Investigation of the asymmetry of the Earth's gravitational field using the representation of potentials of disks
dc.citation.epage | 35 | |
dc.citation.issue | 1(32) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 26 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Фис, Михайло | |
dc.contributor.author | Бридун, Андрій | |
dc.contributor.author | Юрків, Мар`яна | |
dc.contributor.author | Согор, Андрій | |
dc.contributor.author | Губар, Юрій | |
dc.contributor.author | Fys, Mykhailo | |
dc.contributor.author | Brydun, Andrii | |
dc.contributor.author | Yurkiv, Mariana | |
dc.contributor.author | Sohor, Andrii | |
dc.contributor.author | Hubar, Yurii | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-07-03T08:11:41Z | |
dc.date.available | 2023-07-03T08:11:41Z | |
dc.date.created | 2028-02-22 | |
dc.date.issued | 2028-02-22 | |
dc.description.abstract | У роботі розглянуто подання зовнішнього гравітаційного поля Землі, які доповнюють його традиційну апроксимацію рядами за кульовими функціями. Необхідність додаткових засобів опису зовнішнього потенціалу продиктована потребою його вивчення та використання в точках простору, що є близькими до поверхні Землі. Саме в таких областях виникає потреба дослідження збіжності рядів за кульовими функціями та адекватного визначення значення потенціалу. Представлення зовнішнього гравітаційного поля Землі інтегралами простого та подвійного прошарку із залученням апарату апроксимації кусково-неперервної функції в середині еліпса дає змогу розширити для рядів, що подають потенціал, область збіжності до всього простору поза еліпсом інтегрування. Тому, як результат, значення гравітаційного потенціалу збігається зі значеннями цих рядів поза тілом, що містить маси надр (крім еліпса інтегрування). Це дає можливість оцінювати поведінку гравітаційного поля в приповерхневих областях та виконувати з більшою достовірністю дослідження геодинамічних процесів. Апроксимація гравітаційного поля за допомогою поверхневих інтегралів окреслює також геофізичний аспект задачі. Адже під час її розв’язання здійснюється побудова двовимірних підінтегральних функцій, що однозначно визначаються набором стоксових сталих. При цьому коефіцієнти їх розкладів у ряди визначаються за лінійними комбінаціями степеневих моментів їх функцій. Отримані розклади функцій можуть бути використані для дослідження особливостей зовнішнього гравітаційного поля, наприклад, вивчення його асиметрії відносно екваторіальної площини. | |
dc.description.abstract | The paper considers representations of the Earth external gravitational field, supplementing its traditional approximation by series in spherical functions. The necessity for additional means of describing the external potential is dictated by the need to study and use it at points in space close to the Earth's surface. It is in such areas that the need arises to investigate the convergence of series with respect to spherical functions and to adequately determine the value of the potential. The apparatus for approximating a piecewise continuous function in the middle of the ellipse is used for the representation of the Earth external gravitational field by the simple and double layer integrals. This makes it possible to expand the convergence region for the series supplying the potential to the entire space outside the integration ellipse. Therefore, as a result, the value of the gravitational potential coincides with the values of these series outside the body containing the interior masses (except for the integration ellipse). It becomes possible to evaluate the gravitational field behavior in surface areas and to carry out studies of geodynamic processes with greater reliability. Approximation of the gravitational field with the help of surface integrals also determines the geophysical aspect of the problem. Indeed, in the process of solving the problem we constructed two-dimensional integrands, which are uniquely determined by a set of Stokes constants. In this case, their expansion coefficients into series are defined by linear combinations of their function power moments. The resulting function schedules can be used to study the external gravitational field features, e.g., to study its asymmetry with respect to the equatorial plane. | |
dc.format.extent | 26-35 | |
dc.format.pages | 10 | |
dc.identifier.citation | Investigation of the asymmetry of the Earth's gravitational field using the representation of potentials of disks / Mykhailo Fys, Andrii Brydun, Mariana Yurkiv, Andrii Sohor, Yurii Hubar // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 26–35. | |
dc.identifier.citationen | Investigation of the asymmetry of the Earth's gravitational field using the representation of potentials of disks / Mykhailo Fys, Andrii Brydun, Mariana Yurkiv, Andrii Sohor, Yurii Hubar // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 26–35. | |
dc.identifier.doi | doi.org/10.23939/jgd2022.02.026 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59369 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 1(32), 2022 | |
dc.relation.ispartof | Geodynamics, 1(32), 2022 | |
dc.relation.references | Antonov, V. A., Timoshkova, E. I. & Kholshevnikov, | |
dc.relation.references | K. V. (1982). Comparative properties of | |
dc.relation.references | various representations of the Earth's gravitational | |
dc.relation.references | field. Proceedings. I Oryol conference. “The study | |
dc.relation.references | of the Earth as a planet by the methods of | |
dc.relation.references | astronomy, geodesy and geophysics”. Kyiv, 93–108 (in Russian). | |
dc.relation.references | Antonov, V. A., Timoshkova, E. I. & Kholshevnikov, | |
dc.relation.references | K. V. (1988). Introduction to the theory of | |
dc.relation.references | Newtonian potential. Science, Ch. ed. Phys.-Math. | |
dc.relation.references | lit. (in Russian). | |
dc.relation.references | Akhiezer, N. & Crane, M. O. (1938). Some questions | |
dc.relation.references | of the theory of moments. Kharkov: GNTIU (in | |
dc.relation.references | Russian | |
dc.relation.references | Axler, S., Bourdon, P., & Wade, R. (2013). Harmonic | |
dc.relation.references | function theory, Vol. 137. Springer Science & | |
dc.relation.references | Business Media. https://sites.math.washington.edu/~morrow/336_18/HFT.pdf | |
dc.relation.references | Bateman, G. & Erdane, A. (1974). Higher transcendental | |
dc.relation.references | functions. T. II. M.: Nauka (in Russian). | |
dc.relation.references | Fys, M. M, Brydun, A. M. & Yurkiv, M. I. (2018). | |
dc.relation.references | Method for approximate construction of threedimensional | |
dc.relation.references | mass distribution function and | |
dc.relation.references | gradient of an elipsoidal planet based on external | |
dc.relation.references | gravitational field parameters. Geodynamics, 2(25), 27–36. https://doi.org/10.23939/jgdg2018.02.027 | |
dc.relation.references | Fys, M. M, Brydun, A. M. & Yurkiv, M. I. (2019). | |
dc.relation.references | Researching the influence of the mass distribution | |
dc.relation.references | inhomogeneity of the ellipsoidal planet's interior | |
dc.relation.references | on its stokes constants. Geodynamics, 1(26), 17–27. https://doi.org/10.23939/jgdg2019.01.017 | |
dc.relation.references | Grushinsky, N. P. (1983). Fundamentals of gravimetry. | |
dc.relation.references | M: Science, Ch. ed. Phys.-Math. lit. (in | |
dc.relation.references | Russian). | |
dc.relation.references | Hobson, E. W. (1953). Theory of spherical and | |
dc.relation.references | ellipsoidal functions. M.: Izd-vo inostr. lit. (in | |
dc.relation.references | Russian). | |
dc.relation.references | Hofmann–Wellenhof, Dr. B. & Moritz, Dr. H. (2005). | |
dc.relation.references | Physical Geodesy. Springer. Wien- New York. | |
dc.relation.references | Kampé J. de Fériet, & P.E. (1926). Appell Fonctions | |
dc.relation.references | hypergéometriques et hypersphériques. Paris, | |
dc.relation.references | Gauthier-Villars. | |
dc.relation.references | Kondratiev, B. P. (2007). Potential Theory. New | |
dc.relation.references | methods and problems with solutions. M.: Mir. (in | |
dc.relation.references | Russian). | |
dc.relation.references | Kusche J., Schmidt R., Petrovic S., & Rietbroek R., | |
dc.relation.references | (2009). Decorrelated GRACE time-variable | |
dc.relation.references | gravity solutions by GFZ and their validation | |
dc.relation.references | using a hydrological model. Journal of Geodesy, 83, 10, 903–913, http://doi.org/10.1007/s00190-009-0308-3 | |
dc.relation.references | Landerer F., Dickey J., & Zlotnicki V. (2010). | |
dc.relation.references | Terrestrial water budget of the Eurasian pan- | |
dc.relation.references | Arctic from GRACE satellite measurements | |
dc.relation.references | during 2003-2009. J Geophys Res Atmos, D 23115. doi:10.1029/2010JD014584 | |
dc.relation.references | Landkof, N. S. (1966). Fundamentals of modern | |
dc.relation.references | potential theory, M. (in Russian). | |
dc.relation.references | Marchenko, A. N., Abrikosov, O. A. & Tsyupak, I. M. | |
dc.relation.references | (1985). Point mass models and their use in the | |
dc.relation.references | orbital method of satellite geodesy. 2. Application | |
dc.relation.references | of point mass models for differential refinement of | |
dc.relation.references | the orbits of artificial Earth satellites (AES). | |
dc.relation.references | Kinematics and physics of celestial bodies, 1(5),72–80. (in Russian). | |
dc.relation.references | Marchenko A. N., Lopushanskyi A. N. (2018). | |
dc.relation.references | Change in the zonal harmonic coefficient C20, | |
dc.relation.references | Earth’s polar flattening, and dynamical ellipticity | |
dc.relation.references | from SLR data. Geodynamics 2(25), 5–14, | |
dc.relation.references | https://doi.org/10.23939/jgd2018.02.005 | |
dc.relation.references | Meshcheryakov, G. A. (1991). Problems of potential | |
dc.relation.references | theory and the generalized Earth. Moscow: | |
dc.relation.references | Science, Ch. ed. physical-mat. lit. (in Russian). | |
dc.relation.references | National Imagery and Mapping Agency Technical | |
dc.relation.references | Report TR 8350.2 Third Edition, Amendment 1, 1 | |
dc.relation.references | Jan 2000, “Department of Defense World | |
dc.relation.references | Geodetic System 1984”. | |
dc.relation.references | Ostach, O. M. & Ageeva, I. N. (1982). Approximation | |
dc.relation.references | of the external gravitational field of the Earth to the | |
dc.relation.references | model of gravitating point masses. Proceedings of | |
dc.relation.references | the I Oryol Conference. “The study of the Earth as a | |
dc.relation.references | planet by the methods of astronomy, geodesy and | |
dc.relation.references | geophysics”. Kyiv: Naukova Dumka, 106–107 (in | |
dc.relation.references | Russian) | |
dc.relation.references | Pavlis, N. K., Holmes, S. A., Kenyon, S. C. & J. K. | |
dc.relation.references | Factor. (2008). An Earth Gravitational Model to | |
dc.relation.references | degree 2160: EGM2008. EGU General Assembly. | |
dc.relation.references | Geophysical Reaseach Abstracts. vol. 10, p. 2 | |
dc.relation.references | (EGU2008-A-018991). https://cir.nii.ac.jp/crid/1570009750863657728 | |
dc.relation.references | Pellinen, L. P. (1978). Higher geodesy (Theoretical | |
dc.relation.references | geodesy). M.: Nedra (in Russian). | |
dc.relation.references | Sacerdote F, & Sanso F. (1991). Holes in Boundary | |
dc.relation.references | and Out-of-Boundary Data. 1st International | |
dc.relation.references | Symposium of the International Commission for | |
dc.relation.references | the GeoidAt: June 11–13, 1990 Milan, ItalyVolume: | |
dc.relation.references | IAG Symposia no. 106 “Determination of the | |
dc.relation.references | Geoid, Present and Future”, pp. 349–356. | |
dc.relation.references | https://link.springer.com/chapter/10.1007/978-1-4612-3104-2_41 | |
dc.relation.references | Shkodrov, V. G. & Ivanova, V. G. (1988). Asymmetry | |
dc.relation.references | of the planet's gravitational field relative to the | |
dc.relation.references | equatorial plane. Proceedings of the II Oryol | |
dc.relation.references | Conference. “The study of the Earth as a planet by | |
dc.relation.references | the methods of astronomy, geodesy and geophysics”. | |
dc.relation.references | Kyiv: Naukova Dumka, 66–71 (in Russian). | |
dc.relation.references | Tarakanov, Yu. A. & Cherevko, T. N. (1979). | |
dc.relation.references | Interpretation of large-scale gravitational anomalies | |
dc.relation.references | of the Earth. Academy of Sciences of the | |
dc.relation.references | USSR. Physics of the Earth, 4, 25–42 (in Russian). | |
dc.relation.references | Zavizion, O. V. (2000). Self-gravitating disks as a | |
dc.relation.references | means of describing the external gravitational | |
dc.relation.references | fields of celestial bodies. Kinematics and physics | |
dc.relation.references | of celestial bodies, 16 (5), 477–480 (in Ukrainian). | |
dc.relation.references | http://dspace.nbuv.gov.ua/handle/123456789/150089 | |
dc.relation.references | Zavizion, O. V. (2001) On the determination of the | |
dc.relation.references | density of equigravity rods, which are used to | |
dc.relation.references | describe the external gravitational field of giant | |
dc.relation.references | planets. Kinematics and physics of celestial | |
dc.relation.references | bodies, 17(1), 89–92. (in Ukrainian). http://dspace.nbuv.gov.ua/handle/123456789/149869 | |
dc.relation.referencesen | Antonov, V. A., Timoshkova, E. I. & Kholshevnikov, | |
dc.relation.referencesen | K. V. (1982). Comparative properties of | |
dc.relation.referencesen | various representations of the Earth's gravitational | |
dc.relation.referencesen | field. Proceedings. I Oryol conference. "The study | |
dc.relation.referencesen | of the Earth as a planet by the methods of | |
dc.relation.referencesen | astronomy, geodesy and geophysics". Kyiv, 93–108 (in Russian). | |
dc.relation.referencesen | Antonov, V. A., Timoshkova, E. I. & Kholshevnikov, | |
dc.relation.referencesen | K. V. (1988). Introduction to the theory of | |
dc.relation.referencesen | Newtonian potential. Science, Ch. ed. Phys.-Math. | |
dc.relation.referencesen | lit. (in Russian). | |
dc.relation.referencesen | Akhiezer, N. & Crane, M. O. (1938). Some questions | |
dc.relation.referencesen | of the theory of moments. Kharkov: GNTIU (in | |
dc.relation.referencesen | Russian | |
dc.relation.referencesen | Axler, S., Bourdon, P., & Wade, R. (2013). Harmonic | |
dc.relation.referencesen | function theory, Vol. 137. Springer Science & | |
dc.relation.referencesen | Business Media. https://sites.math.washington.edu/~morrow/336_18/HFT.pdf | |
dc.relation.referencesen | Bateman, G. & Erdane, A. (1974). Higher transcendental | |
dc.relation.referencesen | functions. T. II. M., Nauka (in Russian). | |
dc.relation.referencesen | Fys, M. M, Brydun, A. M. & Yurkiv, M. I. (2018). | |
dc.relation.referencesen | Method for approximate construction of threedimensional | |
dc.relation.referencesen | mass distribution function and | |
dc.relation.referencesen | gradient of an elipsoidal planet based on external | |
dc.relation.referencesen | gravitational field parameters. Geodynamics, 2(25), 27–36. https://doi.org/10.23939/jgdg2018.02.027 | |
dc.relation.referencesen | Fys, M. M, Brydun, A. M. & Yurkiv, M. I. (2019). | |
dc.relation.referencesen | Researching the influence of the mass distribution | |
dc.relation.referencesen | inhomogeneity of the ellipsoidal planet's interior | |
dc.relation.referencesen | on its stokes constants. Geodynamics, 1(26), 17–27. https://doi.org/10.23939/jgdg2019.01.017 | |
dc.relation.referencesen | Grushinsky, N. P. (1983). Fundamentals of gravimetry. | |
dc.relation.referencesen | M: Science, Ch. ed. Phys.-Math. lit. (in | |
dc.relation.referencesen | Russian). | |
dc.relation.referencesen | Hobson, E. W. (1953). Theory of spherical and | |
dc.relation.referencesen | ellipsoidal functions. M., Izd-vo inostr. lit. (in | |
dc.relation.referencesen | Russian). | |
dc.relation.referencesen | Hofmann–Wellenhof, Dr. B. & Moritz, Dr. H. (2005). | |
dc.relation.referencesen | Physical Geodesy. Springer. Wien- New York. | |
dc.relation.referencesen | Kampé J. de Fériet, & P.E. (1926). Appell Fonctions | |
dc.relation.referencesen | hypergéometriques et hypersphériques. Paris, | |
dc.relation.referencesen | Gauthier-Villars. | |
dc.relation.referencesen | Kondratiev, B. P. (2007). Potential Theory. New | |
dc.relation.referencesen | methods and problems with solutions. M., Mir. (in | |
dc.relation.referencesen | Russian). | |
dc.relation.referencesen | Kusche J., Schmidt R., Petrovic S., & Rietbroek R., | |
dc.relation.referencesen | (2009). Decorrelated GRACE time-variable | |
dc.relation.referencesen | gravity solutions by GFZ and their validation | |
dc.relation.referencesen | using a hydrological model. Journal of Geodesy, 83, 10, 903–913, http://doi.org/10.1007/s00190-009-0308-3 | |
dc.relation.referencesen | Landerer F., Dickey J., & Zlotnicki V. (2010). | |
dc.relation.referencesen | Terrestrial water budget of the Eurasian pan- | |
dc.relation.referencesen | Arctic from GRACE satellite measurements | |
dc.relation.referencesen | during 2003-2009. J Geophys Res Atmos, D 23115. doi:10.1029/2010JD014584 | |
dc.relation.referencesen | Landkof, N. S. (1966). Fundamentals of modern | |
dc.relation.referencesen | potential theory, M. (in Russian). | |
dc.relation.referencesen | Marchenko, A. N., Abrikosov, O. A. & Tsyupak, I. M. | |
dc.relation.referencesen | (1985). Point mass models and their use in the | |
dc.relation.referencesen | orbital method of satellite geodesy. 2. Application | |
dc.relation.referencesen | of point mass models for differential refinement of | |
dc.relation.referencesen | the orbits of artificial Earth satellites (AES). | |
dc.relation.referencesen | Kinematics and physics of celestial bodies, 1(5),72–80. (in Russian). | |
dc.relation.referencesen | Marchenko A. N., Lopushanskyi A. N. (2018). | |
dc.relation.referencesen | Change in the zonal harmonic coefficient P.20, | |
dc.relation.referencesen | Earth’s polar flattening, and dynamical ellipticity | |
dc.relation.referencesen | from SLR data. Geodynamics 2(25), 5–14, | |
dc.relation.referencesen | https://doi.org/10.23939/jgd2018.02.005 | |
dc.relation.referencesen | Meshcheryakov, G. A. (1991). Problems of potential | |
dc.relation.referencesen | theory and the generalized Earth. Moscow: | |
dc.relation.referencesen | Science, Ch. ed. physical-mat. lit. (in Russian). | |
dc.relation.referencesen | National Imagery and Mapping Agency Technical | |
dc.relation.referencesen | Report TR 8350.2 Third Edition, Amendment 1, 1 | |
dc.relation.referencesen | Jan 2000, "Department of Defense World | |
dc.relation.referencesen | Geodetic System 1984". | |
dc.relation.referencesen | Ostach, O. M. & Ageeva, I. N. (1982). Approximation | |
dc.relation.referencesen | of the external gravitational field of the Earth to the | |
dc.relation.referencesen | model of gravitating point masses. Proceedings of | |
dc.relation.referencesen | the I Oryol Conference. "The study of the Earth as a | |
dc.relation.referencesen | planet by the methods of astronomy, geodesy and | |
dc.relation.referencesen | geophysics". Kyiv: Naukova Dumka, 106–107 (in | |
dc.relation.referencesen | Russian) | |
dc.relation.referencesen | Pavlis, N. K., Holmes, S. A., Kenyon, S. C. & J. K. | |
dc.relation.referencesen | Factor. (2008). An Earth Gravitational Model to | |
dc.relation.referencesen | degree 2160: EGM2008. EGU General Assembly. | |
dc.relation.referencesen | Geophysical Reaseach Abstracts. vol. 10, p. 2 | |
dc.relation.referencesen | (EGU2008-A-018991). https://cir.nii.ac.jp/crid/1570009750863657728 | |
dc.relation.referencesen | Pellinen, L. P. (1978). Higher geodesy (Theoretical | |
dc.relation.referencesen | geodesy). M., Nedra (in Russian). | |
dc.relation.referencesen | Sacerdote F, & Sanso F. (1991). Holes in Boundary | |
dc.relation.referencesen | and Out-of-Boundary Data. 1st International | |
dc.relation.referencesen | Symposium of the International Commission for | |
dc.relation.referencesen | the GeoidAt: June 11–13, 1990 Milan, ItalyVolume: | |
dc.relation.referencesen | IAG Symposia no. 106 "Determination of the | |
dc.relation.referencesen | Geoid, Present and Future", pp. 349–356. | |
dc.relation.referencesen | https://link.springer.com/chapter/10.1007/978-1-4612-3104-2_41 | |
dc.relation.referencesen | Shkodrov, V. G. & Ivanova, V. G. (1988). Asymmetry | |
dc.relation.referencesen | of the planet's gravitational field relative to the | |
dc.relation.referencesen | equatorial plane. Proceedings of the II Oryol | |
dc.relation.referencesen | Conference. "The study of the Earth as a planet by | |
dc.relation.referencesen | the methods of astronomy, geodesy and geophysics". | |
dc.relation.referencesen | Kyiv: Naukova Dumka, 66–71 (in Russian). | |
dc.relation.referencesen | Tarakanov, Yu. A. & Cherevko, T. N. (1979). | |
dc.relation.referencesen | Interpretation of large-scale gravitational anomalies | |
dc.relation.referencesen | of the Earth. Academy of Sciences of the | |
dc.relation.referencesen | USSR. Physics of the Earth, 4, 25–42 (in Russian). | |
dc.relation.referencesen | Zavizion, O. V. (2000). Self-gravitating disks as a | |
dc.relation.referencesen | means of describing the external gravitational | |
dc.relation.referencesen | fields of celestial bodies. Kinematics and physics | |
dc.relation.referencesen | of celestial bodies, 16 (5), 477–480 (in Ukrainian). | |
dc.relation.referencesen | http://dspace.nbuv.gov.ua/handle/123456789/150089 | |
dc.relation.referencesen | Zavizion, O. V. (2001) On the determination of the | |
dc.relation.referencesen | density of equigravity rods, which are used to | |
dc.relation.referencesen | describe the external gravitational field of giant | |
dc.relation.referencesen | planets. Kinematics and physics of celestial | |
dc.relation.referencesen | bodies, 17(1), 89–92. (in Ukrainian). http://dspace.nbuv.gov.ua/handle/123456789/149869 | |
dc.relation.uri | https://sites.math.washington.edu/~morrow/336_18/HFT.pdf | |
dc.relation.uri | https://doi.org/10.23939/jgdg2018.02.027 | |
dc.relation.uri | https://doi.org/10.23939/jgdg2019.01.017 | |
dc.relation.uri | http://doi.org/10.1007/s00190-009-0308-3 | |
dc.relation.uri | https://doi.org/10.23939/jgd2018.02.005 | |
dc.relation.uri | https://cir.nii.ac.jp/crid/1570009750863657728 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-1-4612-3104-2_41 | |
dc.relation.uri | http://dspace.nbuv.gov.ua/handle/123456789/150089 | |
dc.relation.uri | http://dspace.nbuv.gov.ua/handle/123456789/149869 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2022 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2022 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Fys Mykhailo, Brydun Andrii, Yurkiv Mariana, Sohor Аndrii, Hubar Yurii | |
dc.subject | асиметрія гравітаційного поля | |
dc.subject | Земля | |
dc.subject | потенціал | |
dc.subject | сфера Б’єрхамера | |
dc.subject | стоксові постійні | |
dc.subject | the gravitational field asymmetry | |
dc.subject | Earth | |
dc.subject | potential | |
dc.subject | Bjerhamer sphere | |
dc.subject | Stokes constants | |
dc.subject.udc | 528.21 | |
dc.subject.udc | 551.24 | |
dc.title | Investigation of the asymmetry of the Earth's gravitational field using the representation of potentials of disks | |
dc.title.alternative | Дослідження асиметрії гравітаційного поля Землі, поданого потенціалами плоских дисків | |
dc.type | Article |
Files
License bundle
1 - 1 of 1