Modern deformations of earth crust of territory of Western Ukraine based on «Geoterrace» GNSS network data

dc.citation.epage25
dc.citation.issue1(32)
dc.citation.journalTitleГеодинаміка
dc.citation.spage16
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТретяк, Корнилій
dc.contributor.authorБрусак, Іван
dc.contributor.authorTretyak, Kornyliy
dc.contributor.authorBrusak, Ivan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T08:11:40Z
dc.date.available2023-07-03T08:11:40Z
dc.date.created2028-02-22
dc.date.issued2028-02-22
dc.description.abstractУ роботі проаналізовано сучасні тенденції горизонтальних та вертикальних зміщень території заходу України за ГНСС-даними, з побудовою відповідних карт рухів та з виділенням зон деформацій верхнього шару земної кори. Об’єктом дослідження є горизонтальні та вертикальні деформації верхнього шару земної кори. Мета – виявлення та аналіз деформаційних зон на Заході України. Вихідними даними є горизонтальні та вертикальні швидкості 48 ГНСС-станцій з 2018 до 2021 років мережі “Geoterrace” на Заході України, відомі тектонічні карти території та описові матеріали. Методика передбачає порівняння та аналіз сучасних деформацій земної кори регіону з його відомою тектонічною структурою. У результаті вперше побудовано карти горизонтальних швидкостей ГНСС-станцій та деформацій верхнього шару земної кори Заходу України як єдиного регіону і вертикальних швидкостей ГНСС-станцій. Встановлено, що деформації території Заходу України є складними і лише частково співвідносяться з відомою тектонічною будовою в регіоні. Більшість ГНСС-станцій зазнають висотних просідань, імовірно, в зв’язку з денудаційними процесами, але Галицько-Волинська западина практично не просідає. На схилах Українського щита помітна кореляція вертикальних зміщень та глибини залягання поверхні кристалічних порід. Зони стиску виділяються на Закарпатті, що відповідає території Закарпатського глибинного розлому, а інша – на північному-заході регіону. Окремо необхідно виділити регіон довкола міста Хмельницький, де спостерігаються аномальні вертикальні та горизонтальні зміщення. Подано геодинамічну інтерпретацію аномальних зон деформацій. Визначені швидкості ГНСС-станцій зі збільшенням часового інтервалу спостережень дадуть можливість встановити особливості просторового розподілу руху земної кори на території Заходу України та в майбутньому створити відповідну регіональну геодинамічну модель.
dc.description.abstractThe work analyzes the current horizontal and vertical displacement territory of western Ukraine according to GNSS data, including the creation of special maps of modern displacements and the allocation of deformation zones of the upper crust. The object of study is the horizontal and vertical deformations of the upper crust. The aim is to identify and analyze deformation zones in Western Ukraine. The initial data are horizontal and vertical velocities of 48 continuous GNSS stations from 2018 to 2021 of Geoterrace network, known tectonic maps of the territory and descriptive materials. The methods include comparison and analysis of modern Earth crust deformations of the region with its known tectonic structure. As a result, for the first time it was possible to create the maps of horizontal velocities of continuous GNSS stations and deformations as well as vertical velocities of GNSS stations of the upper crust of Western Ukraine as a whole region. It is established that the deformations of the territory of Western Ukraine are complex and only partially correlate with the known tectonic structure in the region. Most continuous GNSS stations subside in vertical components, possible due to denudation processes. The Galicia–Volyn depression, however, practically does not subside. On the slopes of the Ukrainian Shield there is a noticeable correlation of vertical displacements and the depth of the surface of crystalline rocks. Zones of compression are identified in Zakarpattia, which corresponds to the Zakarpathian (Transcarpathian) deep fault, and in the north-west of the region. It is necessary to mark the zone around the city of Khmelnytskyi, where abnormal vertical and horizontal displacements are observed. Geodynamic interpretation of anomalous deformation zones is given. Determined velocities of continuous GNSS stations with the increasing observation time interval will make it possible to establish the features of the spatial distribution of Western Ukraine crustal movement as well as create an appropriate regional geodynamic model in the future.
dc.format.extent16-25
dc.format.pages10
dc.identifier.citationTretyak K. Modern deformations of earth crust of territory of Western Ukraine based on «Geoterrace» GNSS network data / Kornyliy Tretyak, Ivan Brusak // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 16–25.
dc.identifier.citationenTretyak K. Modern deformations of earth crust of territory of Western Ukraine based on «Geoterrace» GNSS network data / Kornyliy Tretyak, Ivan Brusak // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 16–25.
dc.identifier.doidoi.org/10.23939/jgd2022.02.016
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59368
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(32), 2022
dc.relation.ispartofGeodynamics, 1(32), 2022
dc.relation.referencesAnikeev, S., Maksymchuk, V., Pylypyak M. (2019)
dc.relation.referencesGravimagnetic model of the Kolomyia paleodolina
dc.relation.referencesalong the Nadvirna-Otyniya-Ivano-Frankivsk
dc.relation.referencesgeotraverse. Geophysical Journal, 73–92. (In Ukrainian).
dc.relation.referencesAraszkiewicz, A., Figurski, M. & Jarosiński, M.
dc.relation.references(2016). Erroneous GNSS Strain Rate Patterns and
dc.relation.referencestheir Application to Investigate the Tectonic
dc.relation.referencesCredibility of GNSS Velocities. Acta Geophys. 64, 1412–1429. https://doi.org/10.1515/acgeo-2016-0057
dc.relation.referencesCenni, N., Baldi, P., Loddo, F., Casula, G. et al. (2013).
dc.relation.referencesPresent-Day vertical kinematic pattern in the central
dc.relation.referencesand northern Italy from permanent GPS stations.
dc.relation.referencesConference: Atti del 32° Convegno Nazionale del
dc.relation.referencesGruppo Nazionale di Geofisica della Terra Solida, 18–21 Novembre 2013, Trieste, vol. 2.
dc.relation.referencesChebanenko, I., Vishnyakov, I., & Vlasov, B. (Eds.)
dc.relation.references(1990) Geotectonics of Volyn-Podillya. Naukova
dc.relation.referencesdumka (in Russian).
dc.relation.referencesDach, R., Lutz, S., Walser, P., & Fridez, P. (2015).
dc.relation.referencesBernese GNSS software version 5.2.
dc.relation.referencesDavis, J. L., Wernicke, B. P., & Tamisiea, M. E.
dc.relation.references(2012). On seasonal signals in geodetic time
dc.relation.referencesseries. Journal of Geophysical Research: Solid
dc.relation.referencesEarth, 117(B1).
dc.relation.referencesDesai, S., Bertiger, W., Gross J. et al. (2016).
dc.relation.referencesIntroduction to JPL's GPS time series. California
dc.relation.referencesInstitute of Technology, under a contract with the
dc.relation.referencesNational Aeronautics and Space Administration.
dc.relation.referencesDevoti, R., D’Agostino, N., Serpelloni, E., Pietrantonio,
dc.relation.referencesG. et al. (2017). A combined velocity field
dc.relation.referencesof the Mediterranean region. Ann. Geophys., 60, 2, 2–17. DOI: 10.4401/ag-7059
dc.relation.referencesDoskich, S. (2021). Deformations of the land crust of
dc.relation.referencesthe Carpathian region according to the data of
dc.relation.referencesGNSS observation. Geodesy, Cartography, and
dc.relation.referencesAerial Photography, 93(1), 35–41. https://doi.org/10.23939/istcgcap2021.93.035
dc.relation.referencesEsposito, A., Pietrantonio, G., Bruno, V., Anzidei, M.,
dc.relation.referencesBonforte, A., Guglielmino, F., ... & Serpelloni, E.
dc.relation.references(2015). Eighteen years of GPS surveys in the
dc.relation.referencesAeolian Islands (southern Italy): open data archive
dc.relation.referencesand velocity field. Ann. Geophys, 58(4), S0439.
dc.relation.referenceshttps://doi.org/10.4401/ag-6823
dc.relation.referencesGruszczynska, M., Klos, A., Rosat, S. and Bogusz, J.
dc.relation.references(2017). Deriving common seasonal signals in GPS
dc.relation.referencesposition time series by using Multichannel
dc.relation.referencesSingular Spectrum Analysis. Acta Geodyn.
dc.relation.referencesGeomater., 14, 3 (187), 273–284. https://doi.org/10.13168/ AGG.2017.0010
dc.relation.referencesIshchenko, M. (2016). Determination of velocities of
dc.relation.referencesEast European stations from GNSS observations at
dc.relation.referencesthe GNSS data analysis center of the main
dc.relation.referencesastronomical observatory, national academy of
dc.relation.referencessciences of Ukraine. Kinematics and Physics of
dc.relation.referencesCelestial Bodies, 32(1), 48–53. https://doi.org/10.3103/s0884591316010049
dc.relation.referencesIshchenko, M. (2018). Investigation of deformations
dc.relation.referencesof the earth crust on the territory of Ukraine using
dc.relation.referencesa GNSS observations. Artificial Satellites, 53(3), 117–126. https://doi.org/10.2478/arsa-2018-0009
dc.relation.referencesIshchenko, M., & Khoda, O. (2020, December). On
dc.relation.referencesGNSS Activity at the Main Astronomical
dc.relation.referencesObservatory NASU. In International Conference
dc.relation.referencesof Young Professionals «GeoTerrace-2020» (Vol. 2020, No. 1, 1–5). European Association of
dc.relation.referencesGeoscientists & Engineers.
dc.relation.referencesKowalczyk, K. (2005, May). Determination of land
dc.relation.referencesuplift in the area of Poland. In the 6th
dc.relation.referencesInternational Conference Environment, al
dc.relation.referencesEngineering (Vol. 1, 903–907)
dc.relation.referencesKowalczyk, K., Kowalczyk, A. M., & Chojka, A.
dc.relation.references(2020). Modeling of the vertical movements of the
dc.relation.referencesearth's crust in Poland with the co-kriging method
dc.relation.referencesbased on various sources of data. Applied
dc.relation.referencesSciences, 10 (9), 3004.
dc.relation.referencesKowalczyk K. & Rapiński J. (2017) Robust network
dc.relation.referencesadjustment of vertical movements with GNSS data
dc.relation.referenceshttps://doi.org/10.15233/gfz.2017.34.3
dc.relation.referencesKruglov, S., Smirnov, S., Spitkovskaya, S., Filshtinsky
dc.relation.referencesL., Khizhnyakov A. (1985). Geodynamics
dc.relation.referencesof the Carpathians. Naukova Dumka (In Russian).
dc.relation.referencesKrupskyi, Yu., Kurovets, I., Senkovsky, Yu.,
dc.relation.referencesMikhailov V., Chepil, P., Drygant, D., ... &
dc.relation.referencesBodlak, V. (2014). Unconventional sources of
dc.relation.referenceshydrocarbons in Ukraine (In Ukrainian).
dc.relation.referencesKutas, R. I. (2021). Deep degasion and oil-and-gas
dc.relation.referencescontainment of the Eastern (Ukrainian) Carpathians:
dc.relation.referencesgeodynamic and geothermal aspects. Geofizicheskiy
dc.relation.referencesZhurnal, 43(6), 23–41.
dc.relation.referencesMaksymchuk, V., Klymkovych, T., Nakalov, Y.,
dc.relation.referencesChobotok, I., Tymoschyk, V. (2018). Informativity
dc.relation.referencesof tectonomagnetic monitoring in the
dc.relation.referencesTranscarpathians active seismic zone. XII International
dc.relation.referencesScientific Conference “Monitoring of
dc.relation.referencesGeological Processes and Ecological Condition of
dc.relation.referencesthe Environment”, Kyiv, Ukraine. DOI: 10.3997/2214-4609.201803170
dc.relation.referencesMarchenko, O., Tretyak, K., Serant, O., & Vysotenko, R.
dc.relation.references(2011). Estimation of the Earth crust strain rate
dc.relation.referencestensor from GPS observations data in the Eastern
dc.relation.referencesEurope. Geodynamics 1(10), 5–16. (In Ukrainian)
dc.relation.referenceshttps://doi.org/10.23939/jgd2011.01.005
dc.relation.referencesMarchenko, A., Perii, S., Lompas, O., Golubinka, Y.,
dc.relation.referencesMarchenko, D., Kramarenko, S. & Salawu, A.,
dc.relation.references(2019). Determination of the horizontal strain
dc.relation.referencesrates tensor in Western Ukraine. Geodynamics, 2
dc.relation.references(27), 5–15. https://doi.org/10.23939/jgd2019.02.005
dc.relation.referencesNechaeva, T., Garkavko, V., Shymkiv, L., & Yentin V.
dc.relation.references(2002). Map of the anomalous magnetic field of
dc.relation.referencesUkraine: Northern State Regional Geological
dc.relation.referencesEnterprise “Pivnichukrheolohiya” (In Ukrainian)
dc.relation.referencesOrlyuk, M. (1999). Magnetic model of the Earth crust
dc.relation.referencesin the southwest of the East European platform.
dc.relation.referencesInstitute of Geophysics of the National Academy of
dc.relation.referencesSciences of Ukraine. (In Russian).
dc.relation.referencesOrlyuk, M., & Ishchenko, M. (2019) Comparative
dc.relation.referencesanalysis of modern deformation and the newest
dc.relation.referencesmotions of the Earth surface in the territory of
dc.relation.referencesUkraine. Geofizicheskiy zhurnal, 4 (41), 161–181.
dc.relation.references(In Russian) https://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177381.
dc.relation.referencesOrlyuk, M. & Romenets, A. (2005). A new criterion
dc.relation.referencesfor evaluating the space-time disturbance of the
dc.relation.referencesEarth magnetic field and some aspects of its use.
dc.relation.referencesGeofizicheskiy Zhurnal, 27(6), 1012–1023. (In Russian)
dc.relation.referencesPalienko, V. (1992). The newest geodynamics and its
dc.relation.referencesreflection on Ukraine's relief. Naukova Dumka (In
dc.relation.referencesRussian).
dc.relation.referencesSavchuk, S., & Doskich, S. (2017). Monitoring of
dc.relation.referencescrustal movements in Ukraine using the network
dc.relation.referencesof reference GNSS-stations. Geodynamics, 2(23),7–13.
dc.relation.referencesSavchyn, I., & Pronyshyn, R. (2020). Differentiation
dc.relation.referencesof recent local geodynamic and seismic processes
dc.relation.referencesof technogenic-loaded territories based on the
dc.relation.referencesexample of Dnister Hydro Power Complex
dc.relation.references(Ukraine). Geodesy and Geodynamics, 11(5), 391–400
dc.relation.referencesSiejka, Z. (2017). Evaluation of integration degree of
dc.relation.referencesthe ASG-EUPOS polish reference networks with
dc.relation.referencesUkrainian GeoTerrace network stations in the
dc.relation.referencesborder area. Artificial Satellites, 52(3), 71.
dc.relation.referenceshttps://doi.org/10.1515/arsa-2017-0007
dc.relation.referencesStarostenko, V. (Ed.). (2005). Research of modern
dc.relation.referencesgeodynamics of the Ukrainian Carpathians.
dc.relation.referencesNaukova dumka. (In Ukrainian)
dc.relation.referencesTretyak, K., Smirnova, O., Bredeleva, T. (2012).
dc.relation.referencesStudy of periodic сhanges of the world satellite
dc.relation.referencespermanent stations altitudes. Geodynamics, 12 (1),11–29. (In Ukrainian) https://doi.org/10.23939/jgd2012.01.011
dc.relation.referencesTretyak, K. & Vovk, A. (2014). Results of determination
dc.relation.referencesof horizontal deformation of the Earth
dc.relation.referencescrust of Europe according to the data of GNSS
dc.relation.referencesobservations and their relation with the tectonics
dc.relation.referencesstructure. Geodynamics, 1(16), 21-33, (in
dc.relation.referencesUkrainian). https://doi.org/10.23939/jgd2014.01.021
dc.relation.referencesTretyak, K., Maksimchuk, V., Kutas, R., Rokityansky,
dc.relation.referencesI., Gnilko, A., Kendzera, A., & Tereshin, A.
dc.relation.references(2015). Modern geodynamics and geophysical
dc.relation.referencesfields of the Carpathians and adjacent territories.
dc.relation.referencesLviv: Publishing House of Lviv Polytechnic (in
dc.relation.referencesUkrainian).
dc.relation.referencesTretyak, K., & Brusak, І. (2020). The research of
dc.relation.referencesinterrelation between seismic activity and modern
dc.relation.referenceshorisontal movements of the Сarpathian-Balkan
dc.relation.referencesregion based on the data from permanent GNSS
dc.relation.referencesstations. Geodynamics, 1(28), 5–18. https://doi.org/10.23939/jgd2020.01.005
dc.relation.referencesTretyak, K., Brusak, І., Bubniak, І., & Zablotskyi, F.
dc.relation.references(2021). Impact of non-tidal atmospheric loading
dc.relation.referenceson civil engineering structures. Geodynamics 2(31),16–28. https://doi.org/10.23939/jgd2021.02.016
dc.relation.referencesenAnikeev, S., Maksymchuk, V., Pylypyak M. (2019)
dc.relation.referencesenGravimagnetic model of the Kolomyia paleodolina
dc.relation.referencesenalong the Nadvirna-Otyniya-Ivano-Frankivsk
dc.relation.referencesengeotraverse. Geophysical Journal, 73–92. (In Ukrainian).
dc.relation.referencesenAraszkiewicz, A., Figurski, M. & Jarosiński, M.
dc.relation.referencesen(2016). Erroneous GNSS Strain Rate Patterns and
dc.relation.referencesentheir Application to Investigate the Tectonic
dc.relation.referencesenCredibility of GNSS Velocities. Acta Geophys. 64, 1412–1429. https://doi.org/10.1515/acgeo-2016-0057
dc.relation.referencesenCenni, N., Baldi, P., Loddo, F., Casula, G. et al. (2013).
dc.relation.referencesenPresent-Day vertical kinematic pattern in the central
dc.relation.referencesenand northern Italy from permanent GPS stations.
dc.relation.referencesenConference: Atti del 32° Convegno Nazionale del
dc.relation.referencesenGruppo Nazionale di Geofisica della Terra Solida, 18–21 Novembre 2013, Trieste, vol. 2.
dc.relation.referencesenChebanenko, I., Vishnyakov, I., & Vlasov, B. (Eds.)
dc.relation.referencesen(1990) Geotectonics of Volyn-Podillya. Naukova
dc.relation.referencesendumka (in Russian).
dc.relation.referencesenDach, R., Lutz, S., Walser, P., & Fridez, P. (2015).
dc.relation.referencesenBernese GNSS software version 5.2.
dc.relation.referencesenDavis, J. L., Wernicke, B. P., & Tamisiea, M. E.
dc.relation.referencesen(2012). On seasonal signals in geodetic time
dc.relation.referencesenseries. Journal of Geophysical Research: Solid
dc.relation.referencesenEarth, 117(B1).
dc.relation.referencesenDesai, S., Bertiger, W., Gross J. et al. (2016).
dc.relation.referencesenIntroduction to JPL's GPS time series. California
dc.relation.referencesenInstitute of Technology, under a contract with the
dc.relation.referencesenNational Aeronautics and Space Administration.
dc.relation.referencesenDevoti, R., D’Agostino, N., Serpelloni, E., Pietrantonio,
dc.relation.referencesenG. et al. (2017). A combined velocity field
dc.relation.referencesenof the Mediterranean region. Ann. Geophys., 60, 2, 2–17. DOI: 10.4401/ag-7059
dc.relation.referencesenDoskich, S. (2021). Deformations of the land crust of
dc.relation.referencesenthe Carpathian region according to the data of
dc.relation.referencesenGNSS observation. Geodesy, Cartography, and
dc.relation.referencesenAerial Photography, 93(1), 35–41. https://doi.org/10.23939/istcgcap2021.93.035
dc.relation.referencesenEsposito, A., Pietrantonio, G., Bruno, V., Anzidei, M.,
dc.relation.referencesenBonforte, A., Guglielmino, F., ... & Serpelloni, E.
dc.relation.referencesen(2015). Eighteen years of GPS surveys in the
dc.relation.referencesenAeolian Islands (southern Italy): open data archive
dc.relation.referencesenand velocity field. Ann. Geophys, 58(4), S0439.
dc.relation.referencesenhttps://doi.org/10.4401/ag-6823
dc.relation.referencesenGruszczynska, M., Klos, A., Rosat, S. and Bogusz, J.
dc.relation.referencesen(2017). Deriving common seasonal signals in GPS
dc.relation.referencesenposition time series by using Multichannel
dc.relation.referencesenSingular Spectrum Analysis. Acta Geodyn.
dc.relation.referencesenGeomater., 14, 3 (187), 273–284. https://doi.org/10.13168/ AGG.2017.0010
dc.relation.referencesenIshchenko, M. (2016). Determination of velocities of
dc.relation.referencesenEast European stations from GNSS observations at
dc.relation.referencesenthe GNSS data analysis center of the main
dc.relation.referencesenastronomical observatory, national academy of
dc.relation.referencesensciences of Ukraine. Kinematics and Physics of
dc.relation.referencesenCelestial Bodies, 32(1), 48–53. https://doi.org/10.3103/s0884591316010049
dc.relation.referencesenIshchenko, M. (2018). Investigation of deformations
dc.relation.referencesenof the earth crust on the territory of Ukraine using
dc.relation.referencesena GNSS observations. Artificial Satellites, 53(3), 117–126. https://doi.org/10.2478/arsa-2018-0009
dc.relation.referencesenIshchenko, M., & Khoda, O. (2020, December). On
dc.relation.referencesenGNSS Activity at the Main Astronomical
dc.relation.referencesenObservatory NASU. In International Conference
dc.relation.referencesenof Young Professionals "GeoTerrace-2020" (Vol. 2020, No. 1, 1–5). European Association of
dc.relation.referencesenGeoscientists & Engineers.
dc.relation.referencesenKowalczyk, K. (2005, May). Determination of land
dc.relation.referencesenuplift in the area of Poland. In the 6th
dc.relation.referencesenInternational Conference Environment, al
dc.relation.referencesenEngineering (Vol. 1, 903–907)
dc.relation.referencesenKowalczyk, K., Kowalczyk, A. M., & Chojka, A.
dc.relation.referencesen(2020). Modeling of the vertical movements of the
dc.relation.referencesenearth's crust in Poland with the co-kriging method
dc.relation.referencesenbased on various sources of data. Applied
dc.relation.referencesenSciences, 10 (9), 3004.
dc.relation.referencesenKowalczyk K. & Rapiński J. (2017) Robust network
dc.relation.referencesenadjustment of vertical movements with GNSS data
dc.relation.referencesenhttps://doi.org/10.15233/gfz.2017.34.3
dc.relation.referencesenKruglov, S., Smirnov, S., Spitkovskaya, S., Filshtinsky
dc.relation.referencesenL., Khizhnyakov A. (1985). Geodynamics
dc.relation.referencesenof the Carpathians. Naukova Dumka (In Russian).
dc.relation.referencesenKrupskyi, Yu., Kurovets, I., Senkovsky, Yu.,
dc.relation.referencesenMikhailov V., Chepil, P., Drygant, D., ... &
dc.relation.referencesenBodlak, V. (2014). Unconventional sources of
dc.relation.referencesenhydrocarbons in Ukraine (In Ukrainian).
dc.relation.referencesenKutas, R. I. (2021). Deep degasion and oil-and-gas
dc.relation.referencesencontainment of the Eastern (Ukrainian) Carpathians:
dc.relation.referencesengeodynamic and geothermal aspects. Geofizicheskiy
dc.relation.referencesenZhurnal, 43(6), 23–41.
dc.relation.referencesenMaksymchuk, V., Klymkovych, T., Nakalov, Y.,
dc.relation.referencesenChobotok, I., Tymoschyk, V. (2018). Informativity
dc.relation.referencesenof tectonomagnetic monitoring in the
dc.relation.referencesenTranscarpathians active seismic zone. XII International
dc.relation.referencesenScientific Conference "Monitoring of
dc.relation.referencesenGeological Processes and Ecological Condition of
dc.relation.referencesenthe Environment", Kyiv, Ukraine. DOI: 10.3997/2214-4609.201803170
dc.relation.referencesenMarchenko, O., Tretyak, K., Serant, O., & Vysotenko, R.
dc.relation.referencesen(2011). Estimation of the Earth crust strain rate
dc.relation.referencesentensor from GPS observations data in the Eastern
dc.relation.referencesenEurope. Geodynamics 1(10), 5–16. (In Ukrainian)
dc.relation.referencesenhttps://doi.org/10.23939/jgd2011.01.005
dc.relation.referencesenMarchenko, A., Perii, S., Lompas, O., Golubinka, Y.,
dc.relation.referencesenMarchenko, D., Kramarenko, S. & Salawu, A.,
dc.relation.referencesen(2019). Determination of the horizontal strain
dc.relation.referencesenrates tensor in Western Ukraine. Geodynamics, 2
dc.relation.referencesen(27), 5–15. https://doi.org/10.23939/jgd2019.02.005
dc.relation.referencesenNechaeva, T., Garkavko, V., Shymkiv, L., & Yentin V.
dc.relation.referencesen(2002). Map of the anomalous magnetic field of
dc.relation.referencesenUkraine: Northern State Regional Geological
dc.relation.referencesenEnterprise "Pivnichukrheolohiya" (In Ukrainian)
dc.relation.referencesenOrlyuk, M. (1999). Magnetic model of the Earth crust
dc.relation.referencesenin the southwest of the East European platform.
dc.relation.referencesenInstitute of Geophysics of the National Academy of
dc.relation.referencesenSciences of Ukraine. (In Russian).
dc.relation.referencesenOrlyuk, M., & Ishchenko, M. (2019) Comparative
dc.relation.referencesenanalysis of modern deformation and the newest
dc.relation.referencesenmotions of the Earth surface in the territory of
dc.relation.referencesenUkraine. Geofizicheskiy zhurnal, 4 (41), 161–181.
dc.relation.referencesen(In Russian) https://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177381.
dc.relation.referencesenOrlyuk, M. & Romenets, A. (2005). A new criterion
dc.relation.referencesenfor evaluating the space-time disturbance of the
dc.relation.referencesenEarth magnetic field and some aspects of its use.
dc.relation.referencesenGeofizicheskiy Zhurnal, 27(6), 1012–1023. (In Russian)
dc.relation.referencesenPalienko, V. (1992). The newest geodynamics and its
dc.relation.referencesenreflection on Ukraine's relief. Naukova Dumka (In
dc.relation.referencesenRussian).
dc.relation.referencesenSavchuk, S., & Doskich, S. (2017). Monitoring of
dc.relation.referencesencrustal movements in Ukraine using the network
dc.relation.referencesenof reference GNSS-stations. Geodynamics, 2(23),7–13.
dc.relation.referencesenSavchyn, I., & Pronyshyn, R. (2020). Differentiation
dc.relation.referencesenof recent local geodynamic and seismic processes
dc.relation.referencesenof technogenic-loaded territories based on the
dc.relation.referencesenexample of Dnister Hydro Power Complex
dc.relation.referencesen(Ukraine). Geodesy and Geodynamics, 11(5), 391–400
dc.relation.referencesenSiejka, Z. (2017). Evaluation of integration degree of
dc.relation.referencesenthe ASG-EUPOS polish reference networks with
dc.relation.referencesenUkrainian GeoTerrace network stations in the
dc.relation.referencesenborder area. Artificial Satellites, 52(3), 71.
dc.relation.referencesenhttps://doi.org/10.1515/arsa-2017-0007
dc.relation.referencesenStarostenko, V. (Ed.). (2005). Research of modern
dc.relation.referencesengeodynamics of the Ukrainian Carpathians.
dc.relation.referencesenNaukova dumka. (In Ukrainian)
dc.relation.referencesenTretyak, K., Smirnova, O., Bredeleva, T. (2012).
dc.relation.referencesenStudy of periodic shanges of the world satellite
dc.relation.referencesenpermanent stations altitudes. Geodynamics, 12 (1),11–29. (In Ukrainian) https://doi.org/10.23939/jgd2012.01.011
dc.relation.referencesenTretyak, K. & Vovk, A. (2014). Results of determination
dc.relation.referencesenof horizontal deformation of the Earth
dc.relation.referencesencrust of Europe according to the data of GNSS
dc.relation.referencesenobservations and their relation with the tectonics
dc.relation.referencesenstructure. Geodynamics, 1(16), 21-33, (in
dc.relation.referencesenUkrainian). https://doi.org/10.23939/jgd2014.01.021
dc.relation.referencesenTretyak, K., Maksimchuk, V., Kutas, R., Rokityansky,
dc.relation.referencesenI., Gnilko, A., Kendzera, A., & Tereshin, A.
dc.relation.referencesen(2015). Modern geodynamics and geophysical
dc.relation.referencesenfields of the Carpathians and adjacent territories.
dc.relation.referencesenLviv: Publishing House of Lviv Polytechnic (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenTretyak, K., & Brusak, I. (2020). The research of
dc.relation.referenceseninterrelation between seismic activity and modern
dc.relation.referencesenhorisontal movements of the Sarpathian-Balkan
dc.relation.referencesenregion based on the data from permanent GNSS
dc.relation.referencesenstations. Geodynamics, 1(28), 5–18. https://doi.org/10.23939/jgd2020.01.005
dc.relation.referencesenTretyak, K., Brusak, I., Bubniak, I., & Zablotskyi, F.
dc.relation.referencesen(2021). Impact of non-tidal atmospheric loading
dc.relation.referencesenon civil engineering structures. Geodynamics 2(31),16–28. https://doi.org/10.23939/jgd2021.02.016
dc.relation.urihttps://doi.org/10.1515/acgeo-2016-0057
dc.relation.urihttps://doi.org/10.23939/istcgcap2021.93.035
dc.relation.urihttps://doi.org/10.4401/ag-6823
dc.relation.urihttps://doi.org/10.13168/
dc.relation.urihttps://doi.org/10.3103/s0884591316010049
dc.relation.urihttps://doi.org/10.2478/arsa-2018-0009
dc.relation.urihttps://doi.org/10.15233/gfz.2017.34.3
dc.relation.urihttps://doi.org/10.23939/jgd2011.01.005
dc.relation.urihttps://doi.org/10.23939/jgd2019.02.005
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177381
dc.relation.urihttps://doi.org/10.1515/arsa-2017-0007
dc.relation.urihttps://doi.org/10.23939/jgd2012.01.011
dc.relation.urihttps://doi.org/10.23939/jgd2014.01.021
dc.relation.urihttps://doi.org/10.23939/jgd2020.01.005
dc.relation.urihttps://doi.org/10.23939/jgd2021.02.016
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2022
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2022
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Tretyak Kornyliy, Brusak Іvan
dc.subjectсучасна геодинаміка
dc.subjectдеформації земної кори
dc.subjectГНСС-дані
dc.subjectЗахід України
dc.subjectmodern geodynamics
dc.subjectdeformations of the Earth crust
dc.subjectGNSS data
dc.subjectWestern Ukraine
dc.subject.udc551.24
dc.subject.udc528.22
dc.titleModern deformations of earth crust of territory of Western Ukraine based on «Geoterrace» GNSS network data
dc.title.alternativeСучасні деформації земної кори території Заходу України за даними ГНСС мережі «Geoterrace»
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022n1_32__Tretyak_K-Modern_deformations_of_earth_16-25.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022n1_32__Tretyak_K-Modern_deformations_of_earth_16-25__COVER.png
Size:
545.58 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: