of low-rise housing in Kazakhstan / Inna Ostapenko, Aray Saibulatova, Duishobek Omuraliev, Nigara Seitova, Kamila Bekturganova // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 2. — P. 21–35.
dc.identifier.citation2015Use of modular technologies for the construction of low-rise housing in Kazakhstan / Ostapenko I. та ін. // Architectural Studies, Lviv. 2025. Vol 11. No 2. P. 21–35.
dc.identifier.citationenAPAOstapenko, I., Saibulatova, A., Omuraliev, D., Seitova, N., & Bekturganova, K. (2025). Use of modular technologies for the construction of low-rise housing in Kazakhstan. Architectural Studies, 11(2), 21-35. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOOstapenko I., Saibulatova A., Omuraliev D., Seitova N., Bekturganova K. (2025) Use of modular technologies for the construction of low-rise housing in Kazakhstan. Architectural Studies (Lviv), vol. 11, no 2, pp. 21-35.
dc.identifier.doi10.56318/as/2.2025.21
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/121637
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАрхітектурні дослідження, 2 (11), 2025
dc.relation.ispartofArchitectural Studies, 2 (11), 2025
dc.relation.references[1] Akbarova, S., & Akbarli, R. (2023). Engineering estimation of air regime of building facade systems with fire cut offs. Reliability Theory and Applications, 18(Special Issue 5), 186-194. doi: 10.24412/1932-2321-2023-575-186-194.
dc.relation.references[2] Ali, A.H., Elyamany, A., Ibrahim, A.H., Kineber, A.F., & Daoud, A.O. (2024). Modelling the relationship between modular construction adoption and critical success factors for residential projects in developing countries. International Journal of Construction Management, 24(12), 1314-1325. doi: 10.1080/15623599.2023.2185940.
dc.relation.references[3] Almaty City Development Programme until 2025 and Medium-Term Prospects until 2030. (2022). Retrieved from https://almatydc.kz/uploads/reports/38/file/programma-razvitiya-almaty-2025_rus_12-09.pdf?cache=1662974782.
dc.relation.references[4] Altan, H., & Ozarisoy, B. (2022). An analysis of the development of modular building design elements to improve thermal performance of a representative high rise residential estate in the coastline city of Famagusta, Cyprus. Sustainability, 14(7), article number 4065. doi: 10.3390/su14074065.
dc.relation.references[5] Architectural, Urban Planning and Construction Catalogue-1 “List of normative legal acts and normative technical documents in the field of architecture, urban planning and construction in force on the territory of the Republic of Kazakhstan”. (2025). Retrieved from https://online.zakon.kz/Document/?doc_id=37001088&show_di=1.
dc.relation.references[6] Aulia, D., Haryanto, V.M., Waseso, A.B., Prayitno, E.A., & Sampetoding, M.M. (2023). Critical success factors for modular construction on high-rise residential buildings based risk manageability to increase project time performance. Indonesian Journal of Urban and Environmental Technology, 6(2), 203-216. doi: 10.25105/urbanenvirotech.v6i2.13826.
dc.relation.references[7] Bello, A.O., Khan, A.A., Idris, A., & Awwal, H.M. (2024). Barriers to modular construction systems implementation in developing countries’ architecture, engineering and construction industry. Engineering, Construction and Architectural Management, 31(8), 3148-3164. doi: 10.1108/ECAM-10-2022-1001.
dc.relation.references[8] Biryukova, N.A., & Pestunova, G.B. (2022). Searching for ways to solve the problems of unfinished construction in Kazakhstan. Creativity of the young-innovative development of Kazakhstan. In Zh.K. Shaimardanov (Ed.), Materials of VIІІ international scientific and technical conference of students, undergraduates and young scientists “Creativity of young – innovative development of Kazakhstan” (pp. 56-59). Oskemen: SHKTU.
dc.relation.references[9] Bureau of National Statistics Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. (2025). Construction statistics. Retrieved from https://stat.gov.kz/ru/industries/business-statistics/stat-inno-build/publications/325221/.
dc.relation.references[10] Cajamarca Dacto, K.E., Montero Riofrio, J.C., Nieto Páez, E.F., Tasan Cruz, D.M., & González Espinosa, M.J. (2025). Flexible modular dwelling for rural environments; specific case: Cebadas – Ecuador. F1000Research, 13, article number 845. doi: 10.12688/f1000research.154417.2.
dc.relation.references[11] Castillo Torres, B., Artunduaga Triviño, E.A., Marulanda Casas, J., Ortiz, A.R., & Thomson, P. (2025). Multi-experimental seismic analysis of low-rise thin reinforced concrete wall building with unconnected elastomeric isolators using real-time hybrid simulations. Advances in Structural Engineering, 28(2), 372-390. doi: 10.1177/13694332241281525.
dc.relation.references[12] Code of Rules of the Republic of Kazakhstan No. 1.02-106-2013 “Typical Design”. (2014, December). Retrieved from https://online.zakon.kz/Document/?doc_id=33728375.
dc.relation.references[13] Code of Rules of the Republic of Kazakhstan No. 3.01-101-2013 “Urban Planning Layout and Development of Urban and Rural Communities”. (2014, December). Retrieved from https://online.zakon.kz/Document/?doc_id=39214714.
dc.relation.references[14] Code of Rules of the Republic of Kazakhstan No. 3.02-101-2012 “Multicompartment Residential Buildings”. (2014, December). Retrieved from https://online.zakon.kz/Document/?doc_id=34266555.
dc.relation.references[15] European Green Deal. (n.d.). Retrieved from https://surli.cc/izmihv.
dc.relation.references[16] European Parliament. (2020). The New Leipzig Charter. Retrieved from https://www.europarl.europa.eu/RegData/etudes/ATAG/2020/659384/EPRS_ATA(2020)659384_EN.pdf.
dc.relation.references[17] Eynullayeva, M. (2023). Architecture of high-rise residential buildings in Baku: Evolution, challenges and innovative solutions. Architecture and Modern Information Technologies, 64(3), 168-181. doi: 10.24412/1998-4839-2023-3-168-181.
dc.relation.references[18] Fan, Z., Liu, J., Wang, L., Cheng, G., Liao, M., Liu, P., & Chen, Y.F. (2023). Automated layout of modular high-rise residential buildings based on genetic algorithm. Automation in Construction, 152, article number 104943. doi: 10.1016/j.autcon.2023.104943.
dc.relation.references[19] Ferdous, W., Manalo, A., Sharda, A., Bai, Y., Ngo, T.D., & Mendis, P. (2022). Construction industry transformation through modular methods. In S.H. Ghaffar, P. Mullett, E. Pei & J. Roberts (Eds.), Innovation in construction: A practical guide to transforming the construction industry (pp. 259-276). Cham: Springer. doi: 10.1007/978-3-030-95798-8_11.
dc.relation.references[20] Iacovidou, E., Purnell, P., Tsavdaridis, K.D., & Poologanathan, K. (2021). Digitally enabled modular construction for promoting modular components reuse: A UK view. Journal of Building Engineering, 42, article number 102820. doi: 10.1016/j.jobe.2021.102820.
dc.relation.references[21] Iskenderov, U., Khachaturian, O., Cruz, D.T., Oviedo, G., & Pavlovskyi, S. (2024). Improving thermal comfort and energy saving in buildings using advanced optimal configuration approaches for heating structures and panels. Architecture Image Studies, 5(2), 96-111. doi: 10.48619/ais.v5i2.1000.
dc.relation.references[22] Ismanzhanov, A.I., Murzakulov, N.A., & Azimzhanov, O.A. (2012). Investigation on heat exchange in interlayer space of multilayer greenhouses. Applied Solar Energy (English translation of Geliotekhnika), 48(2), 118-120. doi: 10.3103/S0003701X12020107.
dc.relation.references[23] ISO 21931-1:2022 “Framework for Methods of Assessment of the Environmental, Social and Economic Performance of Construction Works as a Basis for Sustainability Assessment”. (2022). Retrieved from https://www.iso.org/ru/standard/71183.html.
dc.relation.references[24] Jaisankar, K., & Gupta, S. (2025). Pre-design considerations for resilient high-rise institutional buildings: A shape, geometry and solar radiation perspective. In E. Maghsoudi Nia, M. Awang, M.F. Noor Aulady, M. Traykova & L. Yola (Eds.), Selected articles from the 8th international conference on architecture and civil engineering (pp. 142-154). Singapore: Springer. doi: 10.1007/978-981-96-5654-7_15.
dc.relation.references[25] Jayawardana, J., Sandanayake, M., Jayasinghe, J.A., Kulatunga, A.K., & Zhang, G.K. (2025). Life cycle economic and social sustainability aspects of prefabricated construction – a systematic review towards the holistic sustainability. Construction Innovation, 25(7), 98-138. doi: 10.1108/CI-11-2024-0364.
dc.relation.references[26] Jongvisuttisun, P., Chaiyapoom, P., Jiramarootapong, P., Meemuk, K., & Snguanyat, C. (2024). The second 3D-printed prefabricated prefinished volumetric construction building in Thailand: A new sustainable and efficient approach for a low-rise prefab modular building. In D. Lowke, N. Freund, D. Böhler & F. Herding (Eds.), Fourth RILEM international conference on concrete and digital fabrication (pp. 30-38). Cham: Springer. doi: 10.1007/978-3-031-70031-6_4.
dc.relation.references[27] Kalwry, H., & Atakara, C. (2025). Exploring energy-efficient design strategies in high-rise building façades for sustainable development and energy consumption. Buildings, 15(7), article number 1062. doi: 10.3390/buildings15071062.
dc.relation.references[28] Karabayev, G., & Mamedov, S. (2024). The risks of triviality in the architecture of modern residential complexes (in the example of Astana). Bulletin of L.N. Gumilyov Eurasian National University Technical Science and Technology Series, 149(4), 351-362. doi: 10.32523/2616-7263-2024-149-4-351-362.
dc.relation.references[29] Khomyakov, V.A., Shokbarov, Y.M., & Bryantsev, A.A. (2017). Experience in handling differential settlements of multi-storey buildings on soft soil. Soil Mechanics and Foundation Engineering, 54(5), 330-335. doi: 10.1007/s11204-017-9477-x.
dc.relation.references[30] Khorshid, S., Song, S., Asce, A.M., & Hudson, H. (2024). The future of housing: Modular construction and its potential for affordable living in the US: A case study. In J.S. Shane, K.M. Madson, Y. Mo, C. Poleacovschi & R.E. Sturgill Jr (Eds.), Proceedings of the construction research congress. Des Moines, Iowa: ASCE Library. doi: 10.1061/9780784485286.010.
dc.relation.references[31] Kolobanova, D., & Tretiak, Yu. (2024). The influence of urban planning context on the interior design of modular housing. Art and Design, 7(4), 122-135. doi: 10.30857/2617-0272.2024.4.10.
dc.relation.references[32] Kurmanalina, A.B., & Dzhubalieva, Z.U. (2025). Analysis of the state of development of the construction industry in Kazakhstan. Bulletin of Abai KazNPU. Series of Economic, 83(1), 22-34. doi: 10.51889/3078-8579.2025.83.1.003.
dc.relation.references[33] Kuznetsov, P. (2024). Development and implementation of a smart home automation system in the context of the Ukrainian housing sector: Challenges and prospects. Bulletin of Cherkasy State Technological University, 29(1), 62-72. doi: 10.62660/bcstu/1.2024.62.
dc.relation.references[34] Lim, Y.W., Ling, P.C., Tan, C.S., Chong, H.Y., & Thurairajah, A. (2022). Planning and coordination of modular construction. Automation in Construction, 141, article number 104455. doi: 10.1016/j.autcon.2022.104455.
dc.relation.references[35] Liu, C., Song, Y., Li, R., Ma, W., Hao, J.L., & Qiang, G. (2023). Three-level modular grid system for sustainable construction of industrialized residential buildings: A case study in China. Journal of Cleaner Production, 395, article number 136379. doi: 10.1016/j.jclepro.2023.136379.
dc.relation.references[36] Ma, H., Huang, Z., Xiong, W., Zhang, T., Zhu, J., Song, X., He, Z., Ling, Y., & Huang, G. (2025). Experimental study on seismic performance of an innovative modular steel building connection with cross-shaped plug-in connector. Journal of Building Engineering, article number 112679. doi: 10.1016/j.jobe.2025.112679.
dc.relation.references[37] Mandala, R.S., & Nayaka, R.R. (2025). A state of art review on time, cost and sustainable benefits of modern construction techniques for affordable housing. Construction Innovation, 25(2), 363-380. doi: 10.1108/CI-03-2022-0048.
dc.relation.references[38] Marrone, G., Vilà, D.M., Ribas, I.R., & Traini, R. (2025). Off-site industrialized systems for building renovation: Implementing plug-and-play facades in the construction process. In M. Alvise Bragadin, K. Kähkönen & E. Witt (Eds.), New frontiers of construction management (pp. 277-289). Cham: Springer. doi: 10.1007/978-3-031-87224-2_23.
dc.relation.references[39] Minde, P., & Kulkarni, M. (2025). Revolutionizing Indian construction sector with sustainable modular LGSF-ferron composite construction technology. Innovative Infrastructure Solutions, 10(1), article number 25. doi: 10.1007/s41062-024-01847-1.
dc.relation.references[40] Mukaev, D.T., Shalbolova, U.Zh., & Salykov, A.M. (2023). Current state of housing construction and its availability in Kazakhstan. Bulletin of “Turan” University, 1, 279-296. doi: 10.46914/1562-2959-2023-1-1-279-296.
dc.relation.references[41] Pan, W., & Zhang, Z. (2023). Benchmarking the sustainability of concrete and steel modular construction for buildings in urban development. Sustainable Cities and Society, 90, article number 104400. doi: 10.1016/j.scs.2023.104400.
dc.relation.references[42] Parracho, D.F., Nour El-Din, M., Esmaeili, I., Freitas, S.S., Rodrigues, L., Poças Martins, J., Corvacho, H., Delgado, J.M., & Guimarães, A.S. (2025). Modular construction in the digital age: A systematic review on smart and sustainable innovations. Buildings, 15(5), article number 765. doi: 10.3390/buildings15050765.
dc.relation.references[43] Shahini, E., & Shahini, E. (2025). Role of urban green spaces and tree plantations in improving ecosystem services and urban resilience. Ukrainian Journal of Forest and Wood Science, 16(2), 136-151. doi: 10.31548/forest/2.2025.136.
dc.relation.references[44] Shahzad, W.M., Reddy, S.M., Kahandawa, R., & Rotimi, J.O. (2024). Benefits, constraints and enablers of modular offsite construction (MOSC) in New Zealand high-rise buildings. Engineering, Construction and Architectural Management, 31(10), 4042-4061. doi: 10.1108/ECAM-10-2022-1020.
dc.relation.references[45] Shvedchykova, I., Panasiuk, I., Demishonkova, S., & Statsenko, D. (2024). Features of the training of future specialists in electrical engineering in the conditions of the green transition. Technologies and Engineering, 25(2), 68-78. doi: 10.30857/2786-5371.2024.2.7.
dc.relation.references[46] Tenório, M., et al. (2024). Contemporary strategies for the structural design of multi-story modular timber buildings: A comprehensive review. Applied Sciences, 14(8), article number 3194. doi: 10.3390/app14083194.
dc.relation.references[47] Tsygulev, D., & Sabitov, R. (2020). Current state and analysis of the development of modular-block construction. Vestnik of M. Kozybayev North Kazakhstan University, 46(1), 204-210.
dc.relation.references[48] Tsz Wai, C., Wai Yi, P., Ibrahim Olanrewaju, O., Abdelmageed, S., Hussein, M., Tariq, S., & Zayed, T. (2023). A critical analysis of benefits and challenges of implementing modular integrated construction. International Journal of Construction Management, 23(4), 656-668. doi: 10.1080/15623599.2021.1907525.
dc.relation.references[49] Urdabayev, M., Kireyeva, A., Vasa, L., Digel, I., Nurgaliyeva, K., & Nurbatsin, A. (2024). Discovering smart cities’ potential in Kazakhstan: A cluster analysis. PLoS ONE, 19(3), article number e0296765. doi: 10.1371/journal.pone.0296765.
dc.relation.references[50] Zhu, A., & Pan, W. (2022). An innovative crane-lift path planning system for high-rise modular integrated construction. Construction Robotics, 6(2), 133-150. doi: 10.1007/s41693-022-00074-3.
dc.relation.referencesen[1] Akbarova, S., & Akbarli, R. (2023). Engineering estimation of air regime of building facade systems with fire cut offs. Reliability Theory and Applications, 18(Special Issue 5), 186-194. doi: 10.24412/1932-2321-2023-575-186-194.
dc.relation.referencesen[2] Ali, A.H., Elyamany, A., Ibrahim, A.H., Kineber, A.F., & Daoud, A.O. (2024). Modelling the relationship between modular construction adoption and critical success factors for residential projects in developing countries. International Journal of Construction Management, 24(12), 1314-1325. doi: 10.1080/15623599.2023.2185940.
dc.relation.referencesen[3] Almaty City Development Programme until 2025 and Medium-Term Prospects until 2030. (2022). Retrieved from https://almatydc.kz/uploads/reports/38/file/programma-razvitiya-almaty-2025_rus_12-09.pdf?cache=1662974782.
dc.relation.referencesen[4] Altan, H., & Ozarisoy, B. (2022). An analysis of the development of modular building design elements to improve thermal performance of a representative high rise residential estate in the coastline city of Famagusta, Cyprus. Sustainability, 14(7), article number 4065. doi: 10.3390/su14074065.
dc.relation.referencesen[5] Architectural, Urban Planning and Construction Catalogue-1 "List of normative legal acts and normative technical documents in the field of architecture, urban planning and construction in force on the territory of the Republic of Kazakhstan". (2025). Retrieved from https://online.zakon.kz/Document/?doc_id=37001088&show_di=1.
dc.relation.referencesen[6] Aulia, D., Haryanto, V.M., Waseso, A.B., Prayitno, E.A., & Sampetoding, M.M. (2023). Critical success factors for modular construction on high-rise residential buildings based risk manageability to increase project time performance. Indonesian Journal of Urban and Environmental Technology, 6(2), 203-216. doi: 10.25105/urbanenvirotech.v6i2.13826.
dc.relation.referencesen[7] Bello, A.O., Khan, A.A., Idris, A., & Awwal, H.M. (2024). Barriers to modular construction systems implementation in developing countries’ architecture, engineering and construction industry. Engineering, Construction and Architectural Management, 31(8), 3148-3164. doi: 10.1108/ECAM-10-2022-1001.
dc.relation.referencesen[8] Biryukova, N.A., & Pestunova, G.B. (2022). Searching for ways to solve the problems of unfinished construction in Kazakhstan. Creativity of the young-innovative development of Kazakhstan. In Zh.K. Shaimardanov (Ed.), Materials of VIII international scientific and technical conference of students, undergraduates and young scientists "Creativity of young – innovative development of Kazakhstan" (pp. 56-59). Oskemen: SHKTU.
dc.relation.referencesen[9] Bureau of National Statistics Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. (2025). Construction statistics. Retrieved from https://stat.gov.kz/ru/industries/business-statistics/stat-inno-build/publications/325221/.
dc.relation.referencesen[10] Cajamarca Dacto, K.E., Montero Riofrio, J.C., Nieto Páez, E.F., Tasan Cruz, D.M., & González Espinosa, M.J. (2025). Flexible modular dwelling for rural environments; specific case: Cebadas – Ecuador. F1000Research, 13, article number 845. doi: 10.12688/f1000research.154417.2.
dc.relation.referencesen[11] Castillo Torres, B., Artunduaga Triviño, E.A., Marulanda Casas, J., Ortiz, A.R., & Thomson, P. (2025). Multi-experimental seismic analysis of low-rise thin reinforced concrete wall building with unconnected elastomeric isolators using real-time hybrid simulations. Advances in Structural Engineering, 28(2), 372-390. doi: 10.1177/13694332241281525.
dc.relation.referencesen[12] Code of Rules of the Republic of Kazakhstan No. 1.02-106-2013 "Typical Design". (2014, December). Retrieved from https://online.zakon.kz/Document/?doc_id=33728375.
dc.relation.referencesen[13] Code of Rules of the Republic of Kazakhstan No. 3.01-101-2013 "Urban Planning Layout and Development of Urban and Rural Communities". (2014, December). Retrieved from https://online.zakon.kz/Document/?doc_id=39214714.
dc.relation.referencesen[14] Code of Rules of the Republic of Kazakhstan No. 3.02-101-2012 "Multicompartment Residential Buildings". (2014, December). Retrieved from https://online.zakon.kz/Document/?doc_id=34266555.
dc.relation.referencesen[15] European Green Deal. (n.d.). Retrieved from https://surli.cc/izmihv.
dc.relation.referencesen[16] European Parliament. (2020). The New Leipzig Charter. Retrieved from https://www.europarl.europa.eu/RegData/etudes/ATAG/2020/659384/EPRS_ATA(2020)659384_EN.pdf.
dc.relation.referencesen[17] Eynullayeva, M. (2023). Architecture of high-rise residential buildings in Baku: Evolution, challenges and innovative solutions. Architecture and Modern Information Technologies, 64(3), 168-181. doi: 10.24412/1998-4839-2023-3-168-181.
dc.relation.referencesen[18] Fan, Z., Liu, J., Wang, L., Cheng, G., Liao, M., Liu, P., & Chen, Y.F. (2023). Automated layout of modular high-rise residential buildings based on genetic algorithm. Automation in Construction, 152, article number 104943. doi: 10.1016/j.autcon.2023.104943.
dc.relation.referencesen[19] Ferdous, W., Manalo, A., Sharda, A., Bai, Y., Ngo, T.D., & Mendis, P. (2022). Construction industry transformation through modular methods. In S.H. Ghaffar, P. Mullett, E. Pei & J. Roberts (Eds.), Innovation in construction: A practical guide to transforming the construction industry (pp. 259-276). Cham: Springer. doi: 10.1007/978-3-030-95798-8_11.
dc.relation.referencesen[20] Iacovidou, E., Purnell, P., Tsavdaridis, K.D., & Poologanathan, K. (2021). Digitally enabled modular construction for promoting modular components reuse: A UK view. Journal of Building Engineering, 42, article number 102820. doi: 10.1016/j.jobe.2021.102820.
dc.relation.referencesen[21] Iskenderov, U., Khachaturian, O., Cruz, D.T., Oviedo, G., & Pavlovskyi, S. (2024). Improving thermal comfort and energy saving in buildings using advanced optimal configuration approaches for heating structures and panels. Architecture Image Studies, 5(2), 96-111. doi: 10.48619/ais.v5i2.1000.
dc.relation.referencesen[22] Ismanzhanov, A.I., Murzakulov, N.A., & Azimzhanov, O.A. (2012). Investigation on heat exchange in interlayer space of multilayer greenhouses. Applied Solar Energy (English translation of Geliotekhnika), 48(2), 118-120. doi: 10.3103/S0003701X12020107.
dc.relation.referencesen[23] ISO 21931-1:2022 "Framework for Methods of Assessment of the Environmental, Social and Economic Performance of Construction Works as a Basis for Sustainability Assessment". (2022). Retrieved from https://www.iso.org/ru/standard/71183.html.
dc.relation.referencesen[24] Jaisankar, K., & Gupta, S. (2025). Pre-design considerations for resilient high-rise institutional buildings: A shape, geometry and solar radiation perspective. In E. Maghsoudi Nia, M. Awang, M.F. Noor Aulady, M. Traykova & L. Yola (Eds.), Selected articles from the 8th international conference on architecture and civil engineering (pp. 142-154). Singapore: Springer. doi: 10.1007/978-981-96-5654-7_15.
dc.relation.referencesen[25] Jayawardana, J., Sandanayake, M., Jayasinghe, J.A., Kulatunga, A.K., & Zhang, G.K. (2025). Life cycle economic and social sustainability aspects of prefabricated construction – a systematic review towards the holistic sustainability. Construction Innovation, 25(7), 98-138. doi: 10.1108/CI-11-2024-0364.
dc.relation.referencesen[26] Jongvisuttisun, P., Chaiyapoom, P., Jiramarootapong, P., Meemuk, K., & Snguanyat, C. (2024). The second 3D-printed prefabricated prefinished volumetric construction building in Thailand: A new sustainable and efficient approach for a low-rise prefab modular building. In D. Lowke, N. Freund, D. Böhler & F. Herding (Eds.), Fourth RILEM international conference on concrete and digital fabrication (pp. 30-38). Cham: Springer. doi: 10.1007/978-3-031-70031-6_4.
dc.relation.referencesen[27] Kalwry, H., & Atakara, C. (2025). Exploring energy-efficient design strategies in high-rise building façades for sustainable development and energy consumption. Buildings, 15(7), article number 1062. doi: 10.3390/buildings15071062.
dc.relation.referencesen[28] Karabayev, G., & Mamedov, S. (2024). The risks of triviality in the architecture of modern residential complexes (in the example of Astana). Bulletin of L.N. Gumilyov Eurasian National University Technical Science and Technology Series, 149(4), 351-362. doi: 10.32523/2616-7263-2024-149-4-351-362.
dc.relation.referencesen[29] Khomyakov, V.A., Shokbarov, Y.M., & Bryantsev, A.A. (2017). Experience in handling differential settlements of multi-storey buildings on soft soil. Soil Mechanics and Foundation Engineering, 54(5), 330-335. doi: 10.1007/s11204-017-9477-x.
dc.relation.referencesen[30] Khorshid, S., Song, S., Asce, A.M., & Hudson, H. (2024). The future of housing: Modular construction and its potential for affordable living in the US: A case study. In J.S. Shane, K.M. Madson, Y. Mo, C. Poleacovschi & R.E. Sturgill Jr (Eds.), Proceedings of the construction research congress. Des Moines, Iowa: ASCE Library. doi: 10.1061/9780784485286.010.
dc.relation.referencesen[31] Kolobanova, D., & Tretiak, Yu. (2024). The influence of urban planning context on the interior design of modular housing. Art and Design, 7(4), 122-135. doi: 10.30857/2617-0272.2024.4.10.
dc.relation.referencesen[32] Kurmanalina, A.B., & Dzhubalieva, Z.U. (2025). Analysis of the state of development of the construction industry in Kazakhstan. Bulletin of Abai KazNPU. Series of Economic, 83(1), 22-34. doi: 10.51889/3078-8579.2025.83.1.003.
dc.relation.referencesen[33] Kuznetsov, P. (2024). Development and implementation of a smart home automation system in the context of the Ukrainian housing sector: Challenges and prospects. Bulletin of Cherkasy State Technological University, 29(1), 62-72. doi: 10.62660/bcstu/1.2024.62.
dc.relation.referencesen[34] Lim, Y.W., Ling, P.C., Tan, C.S., Chong, H.Y., & Thurairajah, A. (2022). Planning and coordination of modular construction. Automation in Construction, 141, article number 104455. doi: 10.1016/j.autcon.2022.104455.
dc.relation.referencesen[35] Liu, C., Song, Y., Li, R., Ma, W., Hao, J.L., & Qiang, G. (2023). Three-level modular grid system for sustainable construction of industrialized residential buildings: A case study in China. Journal of Cleaner Production, 395, article number 136379. doi: 10.1016/j.jclepro.2023.136379.
dc.relation.referencesen[36] Ma, H., Huang, Z., Xiong, W., Zhang, T., Zhu, J., Song, X., He, Z., Ling, Y., & Huang, G. (2025). Experimental study on seismic performance of an innovative modular steel building connection with cross-shaped plug-in connector. Journal of Building Engineering, article number 112679. doi: 10.1016/j.jobe.2025.112679.
dc.relation.referencesen[37] Mandala, R.S., & Nayaka, R.R. (2025). A state of art review on time, cost and sustainable benefits of modern construction techniques for affordable housing. Construction Innovation, 25(2), 363-380. doi: 10.1108/CI-03-2022-0048.
dc.relation.referencesen[38] Marrone, G., Vilà, D.M., Ribas, I.R., & Traini, R. (2025). Off-site industrialized systems for building renovation: Implementing plug-and-play facades in the construction process. In M. Alvise Bragadin, K. Kähkönen & E. Witt (Eds.), New frontiers of construction management (pp. 277-289). Cham: Springer. doi: 10.1007/978-3-031-87224-2_23.
dc.relation.referencesen[39] Minde, P., & Kulkarni, M. (2025). Revolutionizing Indian construction sector with sustainable modular LGSF-ferron composite construction technology. Innovative Infrastructure Solutions, 10(1), article number 25. doi: 10.1007/s41062-024-01847-1.
dc.relation.referencesen[40] Mukaev, D.T., Shalbolova, U.Zh., & Salykov, A.M. (2023). Current state of housing construction and its availability in Kazakhstan. Bulletin of "Turan" University, 1, 279-296. doi: 10.46914/1562-2959-2023-1-1-279-296.
dc.relation.referencesen[41] Pan, W., & Zhang, Z. (2023). Benchmarking the sustainability of concrete and steel modular construction for buildings in urban development. Sustainable Cities and Society, 90, article number 104400. doi: 10.1016/j.scs.2023.104400.
dc.relation.referencesen[42] Parracho, D.F., Nour El-Din, M., Esmaeili, I., Freitas, S.S., Rodrigues, L., Poças Martins, J., Corvacho, H., Delgado, J.M., & Guimarães, A.S. (2025). Modular construction in the digital age: A systematic review on smart and sustainable innovations. Buildings, 15(5), article number 765. doi: 10.3390/buildings15050765.
dc.relation.referencesen[43] Shahini, E., & Shahini, E. (2025). Role of urban green spaces and tree plantations in improving ecosystem services and urban resilience. Ukrainian Journal of Forest and Wood Science, 16(2), 136-151. doi: 10.31548/forest/2.2025.136.
dc.relation.referencesen[44] Shahzad, W.M., Reddy, S.M., Kahandawa, R., & Rotimi, J.O. (2024). Benefits, constraints and enablers of modular offsite construction (MOSC) in New Zealand high-rise buildings. Engineering, Construction and Architectural Management, 31(10), 4042-4061. doi: 10.1108/ECAM-10-2022-1020.
dc.relation.referencesen[45] Shvedchykova, I., Panasiuk, I., Demishonkova, S., & Statsenko, D. (2024). Features of the training of future specialists in electrical engineering in the conditions of the green transition. Technologies and Engineering, 25(2), 68-78. doi: 10.30857/2786-5371.2024.2.7.
dc.relation.referencesen[46] Tenório, M., et al. (2024). Contemporary strategies for the structural design of multi-story modular timber buildings: A comprehensive review. Applied Sciences, 14(8), article number 3194. doi: 10.3390/app14083194.
dc.relation.referencesen[47] Tsygulev, D., & Sabitov, R. (2020). Current state and analysis of the development of modular-block construction. Vestnik of M. Kozybayev North Kazakhstan University, 46(1), 204-210.
dc.relation.referencesen[48] Tsz Wai, C., Wai Yi, P., Ibrahim Olanrewaju, O., Abdelmageed, S., Hussein, M., Tariq, S., & Zayed, T. (2023). A critical analysis of benefits and challenges of implementing modular integrated construction. International Journal of Construction Management, 23(4), 656-668. doi: 10.1080/15623599.2021.1907525.
dc.relation.referencesen[49] Urdabayev, M., Kireyeva, A., Vasa, L., Digel, I., Nurgaliyeva, K., & Nurbatsin, A. (2024). Discovering smart cities’ potential in Kazakhstan: A cluster analysis. PLoS ONE, 19(3), article number e0296765. doi: 10.1371/journal.pone.0296765.
dc.relation.referencesen[50] Zhu, A., & Pan, W. (2022). An innovative crane-lift path planning system for high-rise modular integrated construction. Construction Robotics, 6(2), 133-150. doi: 10.1007/s41693-022-00074-3.
dc.relation.urihttps://almatydc.kz/uploads/reports/38/file/programma-razvitiya-almaty-2025_rus_12-09.pdf?cache=1662974782
dc.relation.urihttps://online.zakon.kz/Document/?doc_id=37001088&show_di=1
dc.relation.urihttps://stat.gov.kz/ru/industries/business-statistics/stat-inno-build/publications/325221/
dc.relation.urihttps://online.zakon.kz/Document/?doc_id=33728375
dc.relation.urihttps://online.zakon.kz/Document/?doc_id=39214714
dc.relation.urihttps://online.zakon.kz/Document/?doc_id=34266555
dc.relation.urihttps://surli.cc/izmihv
dc.relation.urihttps://www.europarl.europa.eu/RegData/etudes/ATAG/2020/659384/EPRS_ATA(2020)659384_EN.pdf
dc.relation.urihttps://www.iso.org/ru/standard/71183.html
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectкаркасно-модульне будівництво
dc.subjectекоагроархітектура
dc.subjectенергоефективність
dc.subjectсталий розвиток
dc.subjectточкова реконструкція
dc.subjectframe-modular construction
dc.subjecteco-agro-architecture
dc.subjectenergy efficiency
dc.subjectsustainable development
dc.subjectspot reconstruction
dc.subject.udc69.03
dc.subject.udc728.1
dc.titleUse of modular technologies for the construction of low-rise housing in Kazakhstan
dc.title.alternativeВикористання модульних технологій для будівництва малоповерхового житла в Казахстані
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v11n2_Ostapenko_I-Use_of_modular_technologies_21-35.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.96 KB
Format:
Plain Text
Description: