Analysis of software packages appliing in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review

dc.citation.epage68
dc.citation.issue1
dc.citation.journalTitleТеорія і практика будівництва
dc.citation.spage61
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКрасніцький, П. В.
dc.contributor.authorЛободанов, М. М.
dc.contributor.authorБліхарський, З. Я.
dc.contributor.authorKrasnitskyi, Petro
dc.contributor.authorLobodanov, Maksym
dc.contributor.authorBlikharskyi, Zinovii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-23T06:11:59Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractЗгідно із тенденціями сучасного світового ринку будівництво із монолітного та збірного залізобетону надзвичайно популярне через численні різноманітні чинники, які змушують вибирати саме такого типу конструкції для спорудження будинків. Якась частина цих конструкцій експлуатується з пошкодженнями чи дефектами, причини яких різноманітні. Особливої уваги потребують обстеження і реконструкція таких пошкоджених конструкцій, щоб визначити значення надлишкової несучої здатності елемента, оскільки пошкодження та дефекти можуть бути абсолютно різноманітними, а чинників, які їх спричиняють, безліч. У сучасних умовах таку роботу можна полегшити і детальніше проаналізувати за допомогою спеціалізованого програмного забезпечення, яке ураховуватиме всі необхідні поведінкові характеристики матеріалу, братиме до уваги в розрахунках дефекти чи пошкодження. Зважаючи на сьогоднішню ситуацію в Україні, проблема пошкоджених залізобетонних конструкцій буде надзвичайно актуальною, особливо після закінчення повномасштабного збройного нападу російської федерації. А отже, дослідження різних пошкоджень та дефектів, які впливатимуть на несучу здатність та міцність залізобетонних елементів, потребуватиме швидкого і якісного аналізу пошкодження, а швидше за все, комбінації пошкоджень. Проаналізовано класифікацію та вплив пошкоджень, дефектів на несучу здатність пошкоджених згинаних залізобетонних елементів і проаналізовано два варіанти нелінійного аналізу в двох різних програмних комплексах “LIRA-SAPR 2017” та “ANSYS”. Досліджено роботу кожного з цих програмних комплексів, порівняно з експериментальними дослідженнями, та практичність їх використання у реаліях сьогодення.
dc.description.abstractCurrently, on the world market, there are trends in the construction of a large number of monolithic and prefabricated reinforced concrete structures, and individual parts of these structures are operated with damage or defects, and the causes of these damages are quite diverse. In modern conditions, such work can be facilitated and analyzed in more detail with the help of specialized software, which can include all the necessary characteristics of material behavior and include existing defects or damage. This problem of damage to reinforced concrete structures will become extremely relevant in Ukraine, especially after the completion of a full-scale armed attack by the Russian Federation, and therefore, the study of various types of damage and defects that will affect the load-bearing capacity and strength of reinforced concrete elements require a quick and high-quality analysis of this damage, and most likely aggregates of damage.
dc.format.extent61-68
dc.format.pages8
dc.identifier.citationKrasnitskyi P. Analysis of software packages appliing in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review / Petro Krasnitskyi, Maksym Lobodanov, Zinovii Blikharskyi // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 61–68.
dc.identifier.citationenKrasnitskyi P. Analysis of software packages appliing in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review / Petro Krasnitskyi, Maksym Lobodanov, Zinovii Blikharskyi // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 61–68.
dc.identifier.doidoi.org/10.23939/jtbp2024.01.061
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111480
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія і практика будівництва, 1 (6), 2024
dc.relation.ispartofTheory and Building Practice, 1 (6), 2024
dc.relation.referencesLobodanov M. M., Veghera P. I., Blikharsjkyj Z. (2018). Аnalysis of the main methods of studying the effects of the damage to the load-carrying capacity of reinforced concrete elements. Resource-saving materials, structures, buildings and constructions, (36), 389–396. DOI: https://doi.org/10.31713/budres.v0i36.290
dc.relation.referencesLobodanov, M., Vegera, P., & Blikharskyy, Z. (2019). Influence analysis of the main types of defects and damages on bearing capacity in reinforced concrete elements and their research methods. Production Engineering Archives, 22(22), 24–29. DOI: 10.30657/pea.2019.22.05
dc.relation.referencesKlymenko, E. V., & Ostraia, E. A. (2012). The influence of damage on the strength and deformability of bending reinforced concrete elements. Visnik of the Odessa State Academy of Construction and Architecture, (46), 175–180. http://nbuv.gov.ua/UJRN/Vodaba_2012_46_25.
dc.relation.referencesKlymenko, E. V., Cherneva, E. S., Korol, N. D., Arez, M. Y., & Antonyshyna, Y. V. (2014). Residual load bearing capacity of damaged T-profile reinforced concrete blocks. Bulletin of the Odessa State Academy of Construction and Architecture, (54), 159–163. http://mx.ogasa.org.ua/handle/123456789/1336
dc.relation.referencesDahmani, L., Khennane, A., & Kaci, S. (2010). Crack identification in reinforced concrete beams using ANSYS software. Strength of materials, 42, 232–240. http://dspace.nbuv.gov.ua/handle/123456789/112789
dc.relation.referencesHalahla, A. (2018, April). Study the behavior of reinforced concrete beam using finite element analysis. In Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (April 2018). DOI (Vol. 10) 10.11159/icsenm18.103
dc.relation.referencesKlymenko, E. V., Cherneva, E. S., Dovhan, A. D., & Ysmael, A. M. (2013). Influence of timeliness factors of T-beams on the magnitude of their destructive slicing. Scientific Notes, (43), 94–97. mx.ogasa.org.ua/bitstream/ 123456789/3954/1/Влияние%20факторов%20поврежденности%20тавровых...pdf
dc.relation.referencesAhmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction–a review. Cement and concrete composites, 25(4-5), 459–471. https://doi.org/10.1016/S0958-9465(02)00086-0
dc.relation.referencesKhmil, R. E., Vashkevych, R. V., & Blikharsky, Y. Z. (2009). Stress-strain state of reinforced concrete beams damaged by aggressive environment. Visnyk Nac. un-tu “Ljvivsjka politekhnika”. “Teorija i praktyka budivnyctva”, (655), 278–285. oldena.lpnu.ua/bitstream/ntb/2926/1/50.pdf
dc.relation.referencesBliharskyi, Z. Ya., Khmil, R. E., Vashkevich, R. V., & Bliharskyi, J. Z. (2011). Stress-deformed state of reinforced concrete beams with local corrosion damage. Bulletin of the National Lviv Polytechnic University. “Theory and practice of construction”, (697), 36–41. http://journal-niisk.com/index.php/scienceandconstruction/article/download/147/136/
dc.relation.referencesPetrov, O. M. (2015). Crack formation and fracture character of reinforced concrete elements in torsional bending. Stroitel'nye konstruktsii, (82), 507–518. http://nbuv.gov.ua/UJRN/buko_2015_82_58.
dc.relation.referencesTjitradi, D., Eliatun, E., & Taufik, S. (2017). 3D ANSYS numerical modeling of reinforced concrete beam behavior under different collapsed mechanisms. International Journal of Mechanics and Applications, 14–23. DOI: 10.5923/j.mechanics.20170701.02
dc.relation.referencesPatil, S. S., Shaikh, A. N., & Niranjan, B. R. (2013). Experimental and analytical study on reinforced concrete deep beam. International Journal of Mordern Engineering Research, 3(1), 45–52. https://www.academia.edu/3076599/Experimental_and_Analytical_Study_on_Reinforced_Concrete_Deep_Beam
dc.relation.referencesHasan, K., Alam, M. M., Mahzuz, H. M. A., & Hasan, K. FE simulation of reinforced concrete beam using ansys for several patterns FRP of shear reinforcement. Advances in Civil Engineering (ICACE 2020). https://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_REINFORCEMENT
dc.relation.referencesIbrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with laminates. European Journal of Scientific Research, 30(4), 526–541. https://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates
dc.relation.referencesBosniuk, V., Ostopolets, I., Svitlychna, N., Miroshnichenko, O., Tsipan, T., & Kubitskyi, S. (2021). Social content of psychological specialists’ professional activity. Postmodern Openings, 12(1), 01–20. https://doi.org/10.18662/po/12.1/242
dc.relation.referencesMatsyopa, I. R., & Murin, A. Y. (2018). Modelling the operation of reinforced concrete beams with composite prestressed reinforcement. Bulletin of Lviv Polytechnic National University. Series: Theory and practice of construction, (904), 39–43. https://science.lpnu.ua/sites/default/files/journal-paper/2019/feb/15636/181820-39-43.pdf
dc.relation.referencesKarpiuk, V., Somina, Y., Maistrenko, O. (2020). Engineering Method of Calculation of Beam Structures Inclined Sections Based on the Fatigue Fracture Model. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds) Proceedings of CEE 2019. CEE 2019. Lecture Notes in Civil Engineering, Vol. 47. Springer, Cham. https://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.referencesKlymenko, E. V., Antoniuk, N. R., & Polianskyi, K. V. (2019). Modelling the operation of damaged reinforced concrete beams in the Lira-Sapr software. Bulletin of the Odessa State Academy of Construction and Architecture, (77), 58–65. http://mx.ogasa.org.ua/handle/123456789/8373
dc.relation.referencesKarpiuk, V. M., & Antonova, D. V. (2020). The main parameters of crack resistance of ordinary and damaged reinforced concrete beams reinforced with carbon fibre reinforced plastic under low-cycle loading of high levels. Scientific Bulletin of Construction, 99(1), 105–110. https://svc.kname.edu.ua/index.php/svc/article/view/149
dc.relation.referencesenLobodanov M. M., Veghera P. I., Blikharsjkyj Z. (2018). Analysis of the main methods of studying the effects of the damage to the load-carrying capacity of reinforced concrete elements. Resource-saving materials, structures, buildings and constructions, (36), 389–396. DOI: https://doi.org/10.31713/budres.v0i36.290
dc.relation.referencesenLobodanov, M., Vegera, P., & Blikharskyy, Z. (2019). Influence analysis of the main types of defects and damages on bearing capacity in reinforced concrete elements and their research methods. Production Engineering Archives, 22(22), 24–29. DOI: 10.30657/pea.2019.22.05
dc.relation.referencesenKlymenko, E. V., & Ostraia, E. A. (2012). The influence of damage on the strength and deformability of bending reinforced concrete elements. Visnik of the Odessa State Academy of Construction and Architecture, (46), 175–180. http://nbuv.gov.ua/UJRN/Vodaba_2012_46_25.
dc.relation.referencesenKlymenko, E. V., Cherneva, E. S., Korol, N. D., Arez, M. Y., & Antonyshyna, Y. V. (2014). Residual load bearing capacity of damaged T-profile reinforced concrete blocks. Bulletin of the Odessa State Academy of Construction and Architecture, (54), 159–163. http://mx.ogasa.org.ua/handle/123456789/1336
dc.relation.referencesenDahmani, L., Khennane, A., & Kaci, S. (2010). Crack identification in reinforced concrete beams using ANSYS software. Strength of materials, 42, 232–240. http://dspace.nbuv.gov.ua/handle/123456789/112789
dc.relation.referencesenHalahla, A. (2018, April). Study the behavior of reinforced concrete beam using finite element analysis. In Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (April 2018). DOI (Vol. 10) 10.11159/icsenm18.103
dc.relation.referencesenKlymenko, E. V., Cherneva, E. S., Dovhan, A. D., & Ysmael, A. M. (2013). Influence of timeliness factors of T-beams on the magnitude of their destructive slicing. Scientific Notes, (43), 94–97. mx.ogasa.org.ua/bitstream/ 123456789/3954/1/Vliianie%20faktorov%20povrezhdennosti%20tavrovykh...pdf
dc.relation.referencesenAhmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction–a review. Cement and concrete composites, 25(4-5), 459–471. https://doi.org/10.1016/S0958-9465(02)00086-0
dc.relation.referencesenKhmil, R. E., Vashkevych, R. V., & Blikharsky, Y. Z. (2009). Stress-strain state of reinforced concrete beams damaged by aggressive environment. Visnyk Nac. un-tu "Ljvivsjka politekhnika". "Teorija i praktyka budivnyctva", (655), 278–285. oldena.lpnu.ua/bitstream/ntb/2926/1/50.pdf
dc.relation.referencesenBliharskyi, Z. Ya., Khmil, R. E., Vashkevich, R. V., & Bliharskyi, J. Z. (2011). Stress-deformed state of reinforced concrete beams with local corrosion damage. Bulletin of the National Lviv Polytechnic University. "Theory and practice of construction", (697), 36–41. http://journal-niisk.com/index.php/scienceandconstruction/article/download/147/136/
dc.relation.referencesenPetrov, O. M. (2015). Crack formation and fracture character of reinforced concrete elements in torsional bending. Stroitel'nye konstruktsii, (82), 507–518. http://nbuv.gov.ua/UJRN/buko_2015_82_58.
dc.relation.referencesenTjitradi, D., Eliatun, E., & Taufik, S. (2017). 3D ANSYS numerical modeling of reinforced concrete beam behavior under different collapsed mechanisms. International Journal of Mechanics and Applications, 14–23. DOI: 10.5923/j.mechanics.20170701.02
dc.relation.referencesenPatil, S. S., Shaikh, A. N., & Niranjan, B. R. (2013). Experimental and analytical study on reinforced concrete deep beam. International Journal of Mordern Engineering Research, 3(1), 45–52. https://www.academia.edu/3076599/Experimental_and_Analytical_Study_on_Reinforced_Concrete_Deep_Beam
dc.relation.referencesenHasan, K., Alam, M. M., Mahzuz, H. M. A., & Hasan, K. FE simulation of reinforced concrete beam using ansys for several patterns FRP of shear reinforcement. Advances in Civil Engineering (ICACE 2020). https://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_REINFORCEMENT
dc.relation.referencesenIbrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with laminates. European Journal of Scientific Research, 30(4), 526–541. https://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates
dc.relation.referencesenBosniuk, V., Ostopolets, I., Svitlychna, N., Miroshnichenko, O., Tsipan, T., & Kubitskyi, S. (2021). Social content of psychological specialists’ professional activity. Postmodern Openings, 12(1), 01–20. https://doi.org/10.18662/po/12.1/242
dc.relation.referencesenMatsyopa, I. R., & Murin, A. Y. (2018). Modelling the operation of reinforced concrete beams with composite prestressed reinforcement. Bulletin of Lviv Polytechnic National University. Series: Theory and practice of construction, (904), 39–43. https://science.lpnu.ua/sites/default/files/journal-paper/2019/feb/15636/181820-39-43.pdf
dc.relation.referencesenKarpiuk, V., Somina, Y., Maistrenko, O. (2020). Engineering Method of Calculation of Beam Structures Inclined Sections Based on the Fatigue Fracture Model. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds) Proceedings of CEE 2019. CEE 2019. Lecture Notes in Civil Engineering, Vol. 47. Springer, Cham. https://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.referencesenKlymenko, E. V., Antoniuk, N. R., & Polianskyi, K. V. (2019). Modelling the operation of damaged reinforced concrete beams in the Lira-Sapr software. Bulletin of the Odessa State Academy of Construction and Architecture, (77), 58–65. http://mx.ogasa.org.ua/handle/123456789/8373
dc.relation.referencesenKarpiuk, V. M., & Antonova, D. V. (2020). The main parameters of crack resistance of ordinary and damaged reinforced concrete beams reinforced with carbon fibre reinforced plastic under low-cycle loading of high levels. Scientific Bulletin of Construction, 99(1), 105–110. https://svc.kname.edu.ua/index.php/svc/article/view/149
dc.relation.urihttps://doi.org/10.31713/budres.v0i36.290
dc.relation.urihttp://nbuv.gov.ua/UJRN/Vodaba_2012_46_25
dc.relation.urihttp://mx.ogasa.org.ua/handle/123456789/1336
dc.relation.urihttp://dspace.nbuv.gov.ua/handle/123456789/112789
dc.relation.urihttps://doi.org/10.1016/S0958-9465(02)00086-0
dc.relation.urihttp://journal-niisk.com/index.php/scienceandconstruction/article/download/147/136/
dc.relation.urihttp://nbuv.gov.ua/UJRN/buko_2015_82_58
dc.relation.urihttps://www.academia.edu/3076599/Experimental_and_Analytical_Study_on_Reinforced_Concrete_Deep_Beam
dc.relation.urihttps://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_REINFORCEMENT
dc.relation.urihttps://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates
dc.relation.urihttps://doi.org/10.18662/po/12.1/242
dc.relation.urihttps://science.lpnu.ua/sites/default/files/journal-paper/2019/feb/15636/181820-39-43.pdf
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.urihttp://mx.ogasa.org.ua/handle/123456789/8373
dc.relation.urihttps://svc.kname.edu.ua/index.php/svc/article/view/149
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Krasnitskyi P., Lobodanov M., Blikharskyi Z., 2024
dc.subjectметод скінченних елементів
dc.subjectнелінійний розрахунок
dc.subjectзалізобетонні балки
dc.subjectпошкодження залізобетону
dc.subjectзалишкова несуча здатність
dc.subjectнапружено-деформований стан
dc.subjectfinite element method
dc.subjectnonlinear calculation
dc.subjectreinforced concrete beams
dc.subjectdamage to reinforced concrete
dc.subjectresidual bearing capacity
dc.subjectstress-strain state
dc.titleAnalysis of software packages appliing in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review
dc.title.alternativeАналіз застосування програмного забезпечення в досілдженні впилву дефектів залізобетонних балок на міцність і деформативність: стан питання
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n1_Krasnitskyi_P-Analysis_of_software_61-68.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n1_Krasnitskyi_P-Analysis_of_software_61-68__COVER.png
Size:
422.05 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: