Gas ground and geophysical studies of the rozvadiv zone of mud volcanizm activation (Lviv region, Ukraine)

dc.citation.epage97
dc.citation.issue1(36)
dc.citation.journalTitleГеодинаміка
dc.citation.spage85
dc.contributor.affiliationІвано-Франківський національний технічний університет нафти і газу
dc.contributor.affiliationIvano-Frankivsk National Technical University of Oil and Gas
dc.contributor.authorКузьменко, Едуард
dc.contributor.authorЧудик, Ігор
dc.contributor.authorБагрій, Сергій
dc.contributor.authorЯрема, Андрій
dc.contributor.authorНеспляк, Юрій
dc.contributor.authorЧепурний, Ігор
dc.contributor.authorАртим, Володимир
dc.contributor.authorKuzmenko, Eduard
dc.contributor.authorChudyk, Ihor
dc.contributor.authorBagriy, Sergiy
dc.contributor.authorYarema, Andrii
dc.contributor.authorNespliak, Yurii
dc.contributor.authorChepurnyi, Ihor
dc.contributor.authorArtym, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T09:34:51Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractМета досліджень – обґрунтування наукових засад виникнення грязьового вулкану в межах конкретної ділянки Передкарпатського прогину в зв’язку з наявністю прирозломного малоглибинного газового покладу на Розвадівській площі та відображення його елементів у полях газоґрунтового знімання та електрометрії. Актуальність роботи визначається необхідністю вирішення екологічної проблеми забруднення навколишнього середовища вуглеводневими газами, а також встановлення та прогнозування ступеня викидів газогрязевої суміші. При цьому встановили наявність (чи відсутність) зв’язку впливу, порушеного за рахунок розбурювання Рудниківської газоперспективної площі та зазначеного Розвадівського покладу, зіставляючи результати газоґрунтового та геофізичного знімань у великому регіоні, що охоплює зазначені площі. Методика досліджень полягає у: 1) застосуванні досліджень із різним фізичним обґрунтуванням (газоґрунтове знімання та електрометрія); 2) порівнянні результатів знімань, виконаних на одній площі та по однаковій сітці спостережень; 3) виявленні аномалій у межах дослідженої території та їх тлумаченні з погляду розвитку грязьового вулканізму. Результати досліджень. Інформаційну основу гозометрії становлять безпосередні вимірювання вільного газу в регулярній системі спостережень в атмосфері ґрунтового середовища, їх статистичні характеристики та розрахункові показники загазованості. Тому карти розподілу загазованості інформативні. Дослідження, виконані методом природного імпульсного електромагнітного поля Землі, дали змогу диференціювати площу за ступенем інтенсивності електромагнітного випромінювання, зважаючи на різну глибинність джерел і, отже, виявити ділянки напружено-деформованого стану гірських порід та кваліфікувати їх згідно з причинами. Наукова новизна полягає у: 1) виявленні відсутності зв’язків між порушеним за рахунок буріння масивом та природним катаклізмом; 2) встановленні причин природного катаклізму, його обґрунтованого механізму та класифікації події як грязьового вулкану. Практична значущість. Інтерпретація одержаних результатів дає можливість визначити причини надзвичайної геологічної події на Розвадівській площі Львівської області, класифікувати подію та її наслідки як прояв елементів грязьового вулканізму, встановити відсутність зв’язку зазначеної події з техногенним порушенням (бурінням) геологічного середовища на сусідніх ділянках.
dc.description.abstractThe purpose of the research was to substantiate the scientific basis behind the formation of a mud volcano within a specific section of the Precarpathian depression. It also aims to examine the existence of a near-fault shallow gas deposit in the Rozvadiv area and its possible impact on gas-soil surveying and electrometry fields. The relevance of the work is determined by the need to solve the ecological problem of environmental pollution with hydrocarbon gases, as well as to establish and forecast the degree of emissions of the gas-mud mixture. At the same time, the problem of the presence (or absence) of the relationship between the influence of the Rudnyk gas-prospecting area, which is impacted by drilling, and the Rozvadiv deposit mentioned above is solved by comparing the results of gas-soil and geophysical surveys on a significant territory covering the specified areas. The research methodology consists of the following: 1) application of research with different physical justifications (gas-soil survey and electrometry); 2) comparison of the survey results from the same area and the same grid of observations; 3) detection of anomalies within the studied territory and their interpretation from the point of view of the development of mud volcanism. Research results. The information basis of gasometry involves direct measurements of free gas in a observation regular system in the soil environment atmosphere, their statistical characteristics, and calculated indicators of gas contamination. Therefore, the gas distribution maps are informative. The applied research using the method of Earth’s natural pulsed electromagnetic field made it possible to differentiate the area according to the intensity degree of electromagnetic radiation, taking into account the different depths of the sources, and, thus, identify areas of stressed-strain state of rocks and qualify them by the causes. The scientific novelty lies in the following: 1) indicating the absence of connections between the massif impacted by drilling and a natural disaster; 2) specifying the causes of the natural disaster and its substantiated mechanism and classifying the event as a mud volcano. Practical significance. Interpretation of the obtained results makes it possible to determine the causes of the extraordinary geological event in the Rozvadiv area of the Lviv region, classify the event and its consequences as a manifestation of elements of mud volcanism, and establish the absence of a relationship between the specified event and man-made impact (drilling) of the geological environment in the neighbouring areas.
dc.format.extent85-97
dc.format.pages13
dc.identifier.citationGas ground and geophysical studies of the rozvadiv zone of mud volcanizm activation (Lviv region, Ukraine) / Eduard Kuzmenko, Ihor Chudyk, Sergiy Bagriy, Andrii Yarema, Yurii Nespliak, Ihor Chepurnyi, Volodymyr Artym // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 1(36). — P. 85–97.
dc.identifier.citationenGas ground and geophysical studies of the rozvadiv zone of mud volcanizm activation (Lviv region, Ukraine) / Eduard Kuzmenko, Ihor Chudyk, Sergiy Bagriy, Andrii Yarema, Yurii Nespliak, Ihor Chepurnyi, Volodymyr Artym // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 1(36). — P. 85–97.
dc.identifier.doidoi.org/10.23939/jgd2024.01.085
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113865
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(36), 2024
dc.relation.ispartofGeodynamics, 1(36), 2024
dc.relation.referencesArtym, I. V., Kurovets, S. S., Zderka,, T. V., Yarema A. V., & Kurovets, I. M. (2019) Development of the rocks fracturing model on the Carpathian region example. Conference Proceedings, 18th International Conference on Geoinformatics – Theoretical and Applied Aspects, https://doi.org/10.3997/2214-4609.201902064 Retrieved from www.scopus.com
dc.relation.referencesBagriy, I. D., & Kuzmenko, S. O., & Uliana, Naumenko, Uliana, & Zubal, S. D.. (2019). New technology for exploration of hydrogen accumulations and forecast of geodynamic phenomena. 1–4. 10.3997/2214-4609.201903188
dc.relation.referencesBagriy, S., Kuzmenko, E., & Motkalyk, A. (2017). Prediction of karst cave-in processes at the Solotvyno rock salt deposit applying geophysical methods. The 16th International Conference Geoinformatics – Theoretical and Applied Aspects, https://doi.org/10.3997/2214-4609.201701892 Retrieved from www.scopus.com
dc.relation.referencesBaillie, J., Risk, D., Atherton, E., O’Connell, E., Fougère, C., Bourlon, E., & MacKay, K. (2019). Methane emissions from conventional and unconventional oil and gas production sites in southeastern Saskatchewan, Canada. Environmental Research Communications, 1(1), 011003. https://doi.org/10.1088/2515-7620/ab01f2
dc.relation.referencesBusetti, M., Geletti, R., Civile, D., Sauli, C., Brancatelli, G., Forlin, E., ... & Cova, A. (2024). Geophysical evidence of a large occurrence of mud volcanoes associated with gas plumbing system in the Ross Sea (Antarctica). Geoscience Frontiers, 15(1), 101727., https://doi.org/10.1016/j.gsf.2023.101727
dc.relation.referencesDeshchytsia, S. A., Pidvirny, O. I. Romaniuk, O. I., Sadovy, Yu. V., Kolyadenko, V. V., Savkiv, L. G., & Myshchyshyn, Yu. S. Assessment of the state of ecologically problematic objects of Kalush mining and industrial district by electromagnetic methods and their monitoring. Science and innovations, 5, 47–59.
dc.relation.referencesDovbnich, M. M., Stovas, G. M., & Kanin, V. O. (2012). Observations of ENPEMF and the vertical gradient of the Earth's magnetic field on the area of O. F. Zasiadko mine. Scientific works of UkrNDMI of NAS of Ukraine, 10, 342–348. (in Ukrainian).
dc.relation.referencesDyakiv, V., Pavlyuk, V., & Yaremovich, M. (2023) Geological manifestations, probable natural and technological factors of activation of mud volcanism on the night of April 26 to 27, 2023 in the v. Rozvadiv, Striysky district, Lviv region. Eight scientific-practical conference “Subsoil use in Ukraine. Prospects for investment”, 473–480. (in Ukrainian).
dc.relation.referencesDzioba, U. O. (2020). Effectiveness of using the ENPEMF method for monitoring the state of the geological environment when solving applied engineering problems. Bulletin of Odessa National University,25, 2(37), 238–253. (in Ukrainian). https://doi.org/10.18524/2303-9914.2020.2(37).216574
dc.relation.referencesGeorozvidka LLC (2019) Detailed project of exploratory drilling on the Rudnikovskaya square (Lviv region, Ukraine). Lviv.
dc.relation.referencesGryga, M. Y., Bagriy, I. D., Starodubets, K. M., & Semenyuk, V. G. (2016, May). Geochemical data analysis and prediction of hydrocarbon accumulation in the territory of Rotmistrovka impact structure. In 15th EAGE International Conference on Geoinformatics-Theoretical and Applied Aspects (Vol. 2016, No. 1, pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201600512.
dc.relation.referencesFedoriv V., Bagriy S., Piatkovska I., Femyak Y., Trubenko A. (2019) Petrophysic model for determin clayness of rocks by the results of complex geophysical researches. 18th International Conference on Geoinformatics – Theoretical and Applied Aspects, https://doi.org/10.3997/2214-4609.201902116 Retrieved from www.scopus.com
dc.relation.referencesFtemov, Y. M., Fedoriv, V. V. & Maniuk, V. M. (2021) Petrophysical models for estimating filtration-capacity parameters of complex reservoir rocks at Kachalivske oil and gas condensate field. The XXth International Conference “Geoinformatics: Theoretical and Applied Aspects”, https://doi.org/10.3997/2214-4609.20215521017 Retrieved from www.scopus.com
dc.relation.referencesKopf, A. J. (2002). Significance of mud volcanism. Reviews of Geophysics, 40. https://doi.org/10.1029/2000RG000093
dc.relation.referencesKuzmenko, E. D., Bahrii, S. M., & Dzioba, U. O. (2018). The depth range of the Earth’s natural pulse electromagneticfield (or ENDEMF). Journal of Geology, Geography an Geology,27(3),466-477. https://doi.org/10.15421/111870.
dc.relation.referencesMazzini, A. (2009). Mud volcanism: Processes and implications. Marine and Petroleum Geology, 26, 1677–1680. https://doi.org/10.1016/j.marpetgeo.2009.05.003.
dc.relation.referencesOil and Gas Science and Technology Park LLC (2023) Report on the research work “Research using the methods of the pulsed electromagnetic field of the Earth and gas-soil surveying to control the stressed state of rocks and the degree of gasification of the natural environment in the territory of the village of Rozvadiv with the aim of providing recommendations on the degassing of the massif rocks and reducing the risk of leakage of gases and liquids to the surface” Ivano-Frankivsk.
dc.relation.referencesPanahi, B. M. (2005). Mud Volcanism, Geodynamics and Seismicity of Azerbaijan and the Caspian Sea Region. In: Martinelli, G., Panahi, B. (eds) Mud Volcanoes, Geodynamics and Seismicity. NATO Science Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3204-8_7
dc.relation.referencesRiznychuk, A. I., Famyak, Ya. M., Fedoriv, V. V., Charkovskyi, V. M., Deineha, R. O. & Stetsiuk, R. B. (2021) Technical and technological solutions to prevent destruction of the walls of directional wells in the mining and geological conditions of Ukrainian fields. Conference Proceedings, 15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, https://doi.org/10.3997/2214-4609.20215K2041 Retrieved from www.scopus.com
dc.relation.referencesSechman, H., Mościcki, W. J., & Dzieniewicz, M. (2013). Pollution of near-surface zone in the vicinity of gas wells. Geoderma, 197, 193–204. https://doi.org/10.1016/j.geoderma.2013.01.012
dc.relation.referencesSechman, H. (2022). Detailed analysis of gaseous components in soil gases around petroleum wells-An effective tool for evaluation of their integrity. Applied Geochemistry, 142, 105346. https://doi.org/10.1016/j.apgeochem.2022.105346
dc.relation.referencesSchütze, C., Vienken, T., Werban, U., Dietrich, P., Finizola, A., & Leven, C. (2012). Joint application of geophysical methods and Direct Push-soil gas surveys for the improved delineation of buried fault zones. Journal of Applied Geophysics, 82, 129–136. https://doi.org/10.1016/j.jappgeo.2012.03.002
dc.relation.referencesToutain, J. P., & Baubron, J. C. (1999). Gas geochemistry and seismotectonics: a review. Tectonophysics, 304(1-2), 1–27. https://doi.org/10.1016/S0040-1951(98)00295-9.
dc.relation.referencesYarema A. V., Zderka T. V., Kurovets S. S., Khovanets N. P. (2020) Gas-geochemical predicting and system assessment of oil and gas prospects for the purpose of increasing exploration efficiency. Geoinformatics: Theoretical and Applied Aspects 2020, https://doi.org/10.3997/2214-4609.2020geo148 Retrieved from www.scopus.com
dc.relation.referencesVyzhva, Serhii, & Solovyov, I., & Mykhalevych, I., & Kruhlyk, Viktoriia, & Lisny, G. (2021). Use of direct hydrocarbon indicators for forecasting hydrocarbons deposits. 1–5. https://doi.org/10.3997/2214-4609.20215K2109
dc.relation.referencesZarroca, M., Linares, R., Bach, J., Roqué, C., Moreno, V., Font, L., & Baixeras, C. (2012). Integrated geophysics and soil gas profiles as a tool to characterize active faults: the Amer fault example (Pyrenees, NE Spain). Environmental Earth Sciences, 67, 889–910. https://doi.org/10.1007/s12665-012-1537-y
dc.relation.referencesenArtym, I. V., Kurovets, S. S., Zderka,, T. V., Yarema A. V., & Kurovets, I. M. (2019) Development of the rocks fracturing model on the Carpathian region example. Conference Proceedings, 18th International Conference on Geoinformatics – Theoretical and Applied Aspects, https://doi.org/10.3997/2214-4609.201902064 Retrieved from www.scopus.com
dc.relation.referencesenBagriy, I. D., & Kuzmenko, S. O., & Uliana, Naumenko, Uliana, & Zubal, S. D.. (2019). New technology for exploration of hydrogen accumulations and forecast of geodynamic phenomena. 1–4. 10.3997/2214-4609.201903188
dc.relation.referencesenBagriy, S., Kuzmenko, E., & Motkalyk, A. (2017). Prediction of karst cave-in processes at the Solotvyno rock salt deposit applying geophysical methods. The 16th International Conference Geoinformatics – Theoretical and Applied Aspects, https://doi.org/10.3997/2214-4609.201701892 Retrieved from www.scopus.com
dc.relation.referencesenBaillie, J., Risk, D., Atherton, E., O’Connell, E., Fougère, C., Bourlon, E., & MacKay, K. (2019). Methane emissions from conventional and unconventional oil and gas production sites in southeastern Saskatchewan, Canada. Environmental Research Communications, 1(1), 011003. https://doi.org/10.1088/2515-7620/ab01f2
dc.relation.referencesenBusetti, M., Geletti, R., Civile, D., Sauli, C., Brancatelli, G., Forlin, E., ... & Cova, A. (2024). Geophysical evidence of a large occurrence of mud volcanoes associated with gas plumbing system in the Ross Sea (Antarctica). Geoscience Frontiers, 15(1), 101727., https://doi.org/10.1016/j.gsf.2023.101727
dc.relation.referencesenDeshchytsia, S. A., Pidvirny, O. I. Romaniuk, O. I., Sadovy, Yu. V., Kolyadenko, V. V., Savkiv, L. G., & Myshchyshyn, Yu. S. Assessment of the state of ecologically problematic objects of Kalush mining and industrial district by electromagnetic methods and their monitoring. Science and innovations, 5, 47–59.
dc.relation.referencesenDovbnich, M. M., Stovas, G. M., & Kanin, V. O. (2012). Observations of ENPEMF and the vertical gradient of the Earth's magnetic field on the area of O. F. Zasiadko mine. Scientific works of UkrNDMI of NAS of Ukraine, 10, 342–348. (in Ukrainian).
dc.relation.referencesenDyakiv, V., Pavlyuk, V., & Yaremovich, M. (2023) Geological manifestations, probable natural and technological factors of activation of mud volcanism on the night of April 26 to 27, 2023 in the v. Rozvadiv, Striysky district, Lviv region. Eight scientific-practical conference "Subsoil use in Ukraine. Prospects for investment", 473–480. (in Ukrainian).
dc.relation.referencesenDzioba, U. O. (2020). Effectiveness of using the ENPEMF method for monitoring the state of the geological environment when solving applied engineering problems. Bulletin of Odessa National University,25, 2(37), 238–253. (in Ukrainian). https://doi.org/10.18524/2303-9914.2020.2(37).216574
dc.relation.referencesenGeorozvidka LLC (2019) Detailed project of exploratory drilling on the Rudnikovskaya square (Lviv region, Ukraine). Lviv.
dc.relation.referencesenGryga, M. Y., Bagriy, I. D., Starodubets, K. M., & Semenyuk, V. G. (2016, May). Geochemical data analysis and prediction of hydrocarbon accumulation in the territory of Rotmistrovka impact structure. In 15th EAGE International Conference on Geoinformatics-Theoretical and Applied Aspects (Vol. 2016, No. 1, pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201600512.
dc.relation.referencesenFedoriv V., Bagriy S., Piatkovska I., Femyak Y., Trubenko A. (2019) Petrophysic model for determin clayness of rocks by the results of complex geophysical researches. 18th International Conference on Geoinformatics – Theoretical and Applied Aspects, https://doi.org/10.3997/2214-4609.201902116 Retrieved from www.scopus.com
dc.relation.referencesenFtemov, Y. M., Fedoriv, V. V. & Maniuk, V. M. (2021) Petrophysical models for estimating filtration-capacity parameters of complex reservoir rocks at Kachalivske oil and gas condensate field. The XXth International Conference "Geoinformatics: Theoretical and Applied Aspects", https://doi.org/10.3997/2214-4609.20215521017 Retrieved from www.scopus.com
dc.relation.referencesenKopf, A. J. (2002). Significance of mud volcanism. Reviews of Geophysics, 40. https://doi.org/10.1029/2000RG000093
dc.relation.referencesenKuzmenko, E. D., Bahrii, S. M., & Dzioba, U. O. (2018). The depth range of the Earth’s natural pulse electromagneticfield (or ENDEMF). Journal of Geology, Geography an Geology,27(3),466-477. https://doi.org/10.15421/111870.
dc.relation.referencesenMazzini, A. (2009). Mud volcanism: Processes and implications. Marine and Petroleum Geology, 26, 1677–1680. https://doi.org/10.1016/j.marpetgeo.2009.05.003.
dc.relation.referencesenOil and Gas Science and Technology Park LLC (2023) Report on the research work "Research using the methods of the pulsed electromagnetic field of the Earth and gas-soil surveying to control the stressed state of rocks and the degree of gasification of the natural environment in the territory of the village of Rozvadiv with the aim of providing recommendations on the degassing of the massif rocks and reducing the risk of leakage of gases and liquids to the surface" Ivano-Frankivsk.
dc.relation.referencesenPanahi, B. M. (2005). Mud Volcanism, Geodynamics and Seismicity of Azerbaijan and the Caspian Sea Region. In: Martinelli, G., Panahi, B. (eds) Mud Volcanoes, Geodynamics and Seismicity. NATO Science Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3204-8_7
dc.relation.referencesenRiznychuk, A. I., Famyak, Ya. M., Fedoriv, V. V., Charkovskyi, V. M., Deineha, R. O. & Stetsiuk, R. B. (2021) Technical and technological solutions to prevent destruction of the walls of directional wells in the mining and geological conditions of Ukrainian fields. Conference Proceedings, 15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, https://doi.org/10.3997/2214-4609.20215K2041 Retrieved from www.scopus.com
dc.relation.referencesenSechman, H., Mościcki, W. J., & Dzieniewicz, M. (2013). Pollution of near-surface zone in the vicinity of gas wells. Geoderma, 197, 193–204. https://doi.org/10.1016/j.geoderma.2013.01.012
dc.relation.referencesenSechman, H. (2022). Detailed analysis of gaseous components in soil gases around petroleum wells-An effective tool for evaluation of their integrity. Applied Geochemistry, 142, 105346. https://doi.org/10.1016/j.apgeochem.2022.105346
dc.relation.referencesenSchütze, C., Vienken, T., Werban, U., Dietrich, P., Finizola, A., & Leven, C. (2012). Joint application of geophysical methods and Direct Push-soil gas surveys for the improved delineation of buried fault zones. Journal of Applied Geophysics, 82, 129–136. https://doi.org/10.1016/j.jappgeo.2012.03.002
dc.relation.referencesenToutain, J. P., & Baubron, J. C. (1999). Gas geochemistry and seismotectonics: a review. Tectonophysics, 304(1-2), 1–27. https://doi.org/10.1016/S0040-1951(98)00295-9.
dc.relation.referencesenYarema A. V., Zderka T. V., Kurovets S. S., Khovanets N. P. (2020) Gas-geochemical predicting and system assessment of oil and gas prospects for the purpose of increasing exploration efficiency. Geoinformatics: Theoretical and Applied Aspects 2020, https://doi.org/10.3997/2214-4609.2020geo148 Retrieved from www.scopus.com
dc.relation.referencesenVyzhva, Serhii, & Solovyov, I., & Mykhalevych, I., & Kruhlyk, Viktoriia, & Lisny, G. (2021). Use of direct hydrocarbon indicators for forecasting hydrocarbons deposits. 1–5. https://doi.org/10.3997/2214-4609.20215K2109
dc.relation.referencesenZarroca, M., Linares, R., Bach, J., Roqué, C., Moreno, V., Font, L., & Baixeras, C. (2012). Integrated geophysics and soil gas profiles as a tool to characterize active faults: the Amer fault example (Pyrenees, NE Spain). Environmental Earth Sciences, 67, 889–910. https://doi.org/10.1007/s12665-012-1537-y
dc.relation.urihttps://doi.org/10.3997/2214-4609.201902064
dc.relation.urihttps://doi.org/10.3997/2214-4609.201701892
dc.relation.urihttps://doi.org/10.1088/2515-7620/ab01f2
dc.relation.urihttps://doi.org/10.1016/j.gsf.2023.101727
dc.relation.urihttps://doi.org/10.18524/2303-9914.2020.2(37).216574
dc.relation.urihttps://doi.org/10.3997/2214-4609.201600512
dc.relation.urihttps://doi.org/10.3997/2214-4609.201902116
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215521017
dc.relation.urihttps://doi.org/10.1029/2000RG000093
dc.relation.urihttps://doi.org/10.15421/111870
dc.relation.urihttps://doi.org/10.1016/j.marpetgeo.2009.05.003
dc.relation.urihttps://doi.org/10.1007/1-4020-3204-8_7
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215K2041
dc.relation.urihttps://doi.org/10.1016/j.geoderma.2013.01.012
dc.relation.urihttps://doi.org/10.1016/j.apgeochem.2022.105346
dc.relation.urihttps://doi.org/10.1016/j.jappgeo.2012.03.002
dc.relation.urihttps://doi.org/10.1016/S0040-1951(98)00295-9
dc.relation.urihttps://doi.org/10.3997/2214-4609.2020geo148
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215K2109
dc.relation.urihttps://doi.org/10.1007/s12665-012-1537-y
dc.rights.holder© Національний університет “Львівська політехніка”, 2024; © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2024
dc.rights.holder© E. Kuzmenko, I. Chudyk, S. Bagriy, A. Yarema, Y. Nespliak, I. Chepurnyi, V. Artym
dc.subjectгазоґрунтова зйомка
dc.subjectінтенсивність випромінювання електромагнітного поля
dc.subjectнапружений стан
dc.subjectгірничий масив
dc.subjectдеформації
dc.subjectсвердловина
dc.subjectгрязьовий вулкан
dc.subjectmud volcano
dc.subjectgas-soil survey
dc.subjectelectromagnetic field radiation intensity
dc.subjectstress state
dc.subjectmining massif
dc.subjectdeformations
dc.subjectwell
dc.subject.udc550.83
dc.titleGas ground and geophysical studies of the rozvadiv zone of mud volcanizm activation (Lviv region, Ukraine)
dc.title.alternativeГазогрунтові та геофізичні дослідження Розвадівської зони активізації грязьового вулканізму (Львівська область, Україна)
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024n1_36__Kuzmenko_E-Gas_ground_and_geophysical_85-97.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024n1_36__Kuzmenko_E-Gas_ground_and_geophysical_85-97__COVER.png
Size:
536.84 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.02 KB
Format:
Plain Text
Description: